xref: /netbsd-src/sys/arch/sgimips/hpc/if_sq.c (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 /*	$NetBSD: if_sq.c,v 1.59 2024/06/29 12:11:11 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Rafal K. Boni
5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * Portions of this code are derived from software contributed to The
9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.59 2024/06/29 12:11:11 riastradh Exp $");
37 
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/ioctl.h>
47 #include <sys/errno.h>
48 #include <sys/syslog.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #include <machine/endian.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 
59 #include <net/bpf.h>
60 
61 #include <sys/bus.h>
62 #include <machine/intr.h>
63 #include <machine/sysconf.h>
64 
65 #include <dev/ic/seeq8003reg.h>
66 
67 #include <sgimips/hpc/sqvar.h>
68 #include <sgimips/hpc/hpcvar.h>
69 #include <sgimips/hpc/hpcreg.h>
70 
71 #include <dev/arcbios/arcbios.h>
72 #include <dev/arcbios/arcbiosvar.h>
73 
74 #define static
75 
76 /*
77  * Short TODO list:
78  *	(1) Do counters for bad-RX packets.
79  *	(2) Allow multi-segment transmits, instead of copying to a single,
80  *	    contiguous mbuf.
81  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
82  *	    seeq interrupts after sq_stop().
83  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
84  *	    mode.
85  *	(5) Should the driver filter out its own transmissions in non-EDLC
86  *	    mode?
87  *	(6) Multicast support -- multicast filter, address management, ...
88  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
89  *	    to figure out if RB0 is read-only as stated in one spot in the
90  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
91  *	    the correct thing?
92  */
93 
94 #if defined(SQ_DEBUG)
95  int sq_debug = 0;
96  #define SQ_DPRINTF(x) if (sq_debug) printf x
97 #else
98  #define SQ_DPRINTF(x)
99 #endif
100 
101 static int	sq_match(device_t, cfdata_t, void *);
102 static void	sq_attach(device_t, device_t, void *);
103 static int	sq_init(struct ifnet *);
104 static void	sq_start(struct ifnet *);
105 static void	sq_stop(struct ifnet *, int);
106 static void	sq_watchdog(struct ifnet *);
107 static int	sq_ioctl(struct ifnet *, u_long, void *);
108 
109 static void	sq_set_filter(struct sq_softc *);
110 static int	sq_intr(void *);
111 static int	sq_rxintr(struct sq_softc *);
112 static int	sq_txintr(struct sq_softc *);
113 static void	sq_txring_hpc1(struct sq_softc *);
114 static void	sq_txring_hpc3(struct sq_softc *);
115 static void	sq_reset(struct sq_softc *);
116 static int	sq_add_rxbuf(struct sq_softc *, int);
117 static void	sq_dump_buffer(paddr_t, psize_t);
118 static void	sq_trace_dump(struct sq_softc *);
119 
120 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
121     sq_match, sq_attach, NULL, NULL);
122 
123 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
124 
125 #define sq_seeq_read(sc, off) \
126 	bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
127 #define sq_seeq_write(sc, off, val) \
128 	bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
129 
130 #define sq_hpc_read(sc, off) \
131 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
132 #define sq_hpc_write(sc, off, val) \
133 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
134 
135 /* MAC address offset for non-onboard implementations */
136 #define SQ_HPC_EEPROM_ENADDR	250
137 
138 #define SGI_OUI_0		0x08
139 #define SGI_OUI_1		0x00
140 #define SGI_OUI_2		0x69
141 
142 static int
143 sq_match(device_t parent, cfdata_t cf, void *aux)
144 {
145 	struct hpc_attach_args *ha = aux;
146 
147 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
148 		vaddr_t reset, txstat;
149 
150 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
151 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
152 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
153 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
154 
155 		if (platform.badaddr((void *)reset, sizeof(reset)))
156 			return 0;
157 
158 		*(volatile uint32_t *)reset = 0x1;
159 		delay(20);
160 		*(volatile uint32_t *)reset = 0x0;
161 
162 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
163 			return 0;
164 
165 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
