1 /* $NetBSD: ofw.c,v 1.50 2009/08/11 17:04:19 matt Exp $ */ 2 3 /* 4 * Copyright 1997 5 * Digital Equipment Corporation. All rights reserved. 6 * 7 * This software is furnished under license and may be used and 8 * copied only in accordance with the following terms and conditions. 9 * Subject to these conditions, you may download, copy, install, 10 * use, modify and distribute this software in source and/or binary 11 * form. No title or ownership is transferred hereby. 12 * 13 * 1) Any source code used, modified or distributed must reproduce 14 * and retain this copyright notice and list of conditions as 15 * they appear in the source file. 16 * 17 * 2) No right is granted to use any trade name, trademark, or logo of 18 * Digital Equipment Corporation. Neither the "Digital Equipment 19 * Corporation" name nor any trademark or logo of Digital Equipment 20 * Corporation may be used to endorse or promote products derived 21 * from this software without the prior written permission of 22 * Digital Equipment Corporation. 23 * 24 * 3) This software is provided "AS-IS" and any express or implied 25 * warranties, including but not limited to, any implied warranties 26 * of merchantability, fitness for a particular purpose, or 27 * non-infringement are disclaimed. In no event shall DIGITAL be 28 * liable for any damages whatsoever, and in particular, DIGITAL 29 * shall not be liable for special, indirect, consequential, or 30 * incidental damages or damages for lost profits, loss of 31 * revenue or loss of use, whether such damages arise in contract, 32 * negligence, tort, under statute, in equity, at law or otherwise, 33 * even if advised of the possibility of such damage. 34 */ 35 36 /* 37 * Routines for interfacing between NetBSD and OFW. 38 * 39 * Parts of this could be moved to an MI file in time. -JJK 40 * 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.50 2009/08/11 17:04:19 matt Exp $"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/device.h> 49 #include <sys/kernel.h> 50 #include <sys/reboot.h> 51 #include <sys/mbuf.h> 52 53 #include <uvm/uvm_extern.h> 54 55 #include <dev/cons.h> 56 57 #define _ARM32_BUS_DMA_PRIVATE 58 #include <machine/bus.h> 59 #include <machine/frame.h> 60 #include <machine/bootconfig.h> 61 #include <machine/cpu.h> 62 #include <machine/intr.h> 63 #include <machine/irqhandler.h> 64 65 #include <dev/ofw/openfirm.h> 66 #include <machine/ofw.h> 67 68 #include <netinet/in.h> 69 70 #if BOOT_FW_DHCP 71 #include <nfs/bootdata.h> 72 #endif 73 74 #ifdef SHARK 75 #include "machine/pio.h" 76 #include "machine/isa_machdep.h" 77 #endif 78 79 #include "isadma.h" 80 #include "igsfb_ofbus.h" 81 #include "vga_ofbus.h" 82 83 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE) 84 #define IO_VIRT_SIZE 0x01000000 85 86 #define KERNEL_IMG_PTS 2 87 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2)) 88 #define KERNEL_OFW_PTS 4 89 #define KERNEL_IO_PTS 4 90 91 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 92 /* 93 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space 94 * OFW sits at 0xf7000000 95 */ 96 #define KERNEL_VM_SIZE 0x06000000 97 98 /* 99 * Imported variables 100 */ 101 extern BootConfig bootconfig; /* temporary, I hope */ 102 103 #ifdef DIAGNOSTIC 104 /* NOTE: These variables will be removed, well some of them */ 105 extern u_int current_mask; 106 #endif 107 108 extern int ofw_handleticks; 109 110 111 /* 112 * Imported routines 113 */ 114 extern void dump_spl_masks(void); 115 extern void dumpsys(void); 116 extern void dotickgrovelling(vaddr_t); 117 118 #define WriteWord(a, b) \ 119 *((volatile unsigned int *)(a)) = (b) 120 121 #define ReadWord(a) \ 122 (*((volatile unsigned int *)(a))) 123 124 125 /* 126 * Exported variables 127 */ 128 /* These should all be in a meminfo structure. */ 129 paddr_t physical_start; 130 paddr_t physical_freestart; 131 paddr_t physical_freeend; 132 paddr_t physical_end; 133 u_int free_pages; 134 #ifndef OFWGENCFG 135 pv_addr_t irqstack; 136 #endif 137 pv_addr_t undstack; 138 pv_addr_t abtstack; 139 pv_addr_t kernelstack; 140 141 paddr_t msgbufphys; 142 143 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */ 144 static vaddr_t virt_freeptr; 145 146 int ofw_callbacks = 0; /* debugging counter */ 147 148 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) 149 int console_ihandle = 0; 150 static void reset_screen(void); 151 #endif 152 153 /**************************************************************/ 154 155 156 /* 157 * Declarations and definitions private to this module 158 * 159 */ 160 161 struct mem_region { 162 paddr_t start; 163 psize_t size; 164 }; 165 166 struct mem_translation { 167 vaddr_t virt; 168 vsize_t size; 169 paddr_t phys; 170 unsigned int mode; 171 }; 172 173 struct isa_range { 174 paddr_t isa_phys_hi; 175 paddr_t isa_phys_lo; 176 paddr_t parent_phys_start; 177 psize_t isa_size; 178 }; 179 180 struct vl_range { 181 paddr_t vl_phys_hi; 182 paddr_t vl_phys_lo; 183 paddr_t parent_phys_start; 184 psize_t vl_size; 185 }; 186 187 struct vl_isa_range { 188 paddr_t isa_phys_hi; 189 paddr_t isa_phys_lo; 190 paddr_t parent_phys_hi; 191 paddr_t parent_phys_lo; 192 psize_t isa_size; 193 }; 194 195 struct dma_range { 196 paddr_t start; 197 psize_t size; 198 }; 199 200 struct ofw_cbargs { 201 char *name; 202 int nargs; 203 int nreturns; 204 int args_n_results[12]; 205 }; 206 207 208 /* Memory info */ 209 static int nOFphysmem; 210 static struct mem_region *OFphysmem; 211 static int nOFphysavail; 212 static struct mem_region *OFphysavail; 213 static int nOFtranslations; 214 static struct mem_translation *OFtranslations; 215 static int nOFdmaranges; 216 static struct dma_range *OFdmaranges; 217 218 /* The OFW client services handle. */ 219 /* Initialized by ofw_init(). */ 220 static ofw_handle_t ofw_client_services_handle; 221 222 223 static void ofw_callbackhandler(void *); 224 static void ofw_construct_proc0_addrspace(void); 225 static void ofw_getphysmeminfo(void); 226 static void ofw_getvirttranslations(void); 227 static void *ofw_malloc(vsize_t size); 228 static void ofw_claimpages(vaddr_t *, pv_addr_t *, vsize_t); 229 static void ofw_discardmappings(vaddr_t, vaddr_t, vsize_t); 230 static int ofw_mem_ihandle(void); 231 static int ofw_mmu_ihandle(void); 232 static paddr_t ofw_claimphys(paddr_t, psize_t, paddr_t); 233 #if 0 234 static paddr_t ofw_releasephys(paddr_t, psize_t); 235 #endif 236 static vaddr_t ofw_claimvirt(vaddr_t, vsize_t, vaddr_t); 237 static void ofw_settranslation(vaddr_t, paddr_t, vsize_t, int); 238 static void ofw_initallocator(void); 239 static void ofw_configisaonly(paddr_t *, paddr_t *); 240 static void ofw_configvl(int, paddr_t *, paddr_t *); 241 static vaddr_t ofw_valloc(vsize_t, vaddr_t); 242 243 244 /* 245 * DHCP hooks. For a first cut, we look to see if there is a DHCP 246 * packet that was saved by the firmware. If not, we proceed as before, 247 * getting hand-configured data from NVRAM. If there is one, we get the 248 * packet, and extract the data from it. For now, we hand that data up 249 * in the boot_args string as before. 