xref: /netbsd-src/sys/arch/shark/ofw/ofw.c (revision 0dd5877adce57db949b16ae963e5a6831cccdfb6)
1 /*	$NetBSD: ofw.c,v 1.5 2002/02/21 06:33:05 thorpej Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37  *  Routines for interfacing between NetBSD and OFW.
38  *
39  *  Parts of this could be moved to an MI file in time. -JJK
40  *
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48 
49 #include <uvm/uvm_extern.h>
50 
51 #include <dev/cons.h>
52 
53 #include <machine/bus.h>
54 #include <machine/frame.h>
55 #include <machine/bootconfig.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58 
59 #include <dev/ofw/openfirm.h>
60 #include <machine/ofw.h>
61 
62 #include <netinet/in.h>
63 
64 #if	BOOT_FW_DHCP
65 #include <nfs/bootdata.h>
66 #endif
67 
68 #ifdef SHARK
69 #include "machine/pio.h"
70 #include "machine/isa_machdep.h"
71 #endif
72 
73 #include "pc.h"
74 #include "isadma.h"
75 
76 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
77 #define IO_VIRT_SIZE 0x01000000
78 
79 /*
80  *  Imported variables
81  */
82 extern BootConfig bootconfig;	/* temporary, I hope */
83 
84 #ifdef	DIAGNOSTIC
85 /* NOTE: These variables will be removed, well some of them */
86 extern u_int spl_mask;
87 extern u_int current_mask;
88 #endif
89 
90 extern int ofw_handleticks;
91 
92 
93 /*
94  *  Imported routines
95  */
96 extern void dump_spl_masks  __P((void));
97 extern void dumpsys	    __P((void));
98 extern void dotickgrovelling __P((vm_offset_t));
99 #if defined(SHARK) && (NPC > 0)
100 extern void shark_screen_cleanup __P((int));
101 #endif
102 
103 #define WriteWord(a, b) \
104 *((volatile unsigned int *)(a)) = (b)
105 
106 #define ReadWord(a) \
107 (*((volatile unsigned int *)(a)))
108 
109 
110 /*
111  *  Exported variables
112  */
113 /* These should all be in a meminfo structure. */
114 vm_offset_t physical_start;
115 vm_offset_t physical_freestart;
116 vm_offset_t physical_freeend;
117 vm_offset_t physical_end;
118 u_int free_pages;
119 int physmem;
120 pv_addr_t systempage;
121 #ifndef	OFWGENCFG
122 pv_addr_t irqstack;
123 #endif
124 pv_addr_t undstack;
125 pv_addr_t abtstack;
126 pv_addr_t kernelstack;
127 
128 vm_offset_t msgbufphys;
129 
130 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
131 static vm_offset_t  virt_freeptr;
132 
133 int ofw_callbacks = 0;		/* debugging counter */
134 
135 /**************************************************************/
136 
137 
138 /*
139  *  Declarations and definitions private to this module
140  *
141  */
142 
143 struct mem_region {
144 	vm_offset_t start;
145 	vm_size_t size;
146 };
147 
148 struct mem_translation {
149 	vm_offset_t virt;
150 	vm_size_t size;
151 	vm_offset_t phys;
152 	unsigned int mode;
153 };
154 
155 struct isa_range {
156 	vm_offset_t isa_phys_hi;
157 	vm_offset_t isa_phys_lo;
158 	vm_offset_t parent_phys_start;
159 	vm_size_t   isa_size;
160 };
161 
162 struct vl_range {
163 	vm_offset_t vl_phys_hi;
164 	vm_offset_t vl_phys_lo;
165 	vm_offset_t parent_phys_start;
166 	vm_size_t   vl_size;
167 };
168 
169 struct vl_isa_range {
170 	vm_offset_t isa_phys_hi;
171 	vm_offset_t isa_phys_lo;
172 	vm_offset_t parent_phys_hi;
173 	vm_offset_t parent_phys_lo;
174 	vm_size_t   isa_size;
175 };
176 
177 struct dma_range {
178 	vm_offset_t start;
179 	vm_size_t   size;
180 };
181 
182 struct ofw_cbargs {
183 	char *name;
184 	int nargs;
185 	int nreturns;
186 	int args_n_results[12];
187 };
188 
189 
190 /* Memory info */
191 static int nOFphysmem;
192 static struct mem_region *OFphysmem;
193 static int nOFphysavail;
194 static struct mem_region *OFphysavail;
195 static int nOFtranslations;
196 static struct mem_translation *OFtranslations;
197 static int nOFdmaranges;
198 static struct dma_range *OFdmaranges;
199 
200 /* The OFW client services handle. */
201 /* Initialized by ofw_init(). */
202 static ofw_handle_t ofw_client_services_handle;
203 
204 
205 static void ofw_callbackhandler __P((struct ofw_cbargs *));
206 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
207 static void ofw_getphysmeminfo __P((void));
208 static void ofw_getvirttranslations __P((void));
209 static void *ofw_malloc(vm_size_t size);
210 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
211 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
212 static int ofw_mem_ihandle  __P((void));
213 static int ofw_mmu_ihandle  __P((void));
214 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
215 #if 0
216 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
217 #endif
218 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
219 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
220 static void ofw_initallocator __P((void));
221 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
222 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
223 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
224 
225 
226 /*
227  * DHCP hooks.  For a first cut, we look to see if there is a DHCP
228  * packet that was saved by the firmware.  If not, we proceed as before,
229  * getting hand-configured data from NVRAM.  If there is one, we get the
230  * packet, and extract the data from it.  For now, we hand that data up
231  * in the boot_args string as before.
232  */
233 
234 
235 /**************************************************************/
236 
237 
238 /*
239  *
240  *  Support routines for xxx_machdep.c
241  *
242  *  The intent is that all OFW-based configurations use the
243  *  exported routines in this file to do their business.  If
244  *  they need to override some function they are free to do so.
245  *
246  *  The exported routines are:
247  *
248  *    openfirmware
249  *    ofw_init
250  *    ofw_boot
251  *    ofw_getbootinfo
252  *    ofw_configmem
253  *    ofw_configisa
254  *    ofw_configisadma
255  *    ofw_gettranslation
256  *    ofw_map
257  *    ofw_getcleaninfo
258  */
259 
260 
261 int
262 openfirmware(args)
263 	void *args;
264 {
265 	int ofw_result;
266 	u_int saved_irq_state;
267 
268 	/* OFW is not re-entrant, so we wrap a mutex around the call. */
269 	saved_irq_state = disable_interrupts(I32_bit);
270 	ofw_result = ofw_client_services_handle(args);
271 	(void)restore_interrupts(saved_irq_state);
272 
273 	return(ofw_result);
274 }
275 
276 
277 void
278 ofw_init(ofw_handle)
279 	ofw_handle_t ofw_handle;
280 {
281 	ofw_client_services_handle = ofw_handle;
282 
283 	/*  Everything we allocate in the remainder of this block is
284 	 *  constrained to be in the "kernel-static" portion of the
285 	 *  virtual address space (i.e., 0xF0000000 - 0xF1000000).
286 	 *  This is because all such objects are expected to be in
287 	 *  that range by NetBSD, or the objects will be re-mapped
288 	 *  after the page-table-switch to other specific locations.
289 	 *  In the latter case, it's simplest if our pre-switch handles
290 	 *  on those objects are in regions that are already "well-
291 	 *  known."  (Otherwise, the cloning of the OFW-managed address-
292 	 *  space becomes more awkward.)  To minimize the number of L2
293 	 *  page tables that we use, we are further restricting the
294 	 *  remaining allocations in this block to the bottom quarter of
295 	 *  the legal range.  OFW will have loaded the kernel text+data+bss
296 	 *  starting at the bottom of the range, and we will allocate
297 	 *  objects from the top, moving downwards.  The two sub-regions
298 	 *  will collide if their total sizes hit 4MB.  The current total
299 	 *  is <1.5MB, so we aren't in any real danger yet.  The variable
300 	 *  virt-freeptr represents the next free va (moving downwards).