166 			return 1;
167 	}
168 
169 	return 0;
170 }
171 
172 static void
173 sq_attach(device_t parent, device_t self, void *aux)
174 {
175 	int i, err;
176 	const char* macaddr;
177 	struct sq_softc *sc = device_private(self);
178 	struct hpc_attach_args *haa = aux;
179 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
180 
181 	sc->sc_dev = self;
182 	sc->sc_hpct = haa->ha_st;
183 	sc->hpc_regs = haa->hpc_regs;	   /* HPC register definitions */
184 
185 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
186 	    haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
187 	    &sc->sc_hpch)) != 0) {
188 		printf(": unable to map HPC DMA registers, error = %d\n", err);
189 		goto fail_0;
190 	}
191 
192 	sc->sc_regt = haa->ha_st;
193 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
194 	    haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
195 	    &sc->sc_regh)) != 0) {
196 		printf(": unable to map Seeq registers, error = %d\n", err);
197 		goto fail_0;
198 	}
199 
200 	sc->sc_dmat = haa->ha_dmat;
201 
202 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
203 	    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
204 	    BUS_DMA_NOWAIT)) != 0) {
205 		printf(": unable to allocate control data, error = %d\n", err);
206 		goto fail_0;
207 	}
208 
209 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
210 	    sizeof(struct sq_control), (void **)&sc->sc_control,
211 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
212 		printf(": unable to map control data, error = %d\n", err);
213 		goto fail_1;
214 	}
215 
216 	if ((err = bus_dmamap_create(sc->sc_dmat,
217 	    sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
218 	    BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
219 		printf(": unable to create DMA map for control data, error "
220 		    "= %d\n", err);
221 		goto fail_2;
222 	}
223 
224 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
225 	    sc->sc_control, sizeof(struct sq_control), NULL,
226 	    BUS_DMA_NOWAIT)) != 0) {
227 		printf(": unable to load DMA map for control data, error "
228 		    "= %d\n", err);
229 		goto fail_3;
230 	}
231 
232 	memset(sc->sc_control, 0, sizeof(struct sq_control));
233 
234 	/* Create transmit buffer DMA maps */
235 	for (i = 0; i < SQ_NTXDESC; i++) {
236 		if ((err = bus_dmamap_create(sc->sc_dmat,
237 		    MCLBYTES, 1, MCLBYTES, 0,
238 		    BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
239 			printf(": unable to create tx DMA map %d, error = %d\n",
240 			    i, err);
241 			goto fail_4;
242 		}
243 	}
244 
245 	/* Create receive buffer DMA maps */
246 	for (i = 0; i < SQ_NRXDESC; i++) {
247 		if ((err = bus_dmamap_create(sc->sc_dmat,
248 		    MCLBYTES, 1, MCLBYTES, 0,
249 		    BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
250 			printf(": unable to create rx DMA map %d, error = %d\n",
251 			    i, err);
252 			goto fail_5;
253 		}
254 	}
255 
256 	/* Pre-allocate the receive buffers.  */
257 	for (i = 0; i < SQ_NRXDESC; i++) {
258 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
259 			printf(": unable to allocate or map rx buffer %d\n,"
260 			    " error = %d\n", i, err);
261 			goto fail_6;
262 		}
263 	}
264 
265 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
266 	    ETHER_ADDR_LEN);
267 
268 	/*
269 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
270 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
271 	 * but rather the DS1386 RTC's battery-backed ram is used.
272 	 */
273 	if (sc->sc_enaddr[0] != SGI_OUI_0 ||
274 	    sc->sc_enaddr[1] != SGI_OUI_1 ||
275 	    sc->sc_enaddr[2] != SGI_OUI_2) {
276 		macaddr = arcbios_GetEnvironmentVariable("eaddr");
277 		if (macaddr == NULL) {
278 			printf(": unable to get MAC address!\n");
279 			goto fail_6;
280 		}
281 		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
282 	}
283 
284 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
285 	    device_xname(self), "intr");
286 
287 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
288 		printf(": unable to establish interrupt!\n");
289 		goto fail_6;
290 	}
291 
292 	/* Reset the chip to a known state. */
293 	sq_reset(sc);
294 
295 	/*
296 	 * Determine if we're an 8003 or 80c03 by setting the first
297 	 * MAC address register to non-zero, and then reading it back.