250 */ 251 252 253 /**************************************************************/ 254 255 256 /* 257 * 258 * Support routines for xxx_machdep.c 259 * 260 * The intent is that all OFW-based configurations use the 261 * exported routines in this file to do their business. If 262 * they need to override some function they are free to do so. 263 * 264 * The exported routines are: 265 * 266 * openfirmware 267 * ofw_init 268 * ofw_boot 269 * ofw_getbootinfo 270 * ofw_configmem 271 * ofw_configisa 272 * ofw_configisadma 273 * ofw_gettranslation 274 * ofw_map 275 * ofw_getcleaninfo 276 */ 277 278 279 int 280 openfirmware(void *args) 281 { 282 int ofw_result; 283 u_int saved_irq_state; 284 285 /* OFW is not re-entrant, so we wrap a mutex around the call. */ 286 saved_irq_state = disable_interrupts(I32_bit); 287 ofw_result = ofw_client_services_handle(args); 288 (void)restore_interrupts(saved_irq_state); 289 290 return(ofw_result); 291 } 292 293 294 void 295 ofw_init(ofw_handle_t ofw_handle) 296 { 297 ofw_client_services_handle = ofw_handle; 298 299 /* Everything we allocate in the remainder of this block is 300 * constrained to be in the "kernel-static" portion of the 301 * virtual address space (i.e., 0xF0000000 - 0xF1000000). 302 * This is because all such objects are expected to be in 303 * that range by NetBSD, or the objects will be re-mapped 304 * after the page-table-switch to other specific locations. 305 * In the latter case, it's simplest if our pre-switch handles 306 * on those objects are in regions that are already "well- 307 * known." (Otherwise, the cloning of the OFW-managed address- 308 * space becomes more awkward.) To minimize the number of L2 309 * page tables that we use, we are further restricting the 310 * remaining allocations in this block to the bottom quarter of 311 * the legal range. OFW will have loaded the kernel text+data+bss 312 * starting at the bottom of the range, and we will allocate 313 * objects from the top, moving downwards. The two sub-regions 314 * will collide if their total sizes hit 8MB. The current total 315 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB 316 * limit. The variable virt-freeptr represents the next free va 317 * (moving downwards). 318 */ 319 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS); 320 } 321 322 323 void 324 ofw_boot(int howto, char *bootstr) 325 { 326 327 #ifdef DIAGNOSTIC 328 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); 329 printf("current_mask=%08x\n", current_mask); 330 331 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n", 332 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], 333 irqmasks[IPL_VM]); 334 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", 335 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); 336 337 dump_spl_masks(); 338 #endif 339 340 /* 341 * If we are still cold then hit the air brakes 342 * and crash to earth fast 343 */ 344 if (cold) { 345 doshutdownhooks(); 346 pmf_system_shutdown(boothowto); 347 printf("Halted while still in the ICE age.\n"); 348 printf("The operating system has halted.\n"); 349 goto ofw_exit; 350 /*NOTREACHED*/ 351 } 352 353 /* 354 * If RB_NOSYNC was not specified sync the discs. 355 * Note: Unless cold is set to 1 here, syslogd will die during the unmount. 356 * It looks like syslogd is getting woken up only to find that it cannot 357 * page part of the binary in as the filesystem has been unmounted. 358 */ 359 if (!(howto & RB_NOSYNC)) 360 bootsync(); 361 362 /* Say NO to interrupts */ 363 splhigh(); 364 365 /* Do a dump if requested. */ 366 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 367 dumpsys(); 368 369 /* Run any shutdown hooks */ 370 doshutdownhooks(); 371 372 pmf_system_shutdown(boothowto); 373 374 /* Make sure IRQ's are disabled */ 375 IRQdisable; 376 377 if (howto & RB_HALT) { 378 printf("The operating system has halted.\n"); 379 goto ofw_exit; 380 } 381 382 /* Tell the user we are booting */ 383 printf("rebooting...\n"); 384 385 /* Jump into the OFW boot routine. */ 386 { 387 static char str[256]; 388 char *ap = str, *ap1 = ap; 389 390 if (bootstr && *bootstr) { 391 if (strlen(bootstr) > sizeof str - 5) 392 printf("boot string too large, ignored\n"); 393 else { 394 strcpy(str, bootstr); 395 ap1 = ap = str + strlen(str); 396 *ap++ = ' '; 397 } 398 } 399 *ap++ = '-'; 400 if (howto & RB_SINGLE) 401 *ap++ = 's'; 402 if (howto & RB_KDB) 403 *ap++ = 'd'; 404 *ap++ = 0; 405 if (ap[-2] == '-') 406 *ap1 = 0; 407 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) 408 reset_screen(); 409 #endif 410 OF_boot(str); 411 /*NOTREACHED*/ 412 } 413 414 ofw_exit: 415 printf("Calling OF_exit...\n"); 416 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) 417 reset_screen(); 418 #endif 419 OF_exit(); 420 /*NOTREACHED*/ 421 } 422 423 424 #if BOOT_FW_DHCP 425 426 extern char *ip2dotted(struct in_addr); 427 428 /* 429 * Get DHCP data from OFW 430 */ 431 432 void 433 get_fw_dhcp_data(struct bootdata *bdp) 434 { 435 int chosen; 436 int dhcplen; 437 438 memset((char *)bdp, 0, sizeof(*bdp)); 439 if ((chosen = OF_finddevice("/chosen")) == -1) 440 panic("no /chosen from OFW"); 441 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) { 442 u_char *cp; 443 int dhcp_type = 0; 444 char *ip; 445 446 /* 447 * OFW saved a DHCP (or BOOTP) packet for us. 448 */ 449 if (dhcplen > sizeof(bdp->dhcp_packet)) 450 panic("DHCP packet too large"); 451 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet, 452 sizeof(bdp->dhcp_packet)); 453 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet"); 454 /* 455 * Collect the interesting data from DHCP into 456 * the bootdata structure. 457 */ 458 bdp->ip_address = bdp->dhcp_packet.yiaddr; 459 ip = ip2dotted(bdp->ip_address); 460 if (memcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0) 461 parse_dhcp_options(&bdp->dhcp_packet, 462 bdp->dhcp_packet.options + 4, 463 &bdp->dhcp_packet.options[dhcplen 464 - DHCP_FIXED_NON_UDP], bdp, ip); 465 if (bdp->root_ip.s_addr == 0) 466 bdp->root_ip = bdp->dhcp_packet.siaddr; 467 if (bdp->swap_ip.s_addr == 0) 468 bdp->swap_ip = bdp->dhcp_packet.siaddr; 469 } 470 /* 471 * If the DHCP packet did not contain all the necessary data, 472 * look in NVRAM for the missing parts. 