301 	 */
302 	virt_freeptr = KERNEL_BASE + 0x00400000;
303 }
304 
305 
306 void
307 ofw_boot(howto, bootstr)
308 	int howto;
309 	char *bootstr;
310 {
311 
312 #ifdef DIAGNOSTIC
313 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
314 	printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
315 
316 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
317 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
318 	    irqmasks[IPL_IMP]);
319 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
320 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
321 
322 	dump_spl_masks();
323 #endif
324 
325 	/*
326 	 * If we are still cold then hit the air brakes
327 	 * and crash to earth fast
328 	 */
329 	if (cold) {
330 		doshutdownhooks();
331 		printf("Halted while still in the ICE age.\n");
332 		printf("The operating system has halted.\n");
333 		goto ofw_exit;
334 		/*NOTREACHED*/
335 	}
336 
337 	/*
338 	 * If RB_NOSYNC was not specified sync the discs.
339 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
340 	 * It looks like syslogd is getting woken up only to find that it cannot
341 	 * page part of the binary in as the filesystem has been unmounted.
342 	 */
343 	if (!(howto & RB_NOSYNC))
344 		bootsync();
345 
346 	/* Say NO to interrupts */
347 	splhigh();
348 
349 	/* Do a dump if requested. */
350 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
351 		dumpsys();
352 
353 	/* Run any shutdown hooks */
354 	doshutdownhooks();
355 
356 	/* Make sure IRQ's are disabled */
357 	IRQdisable;
358 
359 	if (howto & RB_HALT) {
360 		printf("The operating system has halted.\n");
361 		goto ofw_exit;
362 	}
363 
364 	/* Tell the user we are booting */
365 	printf("rebooting...\n");
366 
367 	/* Jump into the OFW boot routine. */
368 	{
369 		static char str[256];
370 		char *ap = str, *ap1 = ap;
371 
372 		if (bootstr && *bootstr) {
373 			if (strlen(bootstr) > sizeof str - 5)
374 				printf("boot string too large, ignored\n");
375 			else {
376 				strcpy(str, bootstr);
377 				ap1 = ap = str + strlen(str);
378 				*ap++ = ' ';
379 			}
380 		}
381 		*ap++ = '-';
382 		if (howto & RB_SINGLE)
383 			*ap++ = 's';
384 		if (howto & RB_KDB)
385 			*ap++ = 'd';
386 		*ap++ = 0;
387 		if (ap[-2] == '-')
388 			*ap1 = 0;
389 #if defined(SHARK) && (NPC > 0)
390 		shark_screen_cleanup(0);
391 #endif
392 		OF_boot(str);
393 		/*NOTREACHED*/
394 	}
395 
396 ofw_exit:
397 	printf("Calling OF_exit...\n");
398 #if defined(SHARK) && (NPC > 0)
399 	shark_screen_cleanup(1);
400 #endif
401 	OF_exit();
402 	/*NOTREACHED*/
403 }
404 
405 
406 #if	BOOT_FW_DHCP
407 
408 extern	char	*ip2dotted	__P((struct in_addr));
409 
410 /*
411  * Get DHCP data from OFW
412  */
413 
414 void
415 get_fw_dhcp_data(bdp)
416 	struct bootdata *bdp;
417 {
418 	int chosen;
419 	int dhcplen;
420 
421 	bzero((char *)bdp, sizeof(*bdp));
422 	if ((chosen = OF_finddevice("/chosen")) == -1)
423 		panic("no /chosen from OFW");
424 	if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
425 		u_char *cp;
426 		int dhcp_type = 0;
427 		char *ip;
428 
429 		/*
430 		 * OFW saved a DHCP (or BOOTP) packet for us.
431 		 */
432 		if (dhcplen > sizeof(bdp->dhcp_packet))
433 			panic("DHCP packet too large");
434 		OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
435 		    sizeof(bdp->dhcp_packet));
436 		SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
437 		/*
438 		 * Collect the interesting data from DHCP into
439 		 * the bootdata structure.
440 		 */
441 		bdp->ip_address = bdp->dhcp_packet.yiaddr;
442 		ip = ip2dotted(bdp->ip_address);
443 		if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
444 			parse_dhcp_options(&bdp->dhcp_packet,
445 			    bdp->dhcp_packet.options + 4,
446 			    &bdp->dhcp_packet.options[dhcplen
447 			    - DHCP_FIXED_NON_UDP], bdp, ip);
448 		if (bdp->root_ip.s_addr == 0)
449 			bdp->root_ip = bdp->dhcp_packet.siaddr;
450 		if (bdp->swap_ip.s_addr == 0)
451 			bdp->swap_ip = bdp->dhcp_packet.siaddr;
452 	}
453 	/*
454 	 * If the DHCP packet did not contain all the necessary data,
455 	 * look in NVRAM for the missing parts.
456 	 */
457 	{
458 		int options;
459 		int proplen;
460 #define BOOTJUNKV_SIZE	256
461 		char bootjunkv[BOOTJUNKV_SIZE];	/* minimize stack usage */
462 
463 
464 		if ((options = OF_finddevice("/options")) == -1)
465 			panic("can't find /options");
466 		if (bdp->ip_address.s_addr == 0 &&
467 		    (proplen = OF_getprop(options, "ipaddr",
468 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
469 			bootjunkv[proplen] = '\0';
470 			if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
471 				bdp->ip_address.s_addr = 0;
472 		}
473 		if (bdp->ip_mask.s_addr == 0 &&
474 		    (proplen = OF_getprop(options, "netmask",
475 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 			bootjunkv[proplen] = '\0';
477 			if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
478 				bdp->ip_mask.s_addr = 0;
479 		}
480 		if (bdp->hostname[0] == '\0' &&
481 		    (proplen = OF_getprop(options, "hostname",
482 		    bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
483 			bdp->hostname[proplen] = '\0';
484 		}
485 		if (bdp->root[0] == '\0' &&
486 		    (proplen = OF_getprop(options, "rootfs",
487 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
488 			bootjunkv[proplen] = '\0';
489 			parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
490 		}
491 		if (bdp->swap[0] == '\0' &&
492 		    (proplen = OF_getprop(options, "swapfs",
493 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
494 			bootjunkv[proplen] = '\0';
495 			parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
496 		}
497 	}
498 }
499 
500 #endif	/* BOOT_FW_DHCP */
501 
502 void
503 ofw_getbootinfo(bp_pp, ba_pp)
504 	char **bp_pp;
505 	char **ba_pp;
506 {
507 	int chosen;
508 	int bp_len;
509 	int ba_len;
510 	char *bootpathv;
511 	char *bootargsv;
512 
513 	/* Read the bootpath and bootargs out of OFW. */
514 	/* XXX is bootpath still interesting?  --emg */
515 	if ((chosen = OF_finddevice("/chosen")) == -1)
516 		panic("no /chosen from OFW");
517 	bp_len = OF_getproplen(chosen, "bootpath");
518 	ba_len = OF_getproplen(chosen, "bootargs");
519 	if (bp_len < 0 || ba_len < 0)
520 		panic("can't get boot data from OFW");
521 
522 	bootpathv = (char *)ofw_malloc(bp_len);
523 	bootargsv = (char *)ofw_malloc(ba_len);
524 
525 	if (bp_len)
526 		OF_getprop(chosen, "bootpath", bootpathv, bp_len);
527 	else
528 		bootpathv[0] = '\0';
529 
530 	if (ba_len)
531 		OF_getprop(chosen, "bootargs", bootargsv, ba_len);
532 	else
533 		bootargsv[0] = '\0';
534 
535 	*bp_pp = bootpathv;
536 	*ba_pp = bootargsv;
537 #ifdef DIAGNOSTIC
538 	printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
539 #endif
540 }
541 
542 vm_offset_t
543 ofw_getcleaninfo(void)
544 {
545 	int cpu;
546 	vm_offset_t vclean, pclean;
547 
548 	if ((cpu = OF_finddevice("/cpu")) == -1)
549 		panic("no /cpu from OFW");
550 
551 	if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
552 	    sizeof(vclean))) != sizeof(vclean)) {
553 #ifdef DEBUG
554 		printf("no OFW d-cache-flush-address property\n");
555 #endif
556 		return -1;
557 	}
558 
559 	if ((pclean = ofw_gettranslation(
560 	    of_decode_int((unsigned char *)&vclean))) == -1)
561 	panic("OFW failed to translate cache flush address");
562 
563 	return pclean;
564 }
565 
566 void
567 ofw_configisa(pio, pmem)
568 	vm_offset_t *pio;
569 	vm_offset_t *pmem;
570 {
571 	int vl;
572 
573 	if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
574 		ofw_configisaonly(pio, pmem);
575 	else /* old style OFW dev info tree */