298 	 * If it's zero, we have an 80c03, because we will have read
299 	 * the TxCollLSB register.
300 	 */
301 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
302 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
303 		sc->sc_type = SQ_TYPE_80C03;
304 	else
305 		sc->sc_type = SQ_TYPE_8003;
306 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
307 
308 	printf(": SGI Seeq %s\n",
309 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
310 
311 	printf("%s: Ethernet address %s\n",
312 	    device_xname(self), ether_sprintf(sc->sc_enaddr));
313 
314 	strcpy(ifp->if_xname, device_xname(self));
315 	ifp->if_softc = sc;
316 	ifp->if_mtu = ETHERMTU;
317 	ifp->if_init = sq_init;
318 	ifp->if_stop = sq_stop;
319 	ifp->if_start = sq_start;
320 	ifp->if_ioctl = sq_ioctl;
321 	ifp->if_watchdog = sq_watchdog;
322 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
323 	IFQ_SET_READY(&ifp->if_snd);
324 
325 	if_attach(ifp);
326 	if_deferred_start_init(ifp, NULL);
327 	ether_ifattach(ifp, sc->sc_enaddr);
328 
329 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
330 	/* Done! */
331 	return;
332 
333 	/*
334 	 * Free any resources we've allocated during the failed attach
335 	 * attempt.  Do this in reverse order and fall through.
336 	 */
337  fail_6:
338 	for (i = 0; i < SQ_NRXDESC; i++) {
339 		if (sc->sc_rxmbuf[i] != NULL) {
340 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
341 			m_freem(sc->sc_rxmbuf[i]);
342 		}
343 	}
344  fail_5:
345 	for (i = 0; i < SQ_NRXDESC; i++) {
346 		if (sc->sc_rxmap[i] != NULL)
347 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
348 	}
349  fail_4:
350 	for (i = 0; i < SQ_NTXDESC; i++) {
351 		if (sc->sc_txmap[i] != NULL)
352 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
353 	}
354 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
355  fail_3:
356 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
357  fail_2:
358 	bus_dmamem_unmap(sc->sc_dmat,
359 	    (void *)sc->sc_control, sizeof(struct sq_control));
360  fail_1:
361 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
362  fail_0:
363 	return;
364 }
365 
366 /* Set up data to get the interface up and running. */
367 int
368 sq_init(struct ifnet *ifp)
369 {
370 	int i;
371 	struct sq_softc *sc = ifp->if_softc;
372 
373 	/* Cancel any in-progress I/O */
374 	sq_stop(ifp, 0);
375 
376 	sc->sc_nextrx = 0;
377 
378 	sc->sc_nfreetx = SQ_NTXDESC;
379 	sc->sc_nexttx = sc->sc_prevtx = 0;
380 
381 	SQ_TRACE(SQ_RESET, sc, 0, 0);
382 
383 	/* Set into 8003 mode, bank 0 to program ethernet address */
384 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
385 
386 	/* Now write the address */
387 	for (i = 0; i < ETHER_ADDR_LEN; i++)
388 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
389 
390 	sc->sc_rxcmd =
391 	    RXCMD_IE_CRC |
392 	    RXCMD_IE_DRIB |
393 	    RXCMD_IE_SHORT |
394 	    RXCMD_IE_END |
395 	    RXCMD_IE_GOOD;
396 
397 	/*
398 	 * Set the receive filter -- this will add some bits to the
399 	 * prototype RXCMD register.  Do this before setting the
400 	 * transmit config register, since we might need to switch
401 	 * banks.