473 */ 474 { 475 int options; 476 int proplen; 477 #define BOOTJUNKV_SIZE 256 478 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */ 479 480 481 if ((options = OF_finddevice("/options")) == -1) 482 panic("can't find /options"); 483 if (bdp->ip_address.s_addr == 0 && 484 (proplen = OF_getprop(options, "ipaddr", 485 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 486 bootjunkv[proplen] = '\0'; 487 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0) 488 bdp->ip_address.s_addr = 0; 489 } 490 if (bdp->ip_mask.s_addr == 0 && 491 (proplen = OF_getprop(options, "netmask", 492 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 493 bootjunkv[proplen] = '\0'; 494 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0) 495 bdp->ip_mask.s_addr = 0; 496 } 497 if (bdp->hostname[0] == '\0' && 498 (proplen = OF_getprop(options, "hostname", 499 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) { 500 bdp->hostname[proplen] = '\0'; 501 } 502 if (bdp->root[0] == '\0' && 503 (proplen = OF_getprop(options, "rootfs", 504 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 505 bootjunkv[proplen] = '\0'; 506 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root); 507 } 508 if (bdp->swap[0] == '\0' && 509 (proplen = OF_getprop(options, "swapfs", 510 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) { 511 bootjunkv[proplen] = '\0'; 512 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap); 513 } 514 } 515 } 516 517 #endif /* BOOT_FW_DHCP */ 518 519 void 520 ofw_getbootinfo(char **bp_pp, char **ba_pp) 521 { 522 int chosen; 523 int bp_len; 524 int ba_len; 525 char *bootpathv; 526 char *bootargsv; 527 528 /* Read the bootpath and bootargs out of OFW. */ 529 /* XXX is bootpath still interesting? --emg */ 530 if ((chosen = OF_finddevice("/chosen")) == -1) 531 panic("no /chosen from OFW"); 532 bp_len = OF_getproplen(chosen, "bootpath"); 533 ba_len = OF_getproplen(chosen, "bootargs"); 534 if (bp_len < 0 || ba_len < 0) 535 panic("can't get boot data from OFW"); 536 537 bootpathv = (char *)ofw_malloc(bp_len); 538 bootargsv = (char *)ofw_malloc(ba_len); 539 540 if (bp_len) 541 OF_getprop(chosen, "bootpath", bootpathv, bp_len); 542 else 543 bootpathv[0] = '\0'; 544 545 if (ba_len) 546 OF_getprop(chosen, "bootargs", bootargsv, ba_len); 547 else 548 bootargsv[0] = '\0'; 549 550 *bp_pp = bootpathv; 551 *ba_pp = bootargsv; 552 #ifdef DIAGNOSTIC 553 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv); 554 #endif 555 } 556 557 paddr_t 558 ofw_getcleaninfo(void) 559 { 560 int cpu; 561 vaddr_t vclean; 562 paddr_t pclean; 563 564 if ((cpu = OF_finddevice("/cpu")) == -1) 565 panic("no /cpu from OFW"); 566 567 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean, 568 sizeof(vclean))) != sizeof(vclean)) { 569 #ifdef DEBUG 570 printf("no OFW d-cache-flush-address property\n"); 571 #endif 572 return -1; 573 } 574 575 if ((pclean = ofw_gettranslation( 576 of_decode_int((unsigned char *)&vclean))) == -1) 577 panic("OFW failed to translate cache flush address"); 578 579 return pclean; 580 } 581 582 void 583 ofw_configisa(paddr_t *pio, paddr_t *pmem) 584 { 585 int vl; 586 587 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */ 588 ofw_configisaonly(pio, pmem); 589 else /* old style OFW dev info tree */ 590 ofw_configvl(vl, pio, pmem); 591 } 592 593 static void 594 ofw_configisaonly(paddr_t *pio, paddr_t *pmem) 595 { 596 int isa; 597 int rangeidx; 598 int size; 599 paddr_t hi, start; 600 struct isa_range ranges[2]; 601 602 if ((isa = OF_finddevice("/isa")) == -1) 603 panic("OFW has no /isa device node"); 604 605 /* expect to find two isa ranges: IO/data and memory/data */ 606 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges))) 607 != sizeof(ranges)) 608 panic("unexpected size of OFW /isa ranges property: %d", size); 609 610 *pio = *pmem = -1; 611 612 for (rangeidx = 0; rangeidx < 2; ++rangeidx) { 613 hi = of_decode_int((unsigned char *) 614 &ranges[rangeidx].isa_phys_hi); 615 start = of_decode_int((unsigned char *) 616 &ranges[rangeidx].parent_phys_start); 617 618 if (hi & 1) { /* then I/O space */ 619 *pio = start; 620 } else { 621 *pmem = start; 622 } 623 } /* END for */ 624 625 if ((*pio == -1) || (*pmem == -1)) 626 panic("bad OFW /isa ranges property"); 627 628 } 629 630 static void 631 ofw_configvl(int vl, paddr_t *pio, paddr_t *pmem) 632 { 633 int isa; 634 int ir, vr; 635 int size; 636 paddr_t hi, start; 637 struct vl_isa_range isa_ranges[2]; 638 struct vl_range vl_ranges[2]; 639 640 if ((isa = OF_finddevice("/vlbus/isa")) == -1) 641 panic("OFW has no /vlbus/isa device node"); 642 643 /* expect to find two isa ranges: IO/data and memory/data */ 644 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges))) 645 != sizeof(isa_ranges)) 646 panic("unexpected size of OFW /vlbus/isa ranges property: %d", 647 size); 648 649 /* expect to find two vl ranges: IO/data and memory/data */ 650 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges))) 651 != sizeof(vl_ranges)) 652 panic("unexpected size of OFW /vlbus ranges property: %d", size); 653 654 *pio = -1; 655 *pmem = -1; 656 657 for (ir = 0; ir < 2; ++ir) { 658 for (vr = 0; vr < 2; ++vr) { 659 if ((isa_ranges[ir].parent_phys_hi 660 == vl_ranges[vr].vl_phys_hi) && 661 (isa_ranges[ir].parent_phys_lo 662 == vl_ranges[vr].vl_phys_lo)) { 663 hi = of_decode_int((unsigned char *) 664 &isa_ranges[ir].isa_phys_hi); 665 start = of_decode_int((unsigned char *) 666 &vl_ranges[vr].parent_phys_start); 667 668 if (hi & 1) { /* then I/O space */ 669 *pio = start; 670 } else { 671 *pmem = start; 672 } 673 } /* END if */ 674 } /* END for */ 675 } /* END for */ 676 677 if ((*pio == -1) || (*pmem == -1)) 678 panic("bad OFW /isa ranges property"); 679 } 680 681 #if NISADMA > 0 682 struct arm32_dma_range *shark_isa_dma_ranges; 683 int shark_isa_dma_nranges; 684 #endif 685 686 void 687 ofw_configisadma(paddr_t *pdma) 688 { 689 int root; 690 int rangeidx; 691 int size; 692 struct dma_range *dr; 693 694 if ((root = OF_finddevice("/")) == -1 || 695 (size = OF_getproplen(root, "dma-ranges")) <= 0 || 696 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 || 697 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size) 698 panic("bad / dma-ranges property"); 699 700 nOFdmaranges = size / sizeof(struct dma_range); 701 702 #if NISADMA > 0 703 /* Allocate storage for non-OFW representation of the range. */ 704 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges * 705 sizeof(*shark_isa_dma_ranges)); 706 if (shark_isa_dma_ranges == NULL) 707 panic("unable to allocate shark_isa_dma_ranges"); 708 shark_isa_dma_nranges = nOFdmaranges; 709 #endif 710 711 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges; 712 ++rangeidx, ++dr) { 713 dr->start = of_decode_int((unsigned char *)&dr->start); 714 dr->size = of_decode_int((unsigned char *)&dr->size); 715 #if NISADMA > 0 716 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start; 717 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start; 718 shark_isa_dma_ranges[rangeidx].dr_len = dr->size; 719 #endif 720 } 721 722 #ifdef DEBUG 723 printf("DMA ranges size = %d\n", size); 724 725 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) { 726 printf("%08lx %08lx\n", 727 (u_long)OFdmaranges[rangeidx].start, 728 (u_long)OFdmaranges[rangeidx].size); 729 } 730 #endif 731 } 732 733 /* 734 * Memory configuration: 735 * 736 * We start off running in the environment provided by OFW. 737 * This has the MMU turned on, the kernel code and data 738 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and 739 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly) 740 * page0 mapped-in at 0x0. 741 * 742 * The strategy is to set-up the address space for proc0 -- 743 * including the allocation of space for new page tables -- while 744 * memory is still managed by OFW. We then effectively create a 745 * copy of the address space by dumping all of OFW's translations 746 * and poking them into the new page tables. We then notify OFW 747 * that we are assuming control of memory-management by installing 748 * our callback-handler, and switch to the NetBSD-managed page 749 * tables with the setttb() call. 750 * 751 * This scheme may cause some amount of memory to be wasted within 752 * OFW as dead page tables, but it shouldn't be more than about 753 * 20-30KB. (It's also possible that OFW will re-use the space.) 