576 		ofw_configvl(vl, pio, pmem);
577 }
578 
579 static void
580 ofw_configisaonly(pio, pmem)
581 	vm_offset_t *pio;
582 	vm_offset_t *pmem;
583 {
584 	int isa;
585 	int rangeidx;
586 	int size;
587 	vm_offset_t hi, start;
588 	struct isa_range ranges[2];
589 
590 	if ((isa = OF_finddevice("/isa")) == -1)
591 	panic("OFW has no /isa device node");
592 
593 	/* expect to find two isa ranges: IO/data and memory/data */
594 	if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
595 	    != sizeof(ranges))
596 		panic("unexpected size of OFW /isa ranges property: %d", size);
597 
598 	*pio = *pmem = -1;
599 
600 	for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
601 		hi    = of_decode_int((unsigned char *)
602 		    &ranges[rangeidx].isa_phys_hi);
603 		start = of_decode_int((unsigned char *)
604 		    &ranges[rangeidx].parent_phys_start);
605 
606 	if (hi & 1) { /* then I/O space */
607 		*pio = start;
608 	} else {
609 		*pmem = start;
610 	}
611 	} /* END for */
612 
613 	if ((*pio == -1) || (*pmem == -1))
614 		panic("bad OFW /isa ranges property");
615 
616 }
617 
618 static void
619 ofw_configvl(vl, pio, pmem)
620 	int vl;
621 	vm_offset_t *pio;
622 	vm_offset_t *pmem;
623 {
624 	int isa;
625 	int ir, vr;
626 	int size;
627 	vm_offset_t hi, start;
628 	struct vl_isa_range isa_ranges[2];
629 	struct vl_range     vl_ranges[2];
630 
631 	if ((isa = OF_finddevice("/vlbus/isa")) == -1)
632 		panic("OFW has no /vlbus/isa device node");
633 
634 	/* expect to find two isa ranges: IO/data and memory/data */
635 	if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
636 	    != sizeof(isa_ranges))
637 		panic("unexpected size of OFW /vlbus/isa ranges property: %d",
638 		     size);
639 
640 	/* expect to find two vl ranges: IO/data and memory/data */
641 	if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
642 	    != sizeof(vl_ranges))
643 		panic("unexpected size of OFW /vlbus ranges property: %d", size);
644 
645 	*pio = -1;
646 	*pmem = -1;
647 
648 	for (ir = 0; ir < 2; ++ir) {
649 		for (vr = 0; vr < 2; ++vr) {
650 			if ((isa_ranges[ir].parent_phys_hi
651 			    == vl_ranges[vr].vl_phys_hi) &&
652 			    (isa_ranges[ir].parent_phys_lo
653 			    == vl_ranges[vr].vl_phys_lo)) {
654 				hi    = of_decode_int((unsigned char *)
655 				    &isa_ranges[ir].isa_phys_hi);
656 				start = of_decode_int((unsigned char *)
657 				    &vl_ranges[vr].parent_phys_start);
658 
659 				if (hi & 1) { /* then I/O space */
660 					*pio = start;
661 				} else {
662 					*pmem = start;
663 				}
664 			} /* END if */
665 		} /* END for */
666 	} /* END for */
667 
668 	if ((*pio == -1) || (*pmem == -1))
669 		panic("bad OFW /isa ranges property");
670 }
671 
672 void
673 ofw_configisadma(pdma)
674 	vm_offset_t *pdma;
675 {
676 	int root;
677 	int rangeidx;
678 	int size;
679 	struct dma_range *dr;
680 #if NISADMA > 0
681 	extern bus_dma_segment_t *pmap_isa_dma_ranges;
682 	extern int pmap_isa_dma_nranges;
683 #endif
684 
685 	if ((root = OF_finddevice("/")) == -1 ||
686 	    (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
687 	    (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
688  	    OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
689 		panic("bad / dma-ranges property");
690 
691 	nOFdmaranges = size / sizeof(struct dma_range);
692 
693 #if NISADMA > 0
694 	/* Allocate storage for non-OFW representation of the range. */
695 	pmap_isa_dma_ranges = ofw_malloc(nOFdmaranges *
696 	    sizeof(bus_dma_segment_t));
697 	if (pmap_isa_dma_ranges == NULL)
698 		panic("unable to allocate pmap_isa_dma_ranges");
699 	pmap_isa_dma_nranges = nOFdmaranges;
700 #endif
701 
702 	for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
703 	    ++rangeidx, ++dr) {
704 		dr->start = of_decode_int((unsigned char *)&dr->start);
705 		dr->size = of_decode_int((unsigned char *)&dr->size);
706 #if NISADMA > 0
707 		pmap_isa_dma_ranges[rangeidx].ds_addr = dr->start;
708 		pmap_isa_dma_ranges[rangeidx].ds_len  = dr->size;
709 #endif
710 	}
711 
712 #ifdef DEBUG
713 	printf("dma ranges size = %d\n", size);
714 
715 	for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
716 		printf("%08lx %08lx\n",
717 		(u_long)OFdmaranges[rangeidx].start,
718 		(u_long)OFdmaranges[rangeidx].size);
719 	}
720 #endif
721 }
722 
723 /*
724  *  Memory configuration:
725  *
726  *  We start off running in the environment provided by OFW.
727  *  This has the MMU turned on, the kernel code and data
728  *  mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
729  *  data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
730  *  page0 mapped-in at 0x0.
731  *
732  *  The strategy is to set-up the address space for proc0 --
733  *  including the allocation of space for new page tables -- while
734  *  memory is still managed by OFW.  We then effectively create a
735  *  copy of the address space by dumping all of OFW's translations
736  *  and poking them into the new page tables.  We then notify OFW
737  *  that we are assuming control of memory-management by installing
738  *  our callback-handler, and switch to the NetBSD-managed page
739  *  tables with the setttb() call.
740  *
741  *  This scheme may cause some amount of memory to be wasted within
742  *  OFW as dead page tables, but it shouldn't be more than about
743  *  20-30KB.  (It's also possible that OFW will re-use the space.)
744  */
745 void
746 ofw_configmem(void)
747 {
748 	pv_addr_t proc0_ttbbase;
749 	pv_addr_t proc0_ptpt;
750 
751 	/* Set-up proc0 address space. */
752 	ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
753 
754 	/*
755 	 * Get a dump of OFW's picture of physical memory.
756 	 * This is used below to initialize a load of variables used by pmap.
757 	 * We get it now rather than later because we are about to
758 	 * tell OFW to stop managing memory.
759 	 */
760 	ofw_getphysmeminfo();
761 
762 	/* We are about to take control of memory-management from OFW.
763 	 * Establish callbacks for OFW to use for its future memory needs.
764 	 * This is required for us to keep using OFW services.
765 	 */
766 
767 	/* First initialize our callback memory allocator. */
768 	ofw_initallocator();
769 
770 	OF_set_callback((void(*)())ofw_callbackhandler);
771 
772 	/* Switch to the proc0 pagetables. */
773 	setttb(proc0_ttbbase.pv_pa);
774 
775 	/* Aaaaaaaah, running in the proc0 address space! */
776 	/* I feel good... */
777 
778 	/* Set-up the various globals which describe physical memory for pmap. */
779 	{
780 		struct mem_region *mp;
781 		int totalcnt;
782 		int availcnt;
783 		int i;
784 
785 		/* physmem, physical_start, physical_end */
786 		physmem = 0;
787 		for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
788 		    totalcnt++, mp++) {
789 #ifdef	OLDPRINTFS
790 			printf("physmem: %x, %x\n", mp->start, mp->size);
791 #endif
792 			physmem += btoc(mp->size);
793 		}
794 		physical_start = OFphysmem[0].start;
795 		mp--;
796 		physical_end = mp->start + mp->size;
797 
798 		/* free_pages, physical_freestart, physical_freeend */
799 		free_pages = 0;
800 		for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
801 		    availcnt++, mp++) {
802 #ifdef	OLDPRINTFS
803 			printf("physavail: %x, %x\n", mp->start, mp->size);
804 #endif
805 			free_pages += btoc(mp->size);
806 		}
807 		physical_freestart = OFphysavail[0].start;
808 		mp--;
809 		physical_freeend = mp->start + mp->size;
810 #ifdef	OLDPRINTFS
811 		printf("pmap_bootstrap:  physmem = %x, free_pages = %x\n",
812 		    physmem, free_pages);
813 #endif
814 
815 		/*
816 		 *  This is a hack to work with the existing pmap code.