402 	 */
403 	sq_set_filter(sc);
404 
405 	/* Set up Seeq transmit command register */
406 	sq_seeq_write(sc, SEEQ_TXCMD,
407 	    TXCMD_IE_UFLOW |
408 	    TXCMD_IE_COLL |
409 	    TXCMD_IE_16COLL |
410 	    TXCMD_IE_GOOD);
411 
412 	/* Now write the receive command register. */
413 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
414 
415 	/*
416 	 * Set up HPC ethernet PIO and DMA configurations.
417 	 *
418 	 * The PROM appears to do most of this for the onboard HPC3, but
419 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
420 	 * chip is configured and assume that it's correct for both.
421 	 */
422 	if (sc->hpc_regs->revision == 3) {
423 		uint32_t dmareg, pioreg;
424 
425 		pioreg =
426 		    HPC3_ENETR_PIOCFG_P1(1) |
427 		    HPC3_ENETR_PIOCFG_P2(6) |
428 		    HPC3_ENETR_PIOCFG_P3(1);
429 
430 		dmareg =
431 		    HPC3_ENETR_DMACFG_D1(6) |
432 		    HPC3_ENETR_DMACFG_D2(2) |
433 		    HPC3_ENETR_DMACFG_D3(0) |
434 		    HPC3_ENETR_DMACFG_FIX_RXDC |
435 		    HPC3_ENETR_DMACFG_FIX_INTR |
436 		    HPC3_ENETR_DMACFG_FIX_EOP |
437 		    HPC3_ENETR_DMACFG_TIMEOUT;
438 
439 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
440 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
441 	}
442 
443 	/* Pass the start of the receive ring to the HPC */
444 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
445 
446 	/* And turn on the HPC ethernet receive channel */
447 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
448 	    sc->hpc_regs->enetr_ctl_active);
449 
450 	/*
451 	 * Turn off delayed receive interrupts on HPC1.
452 	 * (see Hollywood HPC Specification 2.1.4.3)
453 	 */
454 	if (sc->hpc_regs->revision != 3)
455 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
456 
457 	ifp->if_flags |= IFF_RUNNING;
458 
459 	return 0;
460 }
461 
462 static void
463 sq_set_filter(struct sq_softc *sc)
464 {
465 	struct ethercom *ec = &sc->sc_ethercom;
466 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
467 	struct ether_multi *enm;
468 	struct ether_multistep step;
469 
470 	/*
471 	 * Check for promiscuous mode.  Also implies
472 	 * all-multicast.
473 	 */
474 	if (ifp->if_flags & IFF_PROMISC) {
475 		sc->sc_rxcmd |= RXCMD_REC_ALL;
476 		ifp->if_flags |= IFF_ALLMULTI;
477 		return;
478 	}
479 
480 	/*
481 	 * The 8003 has no hash table.  If we have any multicast
482 	 * addresses on the list, enable reception of all multicast
483 	 * frames.
484 	 *
485 	 * XXX The 80c03 has a hash table.  We should use it.
486 	 */
487 
488 	ETHER_FIRST_MULTI(step, ec, enm);
489 
490 	if (enm == NULL) {
491 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
492 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
493 
494 		ifp->if_flags &= ~IFF_ALLMULTI;
495 		return;
496 	}
497 
498 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
499 	ifp->if_flags |= IFF_ALLMULTI;
500 }
501 
502 int
503 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
504 {
505 	int s, error = 0;
506 
507 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
508 
509 	s = splnet();
510 
511 	error = ether_ioctl(ifp, cmd, data);
512 	if (error == ENETRESET) {
513 		/*
514 		 * Multicast list has changed; set the hardware filter
515 		 * accordingly.
516 		 */
517 		if (ifp->if_flags & IFF_RUNNING)
518 			error = sq_init(ifp);
519 		else
520 			error = 0;
521 	}
522 
523 	splx(s);
524 	return error;
525 }
526 
527 void
528 sq_start(struct ifnet *ifp)
529 {
530 	struct sq_softc *sc = ifp->if_softc;
531 	uint32_t status;
532 	struct mbuf *m0, *m;
533 	bus_dmamap_t dmamap;
534 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
535 
536 	if ((ifp->if_flags & IFF_RUNNING) == 0)
537 		return;
538 
539 	/*
540 	 * Remember the previous number of free descriptors and
541 	 * the first descriptor we'll use.