754 */ 755 void 756 ofw_configmem(void) 757 { 758 int i; 759 760 /* Set-up proc0 address space. */ 761 ofw_construct_proc0_addrspace(); 762 763 /* 764 * Get a dump of OFW's picture of physical memory. 765 * This is used below to initialize a load of variables used by pmap. 766 * We get it now rather than later because we are about to 767 * tell OFW to stop managing memory. 768 */ 769 ofw_getphysmeminfo(); 770 771 /* We are about to take control of memory-management from OFW. 772 * Establish callbacks for OFW to use for its future memory needs. 773 * This is required for us to keep using OFW services. 774 */ 775 776 /* First initialize our callback memory allocator. */ 777 ofw_initallocator(); 778 779 OF_set_callback(ofw_callbackhandler); 780 781 /* Switch to the proc0 pagetables. */ 782 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 783 setttb(kernel_l1pt.pv_pa); 784 cpu_tlb_flushID(); 785 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 786 787 /* 788 * Moved from cpu_startup() as data_abort_handler() references 789 * this during uvm init 790 */ 791 { 792 extern struct user *proc0paddr; 793 proc0paddr = (struct user *)kernelstack.pv_va; 794 lwp0.l_addr = proc0paddr; 795 } 796 797 /* Aaaaaaaah, running in the proc0 address space! */ 798 /* I feel good... */ 799 800 /* Set-up the various globals which describe physical memory for pmap. */ 801 { 802 struct mem_region *mp; 803 int totalcnt; 804 int availcnt; 805 806 /* physmem, physical_start, physical_end */ 807 physmem = 0; 808 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem; 809 totalcnt++, mp++) { 810 #ifdef OLDPRINTFS 811 printf("physmem: %x, %x\n", mp->start, mp->size); 812 #endif 813 physmem += btoc(mp->size); 814 } 815 physical_start = OFphysmem[0].start; 816 mp--; 817 physical_end = mp->start + mp->size; 818 819 /* free_pages, physical_freestart, physical_freeend */ 820 free_pages = 0; 821 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail; 822 availcnt++, mp++) { 823 #ifdef OLDPRINTFS 824 printf("physavail: %x, %x\n", mp->start, mp->size); 825 #endif 826 free_pages += btoc(mp->size); 827 } 828 physical_freestart = OFphysavail[0].start; 829 mp--; 830 physical_freeend = mp->start + mp->size; 831 #ifdef OLDPRINTFS 832 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n", 833 physmem, free_pages); 834 #endif 835 836 /* 837 * This is a hack to work with the existing pmap code. 838 * That code depends on a RiscPC BootConfig structure 839 * containing, among other things, an array describing 840 * the regions of physical memory. So, for now, we need 841 * to stuff our OFW-derived physical memory info into a 842 * "fake" BootConfig structure. 843 * 844 * An added twist is that we initialize the BootConfig 845 * structure with our "available" physical memory regions 846 * rather than the "total" physical memory regions. Why? 847 * Because: 848 * 849 * (a) the VM code requires that the "free" pages it is 850 * initialized with have consecutive indices. This 851 * allows it to use more efficient data structures 852 * (presumably). 853 * (b) the current pmap routines which report the initial 854 * set of free page indices (pmap_next_page) and 855 * which map addresses to indices (pmap_page_index) 856 * assume that the free pages are consecutive across 857 * memory region boundaries. 858 * 859 * This means that memory which is "stolen" at startup time 860 * (say, for page descriptors) MUST come from either the 861 * bottom of the first region or the top of the last. 862 * 863 * This requirement doesn't mesh well with OFW (or at least 864 * our use of it). We can get around it for the time being 865 * by pretending that our "available" region array describes 866 * all of our physical memory. This may cause some important 867 * information to be excluded from a dump file, but so far 868 * I haven't come across any other negative effects. 869 * 870 * In the long-run we should fix the index 871 * generation/translation code in the pmap module. 872 */ 873 874 if (DRAM_BLOCKS < (availcnt + 1)) 875 panic("more ofw memory regions than bootconfig blocks"); 876 877 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) { 878 bootconfig.dram[i].address = mp->start; 879 bootconfig.dram[i].pages = btoc(mp->size); 880 } 881 bootconfig.dramblocks = availcnt; 882 } 883 884 /* Load memory into UVM. */ 885 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 886 887 /* XXX Please kill this code dead. */ 888 for (i = 0; i < bootconfig.dramblocks; i++) { 889 paddr_t start = (paddr_t)bootconfig.dram[i].address; 890 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE); 891 #if NISADMA > 0 892 paddr_t istart, isize; 893 #endif 894 895 if (start < physical_freestart) 896 start = physical_freestart; 897 if (end > physical_freeend) 898 end = physical_freeend; 899 900 #if 0 901 printf("%d: %lx -> %lx\n", loop, start, end - 1); 902 #endif 903 904 #if NISADMA > 0 905 if (arm32_dma_range_intersect(shark_isa_dma_ranges, 906 shark_isa_dma_nranges, 907 start, end - start, 908 &istart, &isize)) { 909 /* 910 * Place the pages that intersect with the 911 * ISA DMA range onto the ISA DMA free list. 912 */ 913 #if 0 914 printf(" ISADMA 0x%lx -> 0x%lx\n", istart, 915 istart + isize - 1); 916 #endif 917 uvm_page_physload(atop(istart), 918 atop(istart + isize), atop(istart), 919 atop(istart + isize), VM_FREELIST_ISADMA); 920 921 /* 922 * Load the pieces that come before the 923 * intersection onto the default free list. 924 */ 925 if (start < istart) { 926 #if 0 927 printf(" BEFORE 0x%lx -> 0x%lx\n", 928 start, istart - 1); 929 #endif 930 uvm_page_physload(atop(start), 931 atop(istart), atop(start), 932 atop(istart), VM_FREELIST_DEFAULT); 933 } 934 935 /* 936 * Load the pieces that come after the 937 * intersection onto the default free list. 938 */ 939 if ((istart + isize) < end) { 940 #if 0 941 printf(" AFTER 0x%lx -> 0x%lx\n", 942 (istart + isize), end - 1); 943 #endif 944 uvm_page_physload(atop(istart + isize), 945 atop(end), atop(istart + isize), 946 atop(end), VM_FREELIST_DEFAULT); 947 } 948 } else { 949 uvm_page_physload(atop(start), atop(end), 950 atop(start), atop(end), VM_FREELIST_DEFAULT); 951 } 952 #else /* NISADMA > 0 */ 953 uvm_page_physload(atop(start), atop(end), 954 atop(start), atop(end), VM_FREELIST_DEFAULT); 955 #endif /* NISADMA > 0 */ 956 } 957 958 /* Initialize pmap module. */ 959 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 960 } 961 962 963 /* 964 ************************************************************ 965 966 Routines private to this module 967 968 ************************************************************ 969 */ 970 971 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */ 972 static void 973 ofw_callbackhandler(void *v) 974 { 975 struct ofw_cbargs *args = v; 976 char *name = args->name; 977 int nargs = args->nargs; 978 int nreturns = args->nreturns; 979 int *args_n_results = args->args_n_results; 980 981 ofw_callbacks++; 982 983 #if defined(OFWGENCFG) 984 /* Check this first, so that we don't waste IRQ time parsing. */ 985 if (strcmp(name, "tick") == 0) { 986 vaddr_t frame; 987 988 /* Check format. */ 989 if (nargs != 1 || nreturns < 1) { 990 args_n_results[nargs] = -1; 991 args->nreturns = 1; 992 return; 993 } 994 args_n_results[nargs] = 0; /* properly formatted request */ 995 996 /* 997 * Note that we are running in the IRQ frame, with interrupts 998 * disabled. 