817 		 *  That code depends on a RiscPC BootConfig structure
818 		 *  containing, among other things, an array describing
819 		 *  the regions of physical memory.  So, for now, we need
820 		 *  to stuff our OFW-derived physical memory info into a
821 		 *  "fake" BootConfig structure.
822 		 *
823 		 *  An added twist is that we initialize the BootConfig
824 		 *  structure with our "available" physical memory regions
825 		 *  rather than the "total" physical memory regions.  Why?
826 		 *  Because:
827 		 *
828 		 *   (a) the VM code requires that the "free" pages it is
829 		 *       initialized with have consecutive indices.  This
830 		 *       allows it to use more efficient data structures
831 		 *       (presumably).
832 		 *   (b) the current pmap routines which report the initial
833 		 *       set of free page indices (pmap_next_page) and
834 		 *       which map addresses to indices (pmap_page_index)
835 		 *       assume that the free pages are consecutive across
836 		 *       memory region boundaries.
837 		 *
838 		 *  This means that memory which is "stolen" at startup time
839 		 *  (say, for page descriptors) MUST come from either the
840 		 *  bottom of the first region or the top of the last.
841 		 *
842 		 *  This requirement doesn't mesh well with OFW (or at least
843 		 *  our use of it).  We can get around it for the time being
844 		 *  by pretending that our "available" region array describes
845 		 *  all of our physical memory.  This may cause some important
846 		 *  information to be excluded from a dump file, but so far
847 		 *  I haven't come across any other negative effects.
848 		 *
849 		 *  In the long-run we should fix the index
850 		 *  generation/translation code in the pmap module.
851 		 */
852 
853 		if (DRAM_BLOCKS < (availcnt + 1))
854 			panic("more ofw memory regions than bootconfig blocks");
855 
856 		for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
857 			bootconfig.dram[i].address = mp->start;
858 			bootconfig.dram[i].pages = btoc(mp->size);
859 		}
860 		bootconfig.dramblocks = availcnt;
861 	}
862 
863 	/* Initialize pmap module. */
864 	pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
865 }
866 
867 
868 /*
869  ************************************************************
870 
871   Routines private to this module
872 
873  ************************************************************
874  */
875 
876 /* N.B.  Not supposed to call printf in callback-handler!  Could deadlock! */
877 static void
878 ofw_callbackhandler(args)
879 	struct ofw_cbargs *args;
880 {
881 	char *name = args->name;
882 	int nargs = args->nargs;
883 	int nreturns = args->nreturns;
884 	int *args_n_results = args->args_n_results;
885 
886 	ofw_callbacks++;
887 
888 #if defined(OFWGENCFG)
889 	/* Check this first, so that we don't waste IRQ time parsing. */
890 	if (strcmp(name, "tick") == 0) {
891 		vm_offset_t frame;
892 
893 		/* Check format. */
894 		if (nargs != 1 || nreturns < 1) {
895 			args_n_results[nargs] = -1;
896 			args->nreturns = 1;
897 			return;
898 		}
899 		args_n_results[nargs] =	0;	/* properly formatted request */
900 
901 		/*
902 		 *  Note that we are running in the IRQ frame, with interrupts
903 		 *  disabled.
904 		 *
905 		 *  We need to do two things here:
906 		 *    - copy a few words out of the input frame into a global
907 		 *      area, for later use by our real tick-handling code
908 		 *    - patch a few words in the frame so that when OFW returns
909 		 *      from the interrupt it will resume with our handler
910 		 *      rather than the code that was actually interrupted.
911 		 *      Our handler will resume when it finishes with the code
912 		 *      that was actually interrupted.
913 		 *
914 		 *  It's simplest to do this in assembler, since it requires
915 		 *  switching frames and grovelling about with registers.
916 		 */
917 		frame = (vm_offset_t)args_n_results[0];
918 		if (ofw_handleticks)
919 			dotickgrovelling(frame);
920 		args_n_results[nargs + 1] = frame;
921 		args->nreturns = 1;
922 	} else
923 #endif
924 
925 	if (strcmp(name, "map") == 0) {
926 		vm_offset_t va;
927 		vm_offset_t pa;
928 		vm_size_t size;
929 		int mode;
930 		int ap_bits;
931 		int dom_bits;
932 		int cb_bits;
933 
934 		/* Check format. */
935 		if (nargs != 4 || nreturns < 2) {
936 			args_n_results[nargs] = -1;
937 			args->nreturns = 1;
938 			return;
939 		}
940 		args_n_results[nargs] =	0;	/* properly formatted request */
941 
942 		pa = (vm_offset_t)args_n_results[0];
943 		va = (vm_offset_t)args_n_results[1];
944 		size = (vm_size_t)args_n_results[2];
945 		mode = args_n_results[3];
946 		ap_bits =  (mode & 0x00000C00);
947 		dom_bits = (mode & 0x000001E0);
948 		cb_bits =  (mode & 0x000000C0);
949 
950 		/* Sanity checks. */
951 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
952 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
953 		    (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
954 		    size == 0 || (dom_bits >> 5) != 0) {
955 			args_n_results[nargs + 1] = -1;
956 			args->nreturns = 1;
957 			return;
958 		}
959 
960 		/* Write-back anything stuck in the cache. */
961 		cpu_idcache_wbinv_all();
962 
963 		/* Install new mappings. */
964 		{
965 			pt_entry_t *pte = vtopte(va);
966 			int npages = size >> PGSHIFT;
967 
968 			ap_bits >>= 10;
969 			for (; npages > 0; pte++, pa += NBPG, npages--)
970 				*pte = (pa | PT_AP(ap_bits) | L2_SPAGE | cb_bits);
971 		}
972 
973 		/* Clean out tlb. */
974 		tlb_flush();
975 
976 		args_n_results[nargs + 1] = 0;
977 		args->nreturns = 2;
978 	} else if (strcmp(name, "unmap") == 0) {
979 		vm_offset_t va;
980 		vm_size_t size;
981 
982 		/* Check format. */
983 		if (nargs != 2 || nreturns < 1) {
984 			args_n_results[nargs] = -1;
985 			args->nreturns = 1;
986 			return;
987 		}
988 		args_n_results[nargs] =	0;	/* properly formatted request */
989 
990 		va = (vm_offset_t)args_n_results[0];
991 		size = (vm_size_t)args_n_results[1];
992 
993 		/* Sanity checks. */
994 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
995 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
996 		    (size & PGOFSET) != 0 || size == 0) {
997 			args_n_results[nargs + 1] = -1;
998 			args->nreturns = 1;
999 			return;
1000 		}
1001 
1002 		/* Write-back anything stuck in the cache. */
1003 		cpu_idcache_wbinv_all();
1004 
1005 		/* Zero the mappings. */
1006 		{
1007 			pt_entry_t *pte = vtopte(va);
1008 			int npages = size >> PGSHIFT;
1009 
1010 			for (; npages > 0; pte++, npages--)
1011 				*pte = 0;
1012 		}
1013 
1014 		/* Clean out tlb. */
1015 		tlb_flush();
1016 
1017 		args->nreturns = 1;
1018 	} else if (strcmp(name, "translate") == 0) {
1019 		vm_offset_t va;
1020 		vm_offset_t pa;
1021 		int mode;
1022 		pt_entry_t pte;
1023 
1024 		/* Check format. */
1025 		if (nargs != 1 || nreturns < 4) {
1026 			args_n_results[nargs] = -1;
1027 			args->nreturns = 1;
1028 			return;
1029 		}
1030 		args_n_results[nargs] =	0;	/* properly formatted request */
1031 
1032 		va = (vm_offset_t)args_n_results[0];
1033 
1034 		/* Sanity checks.