542 	 */
543 	ofree = sc->sc_nfreetx;
544 	firsttx = sc->sc_nexttx;
545 
546 	/*
547 	 * Loop through the send queue, setting up transmit descriptors
548 	 * until we drain the queue, or use up all available transmit
549 	 * descriptors.
550 	 */
551 	while (sc->sc_nfreetx != 0) {
552 		/*
553 		 * Grab a packet off the queue.
554 		 */
555 		IFQ_POLL(&ifp->if_snd, m0);
556 		if (m0 == NULL)
557 			break;
558 		m = NULL;
559 
560 		dmamap = sc->sc_txmap[sc->sc_nexttx];
561 
562 		/*
563 		 * Load the DMA map.  If this fails, the packet either
564 		 * didn't fit in the allotted number of segments, or we were
565 		 * short on resources.  In this case, we'll copy and try
566 		 * again.
567 		 * Also copy it if we need to pad, so that we are sure there
568 		 * is room for the pad buffer.
569 		 * XXX the right way of doing this is to use a static buffer
570 		 * for padding and adding it to the transmit descriptor (see
571 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
572 		 * because we can't send packets with more than one fragment.
573 		 */
574 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
575 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
576 		    BUS_DMA_NOWAIT) != 0) {
577 			MGETHDR(m, M_DONTWAIT, MT_DATA);
578 			if (m == NULL) {
579 				printf("%s: unable to allocate Tx mbuf\n",
580 				    device_xname(sc->sc_dev));
581 				break;
582 			}
583 			if (m0->m_pkthdr.len > MHLEN) {
584 				MCLGET(m, M_DONTWAIT);
585 				if ((m->m_flags & M_EXT) == 0) {
586 					printf("%s: unable to allocate Tx "
587 					    "cluster\n",
588 					    device_xname(sc->sc_dev));
589 					m_freem(m);
590 					break;
591 				}
592 			}
593 
594 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
595 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
596 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
597 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
598 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
599 			} else
600 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
601 
602 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
603 			    m, BUS_DMA_NOWAIT)) != 0) {
604 				printf("%s: unable to load Tx buffer, "
605 				    "error = %d\n",
606 				    device_xname(sc->sc_dev), err);
607 				break;
608 			}
609 		}
610 
611 		/*
612 		 * Ensure we have enough descriptors free to describe
613 		 * the packet.
614 		 */
615 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
616 			/*
617 			 * Not enough free descriptors to transmit this
618 			 * packet.  We haven't committed to anything yet,
619 			 * so just unload the DMA map, put the packet
620 			 * back on the queue, and punt.
621 			 *
622 			 * XXX We could allocate an mbuf and copy, but
623 			 * XXX it is worth it?
624 			 */
625 			bus_dmamap_unload(sc->sc_dmat, dmamap);
626 			if (m != NULL)
627 				m_freem(m);
628 			break;
629 		}
630 
631 		IFQ_DEQUEUE(&ifp->if_snd, m0);
632 		/*
633 		 * Pass the packet to any BPF listeners.
634 		 */
635 		bpf_mtap(ifp, m0, BPF_D_OUT);
636 		if (m != NULL) {
637 			m_freem(m0);
638 			m0 = m;
639 		}
640 
641 		/*
642 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
643 		 */
644 
645 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
646 
647 		/* Sync the DMA map. */
648 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
649 		    BUS_DMASYNC_PREWRITE);
650 
651 		/*
652 		 * Initialize the transmit descriptors.