999 * 1000 * We need to do two things here: 1001 * - copy a few words out of the input frame into a global 1002 * area, for later use by our real tick-handling code 1003 * - patch a few words in the frame so that when OFW returns 1004 * from the interrupt it will resume with our handler 1005 * rather than the code that was actually interrupted. 1006 * Our handler will resume when it finishes with the code 1007 * that was actually interrupted. 1008 * 1009 * It's simplest to do this in assembler, since it requires 1010 * switching frames and grovelling about with registers. 1011 */ 1012 frame = (vaddr_t)args_n_results[0]; 1013 if (ofw_handleticks) 1014 dotickgrovelling(frame); 1015 args_n_results[nargs + 1] = frame; 1016 args->nreturns = 1; 1017 } else 1018 #endif 1019 1020 if (strcmp(name, "map") == 0) { 1021 vaddr_t va; 1022 paddr_t pa; 1023 vsize_t size; 1024 int mode; 1025 int ap_bits; 1026 int dom_bits; 1027 int cb_bits; 1028 1029 /* Check format. */ 1030 if (nargs != 4 || nreturns < 2) { 1031 args_n_results[nargs] = -1; 1032 args->nreturns = 1; 1033 return; 1034 } 1035 args_n_results[nargs] = 0; /* properly formatted request */ 1036 1037 pa = (paddr_t)args_n_results[0]; 1038 va = (vaddr_t)args_n_results[1]; 1039 size = (vsize_t)args_n_results[2]; 1040 mode = args_n_results[3]; 1041 ap_bits = (mode & 0x00000C00); 1042 dom_bits = (mode & 0x000001E0); 1043 cb_bits = (mode & 0x000000C0); 1044 1045 /* Sanity checks. */ 1046 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1047 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) || 1048 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 || 1049 size == 0 || (dom_bits >> 5) != 0) { 1050 args_n_results[nargs + 1] = -1; 1051 args->nreturns = 1; 1052 return; 1053 } 1054 1055 /* Write-back anything stuck in the cache. */ 1056 cpu_idcache_wbinv_all(); 1057 1058 /* Install new mappings. */ 1059 { 1060 pt_entry_t *pte = vtopte(va); 1061 int npages = size >> PGSHIFT; 1062 1063 ap_bits >>= 10; 1064 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--) 1065 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S | 1066 cb_bits); 1067 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT); 1068 } 1069 1070 /* Clean out tlb. */ 1071 tlb_flush(); 1072 1073 args_n_results[nargs + 1] = 0; 1074 args->nreturns = 2; 1075 } else if (strcmp(name, "unmap") == 0) { 1076 vaddr_t va; 1077 vsize_t size; 1078 1079 /* Check format. */ 1080 if (nargs != 2 || nreturns < 1) { 1081 args_n_results[nargs] = -1; 1082 args->nreturns = 1; 1083 return; 1084 } 1085 args_n_results[nargs] = 0; /* properly formatted request */ 1086 1087 va = (vaddr_t)args_n_results[0]; 1088 size = (vsize_t)args_n_results[1]; 1089 1090 /* Sanity checks. */ 1091 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1092 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) || 1093 (size & PGOFSET) != 0 || size == 0) { 1094 args_n_results[nargs + 1] = -1; 1095 args->nreturns = 1; 1096 return; 1097 } 1098 1099 /* Write-back anything stuck in the cache. */ 1100 cpu_idcache_wbinv_all(); 1101 1102 /* Zero the mappings. */ 1103 { 1104 pt_entry_t *pte = vtopte(va); 1105 int npages = size >> PGSHIFT; 1106 1107 for (; npages > 0; pte++, npages--) 1108 *pte = 0; 1109 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT); 1110 } 1111 1112 /* Clean out tlb. */ 1113 tlb_flush(); 1114 1115 args->nreturns = 1; 1116 } else if (strcmp(name, "translate") == 0) { 1117 vaddr_t va; 1118 paddr_t pa; 1119 int mode; 1120 pt_entry_t pte; 1121 1122 /* Check format. */ 1123 if (nargs != 1 || nreturns < 4) { 1124 args_n_results[nargs] = -1; 1125 args->nreturns = 1; 1126 return; 1127 } 1128 args_n_results[nargs] = 0; /* properly formatted request */ 1129 1130 va = (vaddr_t)args_n_results[0]; 1131 1132 /* Sanity checks. 1133 * For now, I am only willing to translate va's in the 1134 * "ofw range." Eventually, I may be more generous. -JJK 1135 */ 1136 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE || 1137 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) { 1138 args_n_results[nargs + 1] = -1; 1139 args->nreturns = 1; 1140 return; 1141 } 1142 1143 /* Lookup mapping. */ 1144 pte = *vtopte(va); 1145 if (pte == 0) { 1146 /* No mapping. */ 1147 args_n_results[nargs + 1] = -1; 1148 args->nreturns = 2; 1149 } else { 1150 /* Existing mapping. */ 1151 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET); 1152 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */ 1153 1154 args_n_results[nargs + 1] = 0; 1155 args_n_results[nargs + 2] = pa; 1156 args_n_results[nargs + 3] = mode; 1157 args->nreturns = 4; 1158 } 1159 } else if (strcmp(name, "claim-phys") == 0) { 1160 struct pglist alloclist; 1161 paddr_t low, high, align; 1162 psize_t size; 1163 1164 /* 1165 * XXX 1166 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd 1167 * XXX 1168 */ 1169 1170 /* Check format. */ 1171 if (nargs != 4 || nreturns < 3) { 1172 args_n_results[nargs] = -1; 1173 args->nreturns = 1; 1174 return; 1175 } 1176 args_n_results[nargs] = 0; /* properly formatted request */ 1177 1178 low = args_n_results[0]; 1179 size = args_n_results[2]; 1180 align = args_n_results[3]; 1181 high = args_n_results[1] + size; 1182 1183 #if 0 1184 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n", 1185 low, size, align, high); 1186 align = size; 1187 printf("forcing align to be 0x%x\n", align); 1188 #endif 1189 1190 args_n_results[nargs + 1] = 1191 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0); 1192 #if 0 1193 printf(" -> 0x%lx", args_n_results[nargs + 1]); 1194 #endif 1195 if (args_n_results[nargs + 1] != 0) { 1196 #if 0 1197 printf("(failed)\n"); 1198 #endif 1199 args_n_results[nargs + 1] = -1; 1200 args->nreturns = 2; 1201 return; 1202 } 1203 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first); 1204 #if 0 1205 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]); 1206 #endif 1207 args->nreturns = 3; 1208 1209 } else if (strcmp(name, "release-phys") == 0) { 1210 printf("unimplemented ofw callback - %s\n", name); 1211 args_n_results[nargs] = -1; 1212 args->nreturns = 1; 1213 } else if (strcmp(name, "claim-virt") == 0) { 1214 vaddr_t va; 1215 vsize_t size; 1216 vaddr_t align; 1217 1218 /* XXX - notyet */ 1219 /* printf("unimplemented ofw callback - %s\n", name);*/ 1220 args_n_results[nargs] = -1; 1221 args->nreturns = 1; 1222 return; 1223 1224 /* Check format. */ 1225 if (nargs != 2 || nreturns < 3) { 1226 args_n_results[nargs] = -1; 1227 args->nreturns = 1; 1228 return; 1229 } 1230 args_n_results[nargs] = 0; /* properly formatted request */ 1231 1232 /* Allocate size bytes with specified alignment. */ 1233 size = (vsize_t)args_n_results[0]; 1234 align = (vaddr_t)args_n_results[1]; 1235 if (align % PAGE_SIZE != 0) { 1236 args_n_results[nargs + 1] = -1; 1237 args->nreturns = 2; 1238 return; 1239 } 1240 1241 if (va == 0) { 