1035 		 * For now, I am only willing to translate va's in the
1036 		 * "ofw range." Eventually, I may be more generous. -JJK
1037 		 */
1038 		if ((va & PGOFSET) != 0 ||  va < OFW_VIRT_BASE ||
1039 		    va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1040 			args_n_results[nargs + 1] = -1;
1041 			args->nreturns = 1;
1042 			return;
1043 		}
1044 
1045 		/* Lookup mapping. */
1046 		pte = *vtopte(va);
1047 		if (pte == 0) {
1048 			/* No mapping. */
1049 			args_n_results[nargs + 1] = -1;
1050 			args->nreturns = 2;
1051 		} else {
1052 			/* Existing mapping. */
1053 			pa = (pte & PG_FRAME) | (va & ~PG_FRAME);
1054 			mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C);	/* AP | DOM | CB */
1055 
1056 			args_n_results[nargs + 1] = 0;
1057 			args_n_results[nargs + 2] = pa;
1058 			args_n_results[nargs + 3] =	mode;
1059 			args->nreturns = 4;
1060 		}
1061 	} else if (strcmp(name, "claim-phys") == 0) {
1062 		struct pglist alloclist = TAILQ_HEAD_INITIALIZER(alloclist);
1063 		vm_offset_t low, high;
1064 		vm_size_t align, size;
1065 
1066 		/*
1067 		 * XXX
1068 		 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1069 		 * XXX
1070 		 */
1071 
1072 		/* Check format. */
1073 		if (nargs != 4 || nreturns < 3) {
1074 			args_n_results[nargs] = -1;
1075 			args->nreturns = 1;
1076 			return;
1077 		}
1078 		args_n_results[nargs] =	0;	/* properly formatted request */
1079 
1080 		low = args_n_results[0];
1081 		size = args_n_results[2];
1082 		align = args_n_results[3];
1083 		high = args_n_results[1] + size;
1084 
1085 #if 0
1086 		printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1087 		    low, size, align, high);
1088 		align = size;
1089 		printf("forcing align to be 0x%x\n", align);
1090 #endif
1091 
1092 		args_n_results[nargs + 1] =
1093 		uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1094 #if 0
1095 		printf(" -> 0x%lx", args_n_results[nargs + 1]);
1096 #endif
1097 		if (args_n_results[nargs + 1] != 0) {
1098 #if 0
1099 			printf("(failed)\n");
1100 #endif
1101 			args_n_results[nargs + 1] = -1;
1102 			args->nreturns = 2;
1103 			return;
1104 		}
1105 		args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1106 #if 0
1107 		printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1108 #endif
1109 		args->nreturns = 3;
1110 
1111 	} else if (strcmp(name, "release-phys") == 0) {
1112 		printf("unimplemented ofw callback - %s\n", name);
1113 		args_n_results[nargs] = -1;
1114 		args->nreturns = 1;
1115 	} else if (strcmp(name, "claim-virt") == 0) {
1116 		vm_offset_t va;
1117 		vm_size_t size;
1118 		vm_offset_t align;
1119 
1120 		/* XXX - notyet */
1121 /*		printf("unimplemented ofw callback - %s\n", name);*/
1122 		args_n_results[nargs] = -1;
1123 		args->nreturns = 1;
1124 		return;
1125 
1126 		/* Check format. */
1127 		if (nargs != 2 || nreturns < 3) {
1128 		    args_n_results[nargs] = -1;
1129 		    args->nreturns = 1;
1130 		    return;
1131 		}
1132 		args_n_results[nargs] =	0;	/* properly formatted request */
1133 
1134 		/* Allocate size bytes with specified alignment. */
1135 		size = (vm_size_t)args_n_results[0];
1136 		align = (vm_offset_t)args_n_results[1];
1137 		if (align % NBPG != 0) {
1138 			args_n_results[nargs + 1] = -1;
1139 			args->nreturns = 2;
1140 			return;
1141 		}
1142 
1143 		if (va == 0) {
1144 			/* Couldn't allocate. */
1145 			args_n_results[nargs + 1] = -1;
1146 			args->nreturns = 2;
1147 		} else {
1148 			/* Successful allocation. */
1149 			args_n_results[nargs + 1] = 0;
1150 			args_n_results[nargs + 2] = va;
1151 			args->nreturns = 3;
1152 		}
1153 	} else if (strcmp(name, "release-virt") == 0) {
1154 		vm_offset_t va;
1155 		vm_size_t size;
1156 
1157 		/* XXX - notyet */
1158 		printf("unimplemented ofw callback - %s\n", name);
1159 		args_n_results[nargs] = -1;
1160 		args->nreturns = 1;
1161 		return;
1162 
1163 		/* Check format. */
1164 		if (nargs != 2 || nreturns < 1) {
1165 			args_n_results[nargs] = -1;
1166 			args->nreturns = 1;
1167 			return;
1168 		}
1169 		args_n_results[nargs] =	0;	/* properly formatted request */
1170 
1171 		/* Release bytes. */
1172 		va = (vm_offset_t)args_n_results[0];
1173 		size = (vm_size_t)args_n_results[1];
1174 
1175 		args->nreturns = 1;
1176 	} else {
1177 		args_n_results[nargs] = -1;
1178 		args->nreturns = 1;
1179 	}
1180 }
1181 
1182 #define	KERNEL_VMDATA_PTS	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
1183 #define	KERNEL_OFW_PTS		4
1184 #define	KERNEL_IO_PTS		4
1185 
1186 static void
1187 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1188 	pv_addr_t *proc0_ttbbase;
1189 	pv_addr_t *proc0_ptpt;
1190 {
1191 	int i, oft;
1192 	pv_addr_t proc0_pagedir;
1193 	pv_addr_t proc0_pt_pte;
1194 	pv_addr_t proc0_pt_sys;
1195 	pv_addr_t proc0_pt_kernel;
1196 	pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1197 	pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1198 	pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1199 	pv_addr_t msgbuf;
1200 	vm_offset_t L1pagetable;
1201 	vm_offset_t L2pagetable;
1202 	struct mem_translation *tp;
1203 
1204 	/* Set-up the system page. */
1205 	systempage.pv_va = ofw_claimvirt(0, NBPG, 0);
1206 	if (systempage.pv_va == -1) {
1207 		/* Something was already mapped to VA 0. */
1208 		systempage.pv_va = 0;
1209 		systempage.pv_pa = ofw_gettranslation(0);
1210 		if (systempage.pv_pa == -1)
1211 			panic("bogus result from gettranslation(0)");
1212 	} else {
1213 		/* We were just allocated the page-length range at VA 0. */
1214 		if (systempage.pv_va != 0)
1215 			panic("bogus result from claimvirt(0, NBPG, 0)");
1216 
1217 		/* Now allocate a physical page, and establish the mapping. */
1218 		systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
1219 		if (systempage.pv_pa == -1)
1220 			panic("bogus result from claimphys(0, NBPG, NBPG)");
1221 		ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1222 		    NBPG, -1);	/* XXX - mode? -JJK */
1223 
1224 		/* Zero the memory. */
1225 		bzero((char *)systempage.pv_va, NBPG);
1226 	}
1227 
1228 	/* Allocate/initialize space for the proc0, NetBSD-managed */
1229 	/* page tables that we will be switching to soon. */
1230 	ofw_claimpages(&virt_freeptr, &proc0_pagedir, PD_SIZE);
1231 	ofw_claimpages(&virt_freeptr, &proc0_pt_pte, PT_SIZE);
1232 	ofw_claimpages(&virt_freeptr, &proc0_pt_sys, PT_SIZE);
1233 	ofw_claimpages(&virt_freeptr, &proc0_pt_kernel, PT_SIZE);
1234 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1235 		ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], PT_SIZE);
1236 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1237 		ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], PT_SIZE);
1238 	for (i = 0; i < KERNEL_IO_PTS; i++)
1239 		ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], PT_SIZE);
1240 
1241 	/* Allocate/initialize space for stacks. */
1242 #ifndef	OFWGENCFG
1243 	ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
1244 #endif
1245 	ofw_claimpages(&virt_freeptr, &undstack, NBPG);
1246 	ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
1247 	ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
1248 
1249 	/* Allocate/initialize space for msgbuf area. */
1250 	ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1251 	msgbufphys = msgbuf.pv_pa;
1252 
1253 	/*
1254 	 * OK, we're done allocating.