653 		 */
654 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
655 		     seg < dmamap->dm_nsegs;
656 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
657 			if (sc->hpc_regs->revision == 3) {
658 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
659 				    dmamap->dm_segs[seg].ds_addr;
660 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
661 				    dmamap->dm_segs[seg].ds_len;
662 			} else {
663 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
664 				    dmamap->dm_segs[seg].ds_addr;
665 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
666 				    dmamap->dm_segs[seg].ds_len;
667 			}
668 			sc->sc_txdesc[nexttx].hdd_descptr =
669 			    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
670 			lasttx = nexttx;
671 			totlen += dmamap->dm_segs[seg].ds_len;
672 		}
673 
674 		/* Last descriptor gets end-of-packet */
675 		KASSERT(lasttx != -1);
676 		if (sc->hpc_regs->revision == 3)
677 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
678 			    HPC3_HDD_CTL_EOPACKET;
679 		else
680 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
681 			    HPC1_HDD_CTL_EOPACKET;
682 
683 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
684 		    device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
685 
686 		if (ifp->if_flags & IFF_DEBUG) {
687 			printf("     transmit chain:\n");
688 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
689 				printf("     descriptor %d:\n", seg);
690 				printf("       hdd_bufptr:      0x%08x\n",
691 				    (sc->hpc_regs->revision == 3) ?
692 				    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
693 				    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
694 				printf("       hdd_ctl: 0x%08x\n",
695 				    (sc->hpc_regs->revision == 3) ?
696 				    sc->sc_txdesc[seg].hpc3_hdd_ctl:
697 				    sc->sc_txdesc[seg].hpc1_hdd_ctl);
698 				printf("       hdd_descptr:      0x%08x\n",
699 				    sc->sc_txdesc[seg].hdd_descptr);
700 
701 				if (seg == lasttx)
702 					break;
703 			}
704 		}
705 
706 		/* Sync the descriptors we're using. */
707 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
709 
710 		/* Store a pointer to the packet so we can free it later */
711 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
712 
713 		/* Advance the tx pointer. */
714 		sc->sc_nfreetx -= dmamap->dm_nsegs;
715 		sc->sc_nexttx = nexttx;
716 	}
717 
718 	if (sc->sc_nfreetx != ofree) {
719 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
720 		    device_xname(sc->sc_dev), lasttx - firsttx + 1,
721 		    firsttx, lasttx));
722 
723 		/*
724 		 * Cause a transmit interrupt to happen on the
725 		 * last packet we enqueued, mark it as the last
726 		 * descriptor.
727 		 *
728 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
729 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
730 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
731 		 */
732 		KASSERT(lasttx != -1);
733 		if (sc->hpc_regs->revision == 3) {
734 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
735 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
736 		} else {
737 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
738 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
739 			    HPC1_HDD_CTL_EOCHAIN;
740 		}
741 
742 		SQ_CDTXSYNC(sc, lasttx, 1,
743 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
744 
745 		/*
746 		 * There is a potential race condition here if the HPC
747 		 * DMA channel is active and we try and either update
748 		 * the 'next descriptor' pointer in the HPC PIO space
749 		 * or the 'next descriptor' pointer in a previous desc-
750 		 * riptor.
751 		 *
752 		 * To avoid this, if the channel is active, we rely on
753 		 * the transmit interrupt routine noticing that there
754 		 * are more packets to send and restarting the HPC DMA
755 		 * engine, rather than mucking with the DMA state here.
756 		 */
757 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
758 
759 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
760 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
761 
762 			/*
763 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
764 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
765 			 */
766 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
767 			    ~HPC3_HDD_CTL_EOCHAIN;
768 
769 			if (sc->hpc_regs->revision != 3)
770 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
771 				    &= ~HPC1_HDD_CTL_INTR;
772 
773 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
774 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
775 		} else if (sc->hpc_regs->revision == 3) {
776 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
777 
778 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
779 			    firsttx));
780 
781 			/* Kick DMA channel into life */
782 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
783 		} else {
784 			/*
785 			 * In the HPC1 case where transmit DMA is
786 			 * inactive, we can either kick off if
787 			 * the ring was previously empty, or call
788 			 * our transmit interrupt handler to
789 			 * figure out if the ring stopped short
790 			 * and restart at the right place.