1242 /* Couldn't allocate. */ 1243 args_n_results[nargs + 1] = -1; 1244 args->nreturns = 2; 1245 } else { 1246 /* Successful allocation. */ 1247 args_n_results[nargs + 1] = 0; 1248 args_n_results[nargs + 2] = va; 1249 args->nreturns = 3; 1250 } 1251 } else if (strcmp(name, "release-virt") == 0) { 1252 vaddr_t va; 1253 vsize_t size; 1254 1255 /* XXX - notyet */ 1256 printf("unimplemented ofw callback - %s\n", name); 1257 args_n_results[nargs] = -1; 1258 args->nreturns = 1; 1259 return; 1260 1261 /* Check format. */ 1262 if (nargs != 2 || nreturns < 1) { 1263 args_n_results[nargs] = -1; 1264 args->nreturns = 1; 1265 return; 1266 } 1267 args_n_results[nargs] = 0; /* properly formatted request */ 1268 1269 /* Release bytes. */ 1270 va = (vaddr_t)args_n_results[0]; 1271 size = (vsize_t)args_n_results[1]; 1272 1273 args->nreturns = 1; 1274 } else { 1275 args_n_results[nargs] = -1; 1276 args->nreturns = 1; 1277 } 1278 } 1279 1280 static void 1281 ofw_construct_proc0_addrspace(void) 1282 { 1283 int i, oft; 1284 static pv_addr_t proc0_pt_sys; 1285 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS]; 1286 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS]; 1287 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS]; 1288 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS]; 1289 static pv_addr_t msgbuf; 1290 vaddr_t L1pagetable; 1291 struct mem_translation *tp; 1292 1293 /* Set-up the system page. */ 1294 KASSERT(vector_page == 0); /* XXX for now */ 1295 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0); 1296 if (systempage.pv_va == -1) { 1297 /* Something was already mapped to vector_page's VA. */ 1298 systempage.pv_va = vector_page; 1299 systempage.pv_pa = ofw_gettranslation(vector_page); 1300 if (systempage.pv_pa == -1) 1301 panic("bogus result from gettranslation(vector_page)"); 1302 } else { 1303 /* We were just allocated the page-length range at VA 0. */ 1304 if (systempage.pv_va != vector_page) 1305 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)"); 1306 1307 /* Now allocate a physical page, and establish the mapping. */ 1308 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE); 1309 if (systempage.pv_pa == -1) 1310 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)"); 1311 ofw_settranslation(systempage.pv_va, systempage.pv_pa, 1312 PAGE_SIZE, -1); /* XXX - mode? -JJK */ 1313 1314 /* Zero the memory. */ 1315 memset((char *)systempage.pv_va, 0, PAGE_SIZE); 1316 } 1317 1318 /* Allocate/initialize space for the proc0, NetBSD-managed */ 1319 /* page tables that we will be switching to soon. */ 1320 ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE); 1321 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE); 1322 for (i = 0; i < KERNEL_IMG_PTS; i++) 1323 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE); 1324 for (i = 0; i < KERNEL_VMDATA_PTS; i++) 1325 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE); 1326 for (i = 0; i < KERNEL_OFW_PTS; i++) 1327 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE); 1328 for (i = 0; i < KERNEL_IO_PTS; i++) 1329 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE); 1330 1331 /* Allocate/initialize space for stacks. */ 1332 #ifndef OFWGENCFG 1333 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE); 1334 #endif 1335 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE); 1336 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE); 1337 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE); 1338 1339 /* Allocate/initialize space for msgbuf area. */ 1340 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE); 1341 msgbufphys = msgbuf.pv_pa; 1342 1343 /* Construct the proc0 L1 pagetable. */ 1344 L1pagetable = kernel_l1pt.pv_va; 1345 1346 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys); 1347 for (i = 0; i < KERNEL_IMG_PTS; i++) 1348 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000, 1349 &proc0_pt_kernel[i]); 1350 for (i = 0; i < KERNEL_VMDATA_PTS; i++) 1351 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000, 1352 &proc0_pt_vmdata[i]); 1353 for (i = 0; i < KERNEL_OFW_PTS; i++) 1354 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000, 1355 &proc0_pt_ofw[i]); 1356 for (i = 0; i < KERNEL_IO_PTS; i++) 1357 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000, 1358 &proc0_pt_io[i]); 1359 1360 /* 1361 * OK, we're done allocating. 1362 * Get a dump of OFW's translations, and make the appropriate 1363 * entries in the L2 pagetables that we just allocated. 1364 */ 1365 1366 ofw_getvirttranslations(); 1367 1368 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; 1369 oft++, tp++) { 1370 1371 vaddr_t va; 1372 paddr_t pa; 1373 int npages = tp->size / PAGE_SIZE; 1374 1375 /* Size must be an integral number of pages. */ 1376 if (npages == 0 || tp->size % PAGE_SIZE != 0) 1377 panic("illegal ofw translation (size)"); 1378 1379 /* Make an entry for each page in the appropriate table. */ 1380 for (va = tp->virt, pa = tp->phys; npages > 0; 1381 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) { 1382 /* 1383 * Map the top bits to the appropriate L2 pagetable. 1384 * The only allowable regions are page0, the 1385 * kernel-static area, and the ofw area. 1386 */ 1387 switch (va >> (L1_S_SHIFT + 2)) { 1388 case 0: 1389 /* page0 */ 1390 break; 1391 1392 #if KERNEL_IMG_PTS != 2 1393 #error "Update ofw translation range list" 1394 #endif 1395 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)): 1396 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1397 /* kernel static area */ 1398 break; 1399 1400 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)): 1401 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1402 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)): 1403 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)): 1404 /* ofw area */ 1405 break; 1406 1407 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)): 1408 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)): 1409 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)): 1410 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)): 1411 /* io area */ 1412 break; 1413 1414 default: 1415 /* illegal */ 1416 panic("illegal ofw translation (addr) %#lx", 1417 va); 1418 } 1419 1420 /* Make the entry. */ 1421 pmap_map_entry(L1pagetable, va, pa, 1422 VM_PROT_READ|VM_PROT_WRITE, 1423 (tp->mode & 0xC) == 0xC ? PTE_CACHE 1424 : PTE_NOCACHE); 1425 } 1426 } 1427 1428 /* 1429 * We don't actually want some of the mappings that we just 1430 * set up to appear in proc0's address space. In particular, 1431 * we don't want aliases to physical addresses that the kernel 1432 * has-mapped/will-map elsewhere. 1433 */ 1434 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va, 1435 msgbuf.pv_va, MSGBUFSIZE); 1436 1437 /* update the top of the kernel VM */ 1438 pmap_curmaxkvaddr = 1439 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000); 1440 1441 /* 1442 * gross hack for the sake of not thrashing the TLB and making 1443 * cache flush more efficient: blast l1 ptes for sections. 