1255 	 * Get a dump of OFW's translations, and make the appropriate
1256 	 * entries in the L2 pagetables that we just allocated.
1257 	 */
1258 
1259 	ofw_getvirttranslations();
1260 
1261 	for (oft = 0,  tp = OFtranslations; oft < nOFtranslations;
1262 	    oft++, tp++) {
1263 
1264 		vm_offset_t va, pa;
1265 		int npages = tp->size / NBPG;
1266 
1267 		/* Size must be an integral number of pages. */
1268 		if (npages == 0 || tp->size % NBPG != 0)
1269 			panic("illegal ofw translation (size)");
1270 
1271 		/* Make an entry for each page in the appropriate table. */
1272 		for (va = tp->virt, pa = tp->phys; npages > 0;
1273 		    va += NBPG, pa += NBPG, npages--) {
1274 			vm_offset_t L2pagetable;
1275 
1276 			/*
1277 			 * Map the top bits to the appropriate L2 pagetable.
1278 			 * The only allowable regions are page0, the
1279 			 * kernel-static area, and the ofw area.
1280 			 */
1281 			switch (va >> (PDSHIFT + 2)) {
1282 			case 0:
1283 				/* page0 */
1284 				L2pagetable = proc0_pt_sys.pv_va;
1285 				break;
1286 
1287 			case (KERNEL_BASE >> (PDSHIFT +	2)):
1288 				/* kernel static area */
1289 				L2pagetable = proc0_pt_kernel.pv_va;
1290 				break;
1291 
1292 			case ( OFW_VIRT_BASE               >> (PDSHIFT + 2)):
1293 			case ((OFW_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
1294 			case ((OFW_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
1295 			case ((OFW_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
1296 				/* ofw area */
1297 				L2pagetable = proc0_pt_ofw[(va >> (PDSHIFT + 2))
1298 				    & 0x3].pv_va;
1299 				break;
1300 
1301 			case ( IO_VIRT_BASE               >> (PDSHIFT + 2)):
1302 			case ((IO_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
1303 			case ((IO_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
1304 			case ((IO_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
1305 				/* io area */
1306 				L2pagetable = proc0_pt_io[(va >> (PDSHIFT + 2))
1307 				    & 0x3].pv_va;
1308 				break;
1309 
1310 			default:
1311 				/* illegal */
1312 				panic("illegal ofw translation (addr) %#lx", va);
1313 			}
1314 
1315 			/* Sanity.  The current entry should be null. */
1316 			{
1317 				pt_entry_t pte;
1318 				pte = ReadWord(L2pagetable + ((va >> 10)
1319 				    & 0x00000FFC));
1320 				if (pte != 0)
1321 					panic("illegal ofw translation (%#lx, %#lx, %#lx, %x)",
1322 					    L2pagetable, va, pa, pte);
1323 			}
1324 
1325 			/* Make the entry. */
1326 			pmap_map_entry(L2pagetable, va, pa,
1327 			    VM_PROT_READ|VM_PROT_WRITE,
1328 			    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1329 						    : PTE_NOCACHE);
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * We don't actually want some of the mappings that we just
1335 	 * set up to appear in proc0's address space.  In particular,
1336 	 * we don't want aliases to physical addresses that the kernel
1337 	 * has-mapped/will-map elsewhere.
1338 	 */
1339 	ofw_discardmappings(proc0_pt_kernel.pv_va,
1340 	    proc0_pt_sys.pv_va, PT_SIZE);
1341 	ofw_discardmappings(proc0_pt_kernel.pv_va,
1342 	    proc0_pt_kernel.pv_va, PT_SIZE);
1343 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1344 		ofw_discardmappings(proc0_pt_kernel.pv_va,
1345 		    proc0_pt_vmdata[i].pv_va, PT_SIZE);
1346 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1347 		ofw_discardmappings(proc0_pt_kernel.pv_va,
1348 		    proc0_pt_ofw[i].pv_va, PT_SIZE);
1349 	for (i = 0; i < KERNEL_IO_PTS; i++)
1350 		ofw_discardmappings(proc0_pt_kernel.pv_va,
1351 		    proc0_pt_io[i].pv_va, PT_SIZE);
1352 	ofw_discardmappings(proc0_pt_kernel.pv_va,
1353 	    msgbuf.pv_va, MSGBUFSIZE);
1354 
1355 	/*
1356 	 * We did not throw away the proc0_pt_pte and proc0_pagedir
1357 	 * mappings as well still want them. However we don't want them
1358 	 * cached ...
1359 	 * Really these should be uncached when allocated.
1360 	 */
1361 	pmap_map_entry(proc0_pt_kernel.pv_va, proc0_pt_pte.pv_va,
1362 	    proc0_pt_pte.pv_pa,
1363 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1364 	for (i = 0; i < (PD_SIZE / NBPG); ++i)
1365 		pmap_map_entry(proc0_pt_kernel.pv_va,
1366 		    proc0_pagedir.pv_va + NBPG * i,
1367 		    proc0_pagedir.pv_pa + NBPG * i,
1368 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1369 
1370 	/*
1371 	 * Construct the proc0 L2 pagetables that map page tables.
1372 	 */
1373 
1374 	/* Map entries in the L2pagetable used to map L2PTs. */
1375 	L2pagetable = proc0_pt_pte.pv_va;
1376 	pmap_map_entry(L2pagetable, (0x00000000 >> (PGSHIFT-2)),
1377 	    proc0_pt_sys.pv_pa,
1378 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1379 	pmap_map_entry(L2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
1380 	    proc0_pt_kernel.pv_pa,
1381 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1382 	pmap_map_entry(L2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
1383 	    proc0_pt_pte.pv_pa,
1384 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1385 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1386 		pmap_map_entry(L2pagetable, ((KERNEL_VM_BASE + i * 0x00400000)
1387 		    >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1388 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1389 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1390 		pmap_map_entry(L2pagetable, ((OFW_VIRT_BASE + i * 0x00400000)
1391 		    >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1392 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1393 	for (i = 0; i < KERNEL_IO_PTS; i++)
1394 		pmap_map_entry(L2pagetable, ((IO_VIRT_BASE + i * 0x00400000)
1395 		    >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1396 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1397 
1398 	/* Construct the proc0 L1 pagetable. */
1399 	L1pagetable = proc0_pagedir.pv_va;
1400 
1401 	pmap_link_l2pt(L1pagetable, 0x0, proc0_pt_sys.pv_pa);
1402 	pmap_link_l2pt(L1pagetable, KERNEL_BASE, proc0_pt_kernel.pv_pa);
1403 	pmap_link_l2pt(L1pagetable, PROCESS_PAGE_TBLS_BASE,
1404 	    proc0_pt_pte.pv_pa);
1405 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1406 		pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1407 		    proc0_pt_vmdata[i].pv_pa);
1408 	for (i = 0; i < KERNEL_OFW_PTS; i++)
1409 		pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1410 		    proc0_pt_ofw[i].pv_pa);
1411 	for (i = 0; i < KERNEL_IO_PTS; i++)
1412 		pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1413 		    proc0_pt_io[i].pv_pa);
1414 
1415 	/*
1416          * gross hack for the sake of not thrashing the TLB and making
1417 	 * cache flush more efficient: blast l1 ptes for sections.
1418          */
1419 	for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1420 		vm_offset_t va = tp->virt;
1421 		vm_offset_t pa = tp->phys;
1422 
1423 		if (((va & (NBPD - 1)) == 0) && ((pa & (NBPD - 1)) == 0)) {
1424 			int nsections = tp->size / NBPD;
1425 
1426 			while (nsections--) {
1427 				/* XXXJRT prot?? */
1428 				pmap_map_section(L1pagetable, va, pa,
1429 				    VM_PROT_READ|VM_PROT_WRITE,
1430 				    (tp->mode & 0xC) == 0xC ? PTE_CACHE
1431 							    : PTE_NOCACHE);
1432 				va += NBPD;
1433 				pa += NBPD;
1434 			}
1435 		}
1436 	}
1437 
1438 	/* OUT parameters are the new ttbbase and the pt which maps pts. */
1439 	*proc0_ttbbase = proc0_pagedir;
1440 	*proc0_ptpt = proc0_pt_pte;
1441 }
1442 
1443 
1444 static void
1445 ofw_getphysmeminfo()
1446 {
1447 	int phandle;
1448 	int mem_len;
1449 	int avail_len;
1450 	int i;
1451 
1452 	if ((phandle = OF_finddevice("/memory")) == -1 ||
1453 	    (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1454 	    (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1455 	    OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1456 	    (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1457  	    (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1458 	    OF_getprop(phandle, "available", OFphysavail, avail_len)
1459 	    != avail_len)
1460 		panic("can't get physmeminfo from OFW");
1461 
1462 	nOFphysmem = mem_len / sizeof(struct mem_region);
1463 	nOFphysavail = avail_len / sizeof(struct mem_region);
1464 
1465 	/*
1466 	 * Sort the blocks in each array into ascending address order.