791 			 */
792 			if (ofree == SQ_NTXDESC) {
793 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
794 
795 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
796 				    SQ_CDTXADDR(sc, firsttx));
797 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
798 				    SQ_CDTXADDR(sc, firsttx));
799 				sq_hpc_write(sc, HPC1_ENETX_CBP,
800 				    SQ_CDTXADDR(sc, firsttx));
801 
802 				/* Kick DMA channel into life */
803 				sq_hpc_write(sc, HPC1_ENETX_CTL,
804 				    HPC1_ENETX_CTL_ACTIVE);
805 			} else
806 				sq_txring_hpc1(sc);
807 		}
808 
809 		/* Set a watchdog timer in case the chip flakes out. */
810 		ifp->if_timer = 5;
811 	}
812 }
813 
814 void
815 sq_stop(struct ifnet *ifp, int disable)
816 {
817 	int i;
818 	struct sq_softc *sc = ifp->if_softc;
819 
820 	for (i = 0; i < SQ_NTXDESC; i++) {
821 		if (sc->sc_txmbuf[i] != NULL) {
822 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
823 			m_freem(sc->sc_txmbuf[i]);
824 			sc->sc_txmbuf[i] = NULL;
825 		}
826 	}
827 
828 	/* Clear Seeq transmit/receive command registers */
829 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
830 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
831 
832 	sq_reset(sc);
833 
834 	ifp->if_flags &= ~IFF_RUNNING;
835 	ifp->if_timer = 0;
836 }
837 
838 /* Device timeout/watchdog routine. */
839 void
840 sq_watchdog(struct ifnet *ifp)
841 {
842 	uint32_t status;
843 	struct sq_softc *sc = ifp->if_softc;
844 
845 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
846 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
847 	    "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
848 	    sc->sc_nexttx, sc->sc_nfreetx, status);
849 
850 	sq_trace_dump(sc);
851 
852 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
853 	sc->sq_trace_idx = 0;
854 
855 	if_statinc(ifp, if_oerrors);
856 
857 	sq_init(ifp);
858 }
859 
860 static void
861 sq_trace_dump(struct sq_softc *sc)
862 {
863 	int i;
864 	const char *act;
865 
866 	for (i = 0; i < sc->sq_trace_idx; i++) {
867 		switch (sc->sq_trace[i].action) {
868 		case SQ_RESET:		act = "SQ_RESET";		break;
869 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
870 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
871 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
872 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
873 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
874 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
875 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
876 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
877 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
878 		default:		act = "UNKNOWN";
879 		}
880 
881 		printf("%s: [%03d] action %-16s buf %03d free %03d "
882 		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
883 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
884 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
885 	}
886 }
887 
888 static int
889 sq_intr(void *arg)
890 {
891 	struct sq_softc *sc = arg;
892 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
893 	int handled = 0;
894 	uint32_t stat;
895 
896 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
897 
898 	if ((stat & 2) == 0) {
899 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
900 		    device_xname(sc->sc_dev)));
901 	} else
902 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
903 
904 	/*
905 	 * If the interface isn't running, the interrupt couldn't
906 	 * possibly have come from us.
907 	 */
908 	if ((ifp->if_flags & IFF_RUNNING) == 0)
909 		return 0;
910 
911 	sc->sq_intrcnt.ev_count++;
912 
913 	/* Always check for received packets */
914 	if (sq_rxintr(sc) != 0)
915 		handled++;
916 
917 	/* Only handle transmit interrupts if we actually sent something */
918 	if (sc->sc_nfreetx < SQ_NTXDESC) {
919 		sq_txintr(sc);
920 		handled++;
921 	}
922 
923 	if (handled)
924 		rnd_add_uint32(&sc->rnd_source, stat);
925 	return handled;
926 }
927 
928 static int
929 sq_rxintr(struct sq_softc *sc)
930 {
931 	int count = 0;
932 	struct mbuf* m;
933 	int i, framelen;
934 	uint8_t pktstat;
935 	uint32_t status;
936 	uint32_t ctl_reg;
937 	int new_end, orig_end;
938 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
939 
940 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
941 		SQ_CDRXSYNC(sc, i,
942 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
943 
944 		/*
945 		 * If this is a CPU-owned buffer, we're at the end of the list.