1444 */ 1445 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) { 1446 vaddr_t va = tp->virt; 1447 paddr_t pa = tp->phys; 1448 1449 if (((va | pa) & L1_S_OFFSET) == 0) { 1450 int nsections = tp->size / L1_S_SIZE; 1451 1452 while (nsections--) { 1453 /* XXXJRT prot?? */ 1454 pmap_map_section(L1pagetable, va, pa, 1455 VM_PROT_READ|VM_PROT_WRITE, 1456 (tp->mode & 0xC) == 0xC ? PTE_CACHE 1457 : PTE_NOCACHE); 1458 va += L1_S_SIZE; 1459 pa += L1_S_SIZE; 1460 } 1461 } 1462 } 1463 } 1464 1465 1466 static void 1467 ofw_getphysmeminfo(void) 1468 { 1469 int phandle; 1470 int mem_len; 1471 int avail_len; 1472 int i; 1473 1474 if ((phandle = OF_finddevice("/memory")) == -1 || 1475 (mem_len = OF_getproplen(phandle, "reg")) <= 0 || 1476 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 || 1477 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len || 1478 (avail_len = OF_getproplen(phandle, "available")) <= 0 || 1479 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 || 1480 OF_getprop(phandle, "available", OFphysavail, avail_len) 1481 != avail_len) 1482 panic("can't get physmeminfo from OFW"); 1483 1484 nOFphysmem = mem_len / sizeof(struct mem_region); 1485 nOFphysavail = avail_len / sizeof(struct mem_region); 1486 1487 /* 1488 * Sort the blocks in each array into ascending address order. 1489 * Also, page-align all blocks. 1490 */ 1491 for (i = 0; i < 2; i++) { 1492 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail; 1493 struct mem_region *mp; 1494 int cnt = (i == 0) ? nOFphysmem : nOFphysavail; 1495 int j; 1496 1497 #ifdef OLDPRINTFS 1498 printf("ofw_getphysmeminfo: %d blocks\n", cnt); 1499 #endif 1500 1501 /* XXX - Convert all the values to host order. -JJK */ 1502 for (j = 0, mp = tmp; j < cnt; j++, mp++) { 1503 mp->start = of_decode_int((unsigned char *)&mp->start); 1504 mp->size = of_decode_int((unsigned char *)&mp->size); 1505 } 1506 1507 for (j = 0, mp = tmp; j < cnt; j++, mp++) { 1508 u_int s, sz; 1509 struct mem_region *mp1; 1510 1511 /* Page-align start of the block. */ 1512 s = mp->start % PAGE_SIZE; 1513 if (s != 0) { 1514 s = (PAGE_SIZE - s); 1515 1516 if (mp->size >= s) { 1517 mp->start += s; 1518 mp->size -= s; 1519 } 1520 } 1521 1522 /* Page-align the size. */ 1523 mp->size -= mp->size % PAGE_SIZE; 1524 1525 /* Handle empty block. */ 1526 if (mp->size == 0) { 1527 memmove(mp, mp + 1, (cnt - (mp - tmp)) 1528 * sizeof(struct mem_region)); 1529 cnt--; 1530 mp--; 1531 continue; 1532 } 1533 1534 /* Bubble sort. */ 1535 s = mp->start; 1536 sz = mp->size; 1537 for (mp1 = tmp; mp1 < mp; mp1++) 1538 if (s < mp1->start) 1539 break; 1540 if (mp1 < mp) { 1541 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1542 mp1->start = s; 1543 mp1->size = sz; 1544 } 1545 } 1546 1547 #ifdef OLDPRINTFS 1548 for (mp = tmp; mp->size; mp++) { 1549 printf("%x, %x\n", mp->start, mp->size); 1550 } 1551 #endif 1552 } 1553 } 1554 1555 1556 static void 1557 ofw_getvirttranslations(void) 1558 { 1559 int mmu_phandle; 1560 int mmu_ihandle; 1561 int trans_len; 1562 int over, len; 1563 int i; 1564 struct mem_translation *tp; 1565 1566 mmu_ihandle = ofw_mmu_ihandle(); 1567 1568 /* overallocate to avoid increases during allocation */ 1569 over = 4 * sizeof(struct mem_translation); 1570 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 || 1571 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 || 1572 (OFtranslations = ofw_malloc(len + over)) == 0 || 1573 (trans_len = OF_getprop(mmu_phandle, "translations", 1574 OFtranslations, len + over)) > (len + over)) 1575 panic("can't get virttranslations from OFW"); 1576 1577 /* XXX - Convert all the values to host order. -JJK */ 1578 nOFtranslations = trans_len / sizeof(struct mem_translation); 1579 #ifdef OLDPRINTFS 1580 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations); 1581 #endif 1582 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) { 1583 tp->virt = of_decode_int((unsigned char *)&tp->virt); 1584 tp->size = of_decode_int((unsigned char *)&tp->size); 1585 tp->phys = of_decode_int((unsigned char *)&tp->phys); 1586 tp->mode = of_decode_int((unsigned char *)&tp->mode); 1587 } 1588 } 1589 1590 /* 1591 * ofw_valloc: allocate blocks of VM for IO and other special purposes 1592 */ 1593 typedef struct _vfree { 1594 struct _vfree *pNext; 1595 vaddr_t start; 1596 vsize_t size; 1597 } VFREE, *PVFREE; 1598 1599 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE }; 1600 1601 static PVFREE vflist = &vfinitial; 1602 1603 static vaddr_t 1604 ofw_valloc(vsize_t size, vaddr_t align) 1605 { 1606 PVFREE *ppvf; 1607 PVFREE pNew; 1608 vaddr_t new; 1609 vaddr_t lead; 1610 1611 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) { 1612 if (align == 0) { 1613 new = (*ppvf)->start; 1614 lead = 0; 1615 } else { 1616 new = ((*ppvf)->start + (align - 1)) & ~(align - 1); 1617 lead = new - (*ppvf)->start; 1618 } 1619 1620 if (((*ppvf)->size - lead) >= size) { 1621 if (lead == 0) { 1622 /* using whole block */ 1623 if (size == (*ppvf)->size) { 1624 /* splice out of list */ 1625 (*ppvf) = (*ppvf)->pNext; 1626 } else { /* tail of block is free */ 1627 (*ppvf)->start = new + size; 1628 (*ppvf)->size -= size; 1629 } 1630 } else { 1631 vsize_t tail = ((*ppvf)->start 1632 + (*ppvf)->size) - (new + size); 1633 /* free space at beginning */ 1634 (*ppvf)->size = lead; 1635 1636 if (tail != 0) { 1637 /* free space at tail */ 1638 pNew = ofw_malloc(sizeof(VFREE)); 1639 pNew->pNext = (*ppvf)->pNext; 1640 (*ppvf)->pNext = pNew; 1641 pNew->start = new + size; 1642 pNew->size = tail; 1643 } 1644 } 1645 return new; 1646 } /* END if */ 1647 } /* END for */ 1648 1649 return -1; 1650 } 1651 1652 vaddr_t 1653 ofw_map(paddr_t pa, vsize_t size, int cb_bits) 1654 { 1655 vaddr_t va; 1656 1657 if ((va = ofw_valloc(size, size)) == -1) 1658 panic("cannot alloc virtual memory for %#lx", pa); 1659 1660 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */ 1661 1662 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits); 1663 1664 return va; 1665 } 1666 1667 static int 1668 ofw_mem_ihandle(void) 1669 { 1670 static int mem_ihandle = 0; 1671 int chosen; 1672 1673 if (mem_ihandle != 0) 1674 return(mem_ihandle); 1675 1676 if ((chosen = OF_finddevice("/chosen")) == -1 || 1677 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0) 1678 panic("ofw_mem_ihandle"); 1679 1680 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle); 1681 1682 return(mem_ihandle); 1683 } 1684 1685 1686 static int 1687 ofw_mmu_ihandle(void) 1688 { 1689 static int mmu_ihandle = 0; 1690 int chosen; 1691 1692 if (mmu_ihandle != 0) 1693 return(mmu_ihandle); 1694 1695 if ((chosen = OF_finddevice("/chosen")) == -1 || 1696 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0) 1697 panic("ofw_mmu_ihandle"); 1698 1699 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle); 1700 1701 return(mmu_ihandle); 1702 } 1703 1704 1705 /* Return -1 on failure. */ 1706 static paddr_t 1707 ofw_claimphys(paddr_t pa, psize_t size, paddr_t align) 1708 { 1709 int mem_ihandle = ofw_mem_ihandle(); 1710 1711 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/ 1712 if (align == 0) { 1713 /* Allocate at specified base; alignment is ignored. */ 1714 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align); 1715 } else { 1716 /* Allocate anywhere, with specified alignment. */ 1717 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align); 1718 } 1719 