1467 	 * Also, page-align all blocks.
1468 	 */
1469 	for (i = 0; i < 2; i++) {
1470 		struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1471 		struct mem_region *mp;
1472 		int cnt =  (i == 0) ? nOFphysmem : nOFphysavail;
1473 		int j;
1474 
1475 #ifdef	OLDPRINTFS
1476 		printf("ofw_getphysmeminfo:  %d blocks\n", cnt);
1477 #endif
1478 
1479 		/* XXX - Convert all the values to host order. -JJK */
1480 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1481 			mp->start = of_decode_int((unsigned char *)&mp->start);
1482 			mp->size = of_decode_int((unsigned char *)&mp->size);
1483 		}
1484 
1485 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1486 			u_int s, sz;
1487 			struct mem_region *mp1;
1488 
1489 			/* Page-align start of the block. */
1490 			s = mp->start % NBPG;
1491 			if (s != 0) {
1492 				s = (NBPG - s);
1493 
1494 				if (mp->size >= s) {
1495 					mp->start += s;
1496 					mp->size -= s;
1497 				}
1498 			}
1499 
1500 			/* Page-align the size. */
1501 			mp->size -= mp->size % NBPG;
1502 
1503 			/* Handle empty block. */
1504 			if (mp->size == 0) {
1505 				bcopy(mp + 1, mp, (cnt - (mp - tmp))
1506 				    * sizeof(struct mem_region));
1507 				cnt--;
1508 				mp--;
1509 				continue;
1510 			}
1511 
1512 			/* Bubble sort. */
1513 			s = mp->start;
1514 			sz = mp->size;
1515 			for (mp1 = tmp; mp1 < mp; mp1++)
1516 				if (s < mp1->start)
1517 					break;
1518 			if (mp1 < mp) {
1519 				bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1520 				mp1->start = s;
1521 				mp1->size = sz;
1522 			}
1523 		}
1524 
1525 #ifdef	OLDPRINTFS
1526 		for (mp = tmp; mp->size; mp++) {
1527 			printf("%x, %x\n", mp->start, mp->size);
1528 		}
1529 #endif
1530 	}
1531 }
1532 
1533 
1534 static void
1535 ofw_getvirttranslations(void)
1536 {
1537 	int mmu_phandle;
1538 	int mmu_ihandle;
1539 	int trans_len;
1540 	int over, len;
1541 	int i;
1542 	struct mem_translation *tp;
1543 
1544 	mmu_ihandle = ofw_mmu_ihandle();
1545 
1546 	/* overallocate to avoid increases during allocation */
1547 	over = 4 * sizeof(struct mem_translation);
1548 	if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1549 	    (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1550 	    (OFtranslations = ofw_malloc(len + over)) == 0 ||
1551 	    (trans_len = OF_getprop(mmu_phandle, "translations",
1552 	    OFtranslations, len + over)) > (len + over))
1553 		panic("can't get virttranslations from OFW");
1554 
1555 	/* XXX - Convert all the values to host order. -JJK */
1556 	nOFtranslations = trans_len / sizeof(struct mem_translation);
1557 #ifdef	OLDPRINTFS
1558 	printf("ofw_getvirtmeminfo:  %d blocks\n", nOFtranslations);
1559 #endif
1560 	for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1561 		tp->virt = of_decode_int((unsigned char *)&tp->virt);
1562 		tp->size = of_decode_int((unsigned char *)&tp->size);
1563 		tp->phys = of_decode_int((unsigned char *)&tp->phys);
1564 		tp->mode = of_decode_int((unsigned char *)&tp->mode);
1565 	}
1566 }
1567 
1568 /*
1569  * ofw_valloc: allocate blocks of VM for IO and other special purposes
1570  */
1571 typedef struct _vfree {
1572 	struct _vfree *pNext;
1573 	vm_offset_t start;
1574 	vm_size_t   size;
1575 } VFREE, *PVFREE;
1576 
1577 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1578 
1579 static PVFREE vflist = &vfinitial;
1580 
1581 static vm_offset_t
1582 ofw_valloc(size, align)
1583 	vm_offset_t size;
1584 	vm_offset_t align;
1585 {
1586 	PVFREE        *ppvf;
1587 	PVFREE        pNew;
1588 	vm_offset_t   new;
1589 	vm_offset_t   lead;
1590 
1591 	for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1592 		if (align == 0) {
1593 			new = (*ppvf)->start;
1594 			lead = 0;
1595 		} else {
1596 			new  = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1597 			lead = new - (*ppvf)->start;
1598 		}
1599 
1600 		if (((*ppvf)->size - lead) >= size) {
1601  			if (lead == 0) {
1602 				/* using whole block */
1603 				if (size == (*ppvf)->size) {
1604 					/* splice out of list */
1605 					(*ppvf) = (*ppvf)->pNext;
1606 				} else { /* tail of block is free */
1607 					(*ppvf)->start = new + size;
1608 					(*ppvf)->size -= size;
1609 				}
1610 			} else {
1611 				vm_size_t tail = ((*ppvf)->start
1612 				    + (*ppvf)->size) - (new + size);
1613 				/* free space at beginning */
1614 				(*ppvf)->size = lead;
1615 
1616 				if (tail != 0) {
1617 					/* free space at tail */
1618 					pNew = ofw_malloc(sizeof(VFREE));
1619 					pNew->pNext  = (*ppvf)->pNext;
1620 					(*ppvf)->pNext = pNew;
1621 					pNew->start  = new + size;
1622 					pNew->size   = tail;
1623 				}
1624 			}
1625 			return new;
1626 		} /* END if */
1627 	} /* END for */
1628 
1629 	return -1;
1630 }
1631 
1632 vm_offset_t
1633 ofw_map(pa, size, cb_bits)
1634 	vm_offset_t pa;
1635 	vm_size_t size;
1636 	int cb_bits;
1637 {
1638 	vm_offset_t va;
1639 
1640 	if ((va = ofw_valloc(size, size)) == -1)
1641 		panic("cannot alloc virtual memory for %#lx", pa);
1642 
1643 	ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1644 
1645 	ofw_settranslation(va, pa, size, PT_AP(AP_KRW) | cb_bits);
1646 
1647 	return va;
1648 }
1649 
1650 static int
1651 ofw_mem_ihandle(void)
1652 {
1653 	static int mem_ihandle = 0;
1654 	int chosen;
1655 
1656 	if (mem_ihandle != 0)
1657 		return(mem_ihandle);
1658 
1659 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1660 	    OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1661 		panic("ofw_mem_ihandle");
1662 
1663 	mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1664 
1665 	return(mem_ihandle);
1666 }
1667 
1668 
1669 static int
1670 ofw_mmu_ihandle(void)
1671 {
1672 	static int mmu_ihandle = 0;
1673 	int chosen;
1674 
1675 	if (mmu_ihandle != 0)
1676 		return(mmu_ihandle);
1677 
1678 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
1679 	    OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1680 		panic("ofw_mmu_ihandle");
1681 
1682 	mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1683 
1684 	return(mmu_ihandle);
1685 }
1686 
1687 
1688 /* Return -1 on failure. */
1689 static vm_offset_t
1690 ofw_claimphys(pa, size, align)
1691 	vm_offset_t pa;
1692 	vm_size_t size;
1693 	vm_offset_t align;
1694 {
1695 	int mem_ihandle = ofw_mem_ihandle();
1696 
1697 /*	printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1698 	if (align == 0) {
1699 		/* Allocate at specified base; alignment is ignored. */
1700 		pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1701 	} else {
1702 		/* Allocate anywhere, with specified alignment. */
1703 		pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1704 	}
1705 
1706 /*	printf("%x\n", pa);*/
1707 	return(pa);
1708 }
1709 
1710 
1711 #if 0
1712 /* Return -1 on failure. */
1713 static vm_offset_t
1714 ofw_releasephys(pa, size)
1715 	vm_offset_t pa;
1716 	vm_size_t size;
1717 {
1718 	int mem_ihandle = ofw_mem_ihandle();
1719 
1720 /*	printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1721 
1722 	return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1723 }
1724 #endif
1725 
1726 /* Return -1 on failure. */
1727 static vm_offset_t
1728 ofw_claimvirt(va, size, align)
1729 	vm_offset_t va;
1730 	vm_size_t size;
1731 	vm_offset_t align;
1732 {
1733 	int mmu_ihandle = ofw_mmu_ihandle();
1734 
1735 	/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1736 	if (align == 0) {
1737 		/* Allocate at specified base; alignment is ignored. */
1738 		va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1739 	} else {
1740 		/* Allocate anywhere, with specified alignment. */
1741 		va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1742 	}
1743 
1744 	/*printf("%x\n", va);*/
1745 	return(va);
1746 }
1747 
1748 
1749 /* Return -1 if no mapping. */
1750 vm_offset_t
1751 ofw_gettranslation(va)
1752 	vm_offset_t va;
1753 {
1754 	int mmu_ihandle = ofw_mmu_ihandle();
1755 	vm_offset_t pa;
1756 	int mode;
1757 	int exists;
1758 
1759 	/*printf("ofw_gettranslation (%x) --> ", va);*/
1760 	exists = 0;	    /* gets set to true if translation exists */
1761 	if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1762 	    &exists) != 0)
1763 		return(-1);
1764 
1765 	/*printf("%x\n", exists ? pa : -1);*/
1766 	return(exists ? pa : -1);
1767 }
1768 
1769 
1770 static void
1771 ofw_settranslation(va, pa, size, mode)
1772 	vm_offset_t va;
1773 	vm_offset_t pa;
1774 	vm_size_t size;
1775 	int mode;
1776 {
1777 	int mmu_ihandle = ofw_mmu_ihandle();
1778 
1779 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1780 	if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1781 		panic("ofw_settranslation failed");
1782 }
1783 
1784 /*
1785  *  Allocation routine used before the kernel takes over memory.