1720 /* printf("%x\n", pa);*/ 1721 return(pa); 1722 } 1723 1724 1725 #if 0 1726 /* Return -1 on failure. */ 1727 static paddr_t 1728 ofw_releasephys(paddr_t pa, psize_t size) 1729 { 1730 int mem_ihandle = ofw_mem_ihandle(); 1731 1732 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/ 1733 1734 return (OF_call_method_1("release", mem_ihandle, 2, pa, size)); 1735 } 1736 #endif 1737 1738 /* Return -1 on failure. */ 1739 static vaddr_t 1740 ofw_claimvirt(vaddr_t va, vsize_t size, vaddr_t align) 1741 { 1742 int mmu_ihandle = ofw_mmu_ihandle(); 1743 1744 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/ 1745 if (align == 0) { 1746 /* Allocate at specified base; alignment is ignored. */ 1747 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align); 1748 } else { 1749 /* Allocate anywhere, with specified alignment. */ 1750 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align); 1751 } 1752 1753 /*printf("%x\n", va);*/ 1754 return(va); 1755 } 1756 1757 /* Return -1 if no mapping. */ 1758 paddr_t 1759 ofw_gettranslation(vaddr_t va) 1760 { 1761 int mmu_ihandle = ofw_mmu_ihandle(); 1762 paddr_t pa; 1763 int mode; 1764 int exists; 1765 1766 #ifdef OFW_DEBUG 1767 printf("ofw_gettranslation (%x) --> ", (uint32_t)va); 1768 #endif 1769 exists = 0; /* gets set to true if translation exists */ 1770 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode, 1771 &exists) != 0) 1772 return(-1); 1773 1774 #ifdef OFW_DEBUG 1775 printf("%d %x\n", exists, (uint32_t)pa); 1776 #endif 1777 return(exists ? pa : -1); 1778 } 1779 1780 1781 static void 1782 ofw_settranslation(vaddr_t va, paddr_t pa, vsize_t size, int mode) 1783 { 1784 int mmu_ihandle = ofw_mmu_ihandle(); 1785 1786 #ifdef OFW_DEBUG 1787 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va, 1788 (uint32_t)pa, (uint32_t)size, (uint32_t)mode); 1789 #endif 1790 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0) 1791 panic("ofw_settranslation failed"); 1792 } 1793 1794 /* 1795 * Allocation routine used before the kernel takes over memory. 1796 * Use this for efficient storage for things that aren't rounded to 1797 * page size. 1798 * 1799 * The point here is not necessarily to be very efficient (even though 1800 * that's sort of nice), but to do proper dynamic allocation to avoid 1801 * size-limitation errors. 1802 * 1803 */ 1804 1805 typedef struct _leftover { 1806 struct _leftover *pNext; 1807 vsize_t size; 1808 } LEFTOVER, *PLEFTOVER; 1809 1810 /* leftover bits of pages. first word is pointer to next. 1811 second word is size of leftover */ 1812 static PLEFTOVER leftovers = NULL; 1813 1814 static void * 1815 ofw_malloc(vsize_t size) 1816 { 1817 PLEFTOVER *ppLeftover; 1818 PLEFTOVER pLeft; 1819 pv_addr_t new; 1820 vsize_t newSize, claim_size; 1821 1822 /* round and set minimum size */ 1823 size = max(sizeof(LEFTOVER), 1824 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1))); 1825 1826 for (ppLeftover = &leftovers; *ppLeftover; 1827 ppLeftover = &((*ppLeftover)->pNext)) 1828 if ((*ppLeftover)->size >= size) 1829 break; 1830 1831 if (*ppLeftover) { /* have a leftover of the right size */ 1832 /* remember the leftover */ 1833 new.pv_va = (vaddr_t)*ppLeftover; 1834 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) { 1835 /* splice out of chain */ 1836 *ppLeftover = (*ppLeftover)->pNext; 1837 } else { 1838 /* remember the next pointer */ 1839 pLeft = (*ppLeftover)->pNext; 1840 newSize = (*ppLeftover)->size - size; /* reduce size */ 1841 /* move pointer */ 1842 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover) 1843 + size); 1844 (*ppLeftover)->pNext = pLeft; 1845 (*ppLeftover)->size = newSize; 1846 } 1847 } else { 1848 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1849 ofw_claimpages(&virt_freeptr, &new, claim_size); 1850 if ((size + sizeof(LEFTOVER)) <= claim_size) { 1851 pLeft = (PLEFTOVER)(new.pv_va + size); 1852 pLeft->pNext = leftovers; 1853 pLeft->size = claim_size - size; 1854 leftovers = pLeft; 1855 } 1856 } 1857 1858 return (void *)(new.pv_va); 1859 } 1860 1861 /* 1862 * Here is a really, really sleazy free. It's not used right now, 1863 * because it's not worth the extra complexity for just a few bytes. 1864 * 1865 */ 1866 #if 0 1867 static void 1868 ofw_free(vaddr_t addr, vsize_t size) 1869 { 1870 PLEFTOVER pLeftover = (PLEFTOVER)addr; 1871 1872 /* splice right into list without checks or compaction */ 1873 pLeftover->pNext = leftovers; 1874 pLeftover->size = size; 1875 leftovers = pLeftover; 1876 } 1877 #endif 1878 1879 /* 1880 * Allocate and zero round(size)/PAGE_SIZE pages of memory. 1881 * We guarantee that the allocated memory will be 1882 * aligned to a boundary equal to the smallest power of 1883 * 2 greater than or equal to size. 1884 * free_pp is an IN/OUT parameter which points to the 1885 * last allocated virtual address in an allocate-downwards 1886 * stack. pv_p is an OUT parameter which contains the 1887 * virtual and physical base addresses of the allocated 1888 * memory. 1889 */ 1890 static void 1891 ofw_claimpages(vaddr_t *free_pp, pv_addr_t *pv_p, vsize_t size) 1892 { 1893 /* round-up to page boundary */ 1894 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1895 vsize_t aligned_size; 1896 vaddr_t va; 1897 paddr_t pa; 1898 1899 if (alloc_size == 0) 1900 panic("ofw_claimpages zero"); 1901 1902 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1) 1903 ; 1904 1905 /* The only way to provide the alignment guarantees is to 1906 * allocate the virtual and physical ranges separately, 1907 * then do an explicit map call. 1908 */ 1909 va = (*free_pp & ~(aligned_size - 1)) - aligned_size; 1910 if (ofw_claimvirt(va, alloc_size, 0) != va) 1911 panic("ofw_claimpages va alloc"); 1912 pa = ofw_claimphys(0, alloc_size, aligned_size); 1913 if (pa == -1) 1914 panic("ofw_claimpages pa alloc"); 1915 /* XXX - what mode? -JJK */ 1916 ofw_settranslation(va, pa, alloc_size, -1); 1917 1918 /* The memory's mapped-in now, so we can zero it. */ 1919 memset((char *)va, 0, alloc_size); 1920 1921 /* Set OUT parameters. */ 1922 *free_pp = va; 1923 pv_p->pv_va = va; 1924 pv_p->pv_pa = pa; 1925 } 1926 1927 1928 static void 1929 ofw_discardmappings(vaddr_t L2pagetable, vaddr_t va, vsize_t size) 1930 { 1931 /* round-up to page boundary */ 1932 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1933 int npages = alloc_size / PAGE_SIZE; 1934 1935 if (npages == 0) 1936 panic("ofw_discardmappings zero"); 1937 1938 /* Discard each mapping. */ 1939 for (; npages > 0; va += PAGE_SIZE, npages--) { 1940 /* Sanity. The current entry should be non-null. */ 1941 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0) 1942 panic("ofw_discardmappings zero entry"); 1943 1944 /* Clear the entry. */ 1945 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0); 1946 } 1947 } 1948 1949 1950 static void 1951 ofw_initallocator(void) 1952 { 1953 1954 } 1955 1956 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) 1957 static void 1958 reset_screen(void) 1959 { 1960 1961 if ((console_ihandle == 0) || (console_ihandle == -1)) 1962 return; 1963 1964 OF_call_method("install", console_ihandle, 0, 0); 1965 } 1966 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */ 1967