1786  *  Use this for efficient storage for things that aren't rounded to
1787  *  page size.
1788  *
1789  *  The point here is not necessarily to be very efficient (even though
1790  *  that's sort of nice), but to do proper dynamic allocation to avoid
1791  *  size-limitation errors.
1792  *
1793  */
1794 
1795 typedef struct _leftover {
1796 	struct _leftover *pNext;
1797 	vm_size_t size;
1798 } LEFTOVER, *PLEFTOVER;
1799 
1800 /* leftover bits of pages.  first word is pointer to next.
1801    second word is size of leftover */
1802 static PLEFTOVER leftovers = NULL;
1803 
1804 static void *
1805 ofw_malloc(size)
1806 	vm_size_t size;
1807 {
1808 	PLEFTOVER   *ppLeftover;
1809 	PLEFTOVER   pLeft;
1810 	pv_addr_t   new;
1811 	vm_size_t   newSize, claim_size;
1812 
1813 	/* round and set minimum size */
1814 	size = max(sizeof(LEFTOVER),
1815 	    ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1816 
1817 	for (ppLeftover = &leftovers; *ppLeftover;
1818 	    ppLeftover = &((*ppLeftover)->pNext))
1819 		if ((*ppLeftover)->size >= size)
1820 			break;
1821 
1822 	if (*ppLeftover) { /* have a leftover of the right size */
1823 		/* remember the leftover */
1824 		new.pv_va = (vm_offset_t)*ppLeftover;
1825 		if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1826 			/* splice out of chain */
1827 			*ppLeftover = (*ppLeftover)->pNext;
1828 		} else {
1829 			/* remember the next pointer */
1830 			pLeft = (*ppLeftover)->pNext;
1831 			newSize = (*ppLeftover)->size - size; /* reduce size */
1832 			/* move pointer */
1833 			*ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1834 			    + size);
1835 			(*ppLeftover)->pNext = pLeft;
1836 			(*ppLeftover)->size  = newSize;
1837 		}
1838 	} else {
1839 		claim_size = (size + NBPG - 1) & ~(NBPG - 1);
1840 		ofw_claimpages(&virt_freeptr, &new, claim_size);
1841 		if ((size + sizeof(LEFTOVER)) <= claim_size) {
1842 			pLeft = (PLEFTOVER)(new.pv_va + size);
1843 			pLeft->pNext = leftovers;
1844 			pLeft->size = claim_size - size;
1845 			leftovers = pLeft;
1846 		}
1847 	}
1848 
1849 	return (void *)(new.pv_va);
1850 }
1851 
1852 /*
1853  *  Here is a really, really sleazy free.  It's not used right now,
1854  *  because it's not worth the extra complexity for just a few bytes.
1855  *
1856  */
1857 #if 0
1858 static void
1859 ofw_free(addr, size)
1860 	vm_offset_t addr;
1861 	vm_size_t size;
1862 {
1863 	PLEFTOVER pLeftover = (PLEFTOVER)addr;
1864 
1865 	/* splice right into list without checks or compaction */
1866 	pLeftover->pNext = leftovers;
1867 	pLeftover->size  = size;
1868 	leftovers        = pLeftover;
1869 }
1870 #endif
1871 
1872 /*
1873  *  Allocate and zero round(size)/NBPG pages of memory.
1874  *  We guarantee that the allocated memory will be
1875  *  aligned to a boundary equal to the smallest power of
1876  *  2 greater than or equal to size.
1877  *  free_pp is an IN/OUT parameter which points to the
1878  *  last allocated virtual address in an allocate-downwards
1879  *  stack.  pv_p is an OUT parameter which contains the
1880  *  virtual and physical base addresses of the allocated
1881  *  memory.
1882  */
1883 static void
1884 ofw_claimpages(free_pp, pv_p, size)
1885 	vm_offset_t *free_pp;
1886 	pv_addr_t *pv_p;
1887 	vm_size_t size;
1888 {
1889 	/* round-up to page boundary */
1890 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1891 	vm_size_t aligned_size;
1892 	vm_offset_t va, pa;
1893 
1894 	if (alloc_size == 0)
1895 		panic("ofw_claimpages zero");
1896 
1897 	for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1898 		;
1899 
1900 	/*  The only way to provide the alignment guarantees is to
1901 	 *  allocate the virtual and physical ranges separately,
1902 	 *  then do an explicit map call.
1903 	 */
1904 	va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1905 	if (ofw_claimvirt(va, alloc_size, 0) != va)
1906 		panic("ofw_claimpages va alloc");
1907 	pa = ofw_claimphys(0, alloc_size, aligned_size);
1908 	if (pa == -1)
1909 		panic("ofw_claimpages pa alloc");
1910 	/* XXX - what mode? -JJK */
1911 	ofw_settranslation(va, pa, alloc_size, -1);
1912 
1913 	/* The memory's mapped-in now, so we can zero it. */
1914 	bzero((char *)va, alloc_size);
1915 
1916 	/* Set OUT parameters. */
1917 	*free_pp = va;
1918 	pv_p->pv_va = va;
1919 	pv_p->pv_pa = pa;
1920 }
1921 
1922 
1923 static void
1924 ofw_discardmappings(L2pagetable, va, size)
1925 	vm_offset_t L2pagetable;
1926 	vm_offset_t va;
1927 	vm_size_t size;
1928 {
1929 	/* round-up to page boundary */
1930 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1931 	int npages = alloc_size / NBPG;
1932 
1933 	if (npages == 0)
1934 		panic("ofw_discardmappings zero");
1935 
1936 	/* Discard each mapping. */
1937 	for (; npages > 0; va += NBPG, npages--) {
1938 		/* Sanity. The current entry should be non-null. */
1939 		if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1940 			panic("ofw_discardmappings zero entry");
1941 
1942 		/* Clear the entry. */
1943 		WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1944 	}
1945 }
1946 
1947 
1948 static void
1949 ofw_initallocator(void)
1950 {
1951 
1952 }
1953