946 		 */
947 		if (sc->hpc_regs->revision == 3)
948 			ctl_reg =
949 			    sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
950 		else
951 			ctl_reg =
952 			    sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
953 
954 		if (ctl_reg) {
955 #if defined(SQ_DEBUG)
956 			uint32_t reg;
957 
958 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
959 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
960 			    device_xname(sc->sc_dev), i, reg));
961 #endif
962 			break;
963 		}
964 
965 		count++;
966 
967 		m = sc->sc_rxmbuf[i];
968 		framelen = m->m_ext.ext_size - 3;
969 		if (sc->hpc_regs->revision == 3)
970 		    framelen -=
971 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
972 		else
973 		    framelen -=
974 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
975 
976 		/* Now sync the actual packet data */
977 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
978 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
979 
980 		pktstat = *((uint8_t *)m->m_data + framelen + 2);
981 
982 		if ((pktstat & RXSTAT_GOOD) == 0) {
983 			if_statinc(ifp, if_ierrors);
984 
985 			if (pktstat & RXSTAT_OFLOW)
986 				printf("%s: receive FIFO overflow\n",
987 				    device_xname(sc->sc_dev));
988 
989 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
990 			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
991 			SQ_INIT_RXDESC(sc, i);
992 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
993 			    device_xname(sc->sc_dev), i));
994 			continue;
995 		}
996 
997 		if (sq_add_rxbuf(sc, i) != 0) {
998 			if_statinc(ifp, if_ierrors);
999 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1000 			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1001 			SQ_INIT_RXDESC(sc, i);
1002 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1003 			    "failed\n", device_xname(sc->sc_dev), i));
1004 			continue;
1005 		}
1006 
1007 
1008 		m->m_data += 2;
1009 		m_set_rcvif(m, ifp);
1010 		m->m_pkthdr.len = m->m_len = framelen;
1011 
1012 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1013 		    device_xname(sc->sc_dev), i, framelen));
1014 
1015 		if_percpuq_enqueue(ifp->if_percpuq, m);
1016 	}
1017 
1018 
1019 	/* If anything happened, move ring start/end pointers to new spot */
1020 	if (i != sc->sc_nextrx) {
1021 		/*
1022 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1023 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1024 		 */
1025 
1026 		new_end = SQ_PREVRX(i);
1027 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1028 		SQ_CDRXSYNC(sc, new_end,
1029 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1030 
1031 		orig_end = SQ_PREVRX(sc->sc_nextrx);
1032 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1033 		SQ_CDRXSYNC(sc, orig_end,
1034 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1035 
1036 		sc->sc_nextrx = i;
1037 	}
1038 
1039 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1040 
1041 	/* If receive channel is stopped, restart it... */
1042 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1043 		/* Pass the start of the receive ring to the HPC */
1044 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1045 		    SQ_CDRXADDR(sc, sc->sc_nextrx));
1046 
1047 		/* And turn on the HPC ethernet receive channel */
1048 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1049 		    sc->hpc_regs->enetr_ctl_active);
1050 	}
1051 
1052 	return count;
1053 }
1054 
1055 static int
1056 sq_txintr(struct sq_softc *sc)
1057 {
1058 	int shift = 0;
1059 	uint32_t status, tmp;
1060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1061 
1062 	if (sc->hpc_regs->revision != 3)
1063 		shift = 16;
1064 
1065 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1066 
1067 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1068 
1069 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1070 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1071 	if ((status & tmp) == 0) {
1072 		if (status & TXSTAT_COLL)
1073 			if_statinc_ref(ifp, nsr, if_collisions);
1074 
1075 		if (status & TXSTAT_UFLOW) {
1076 			printf("%s: transmit underflow\n",
1077 			    device_xname(sc->sc_dev));
1078 			if_statinc_ref(ifp, nsr, if_oerrors);
1079 		}
1080 
1081 		if (status & TXSTAT_16COLL) {
1082 			printf("%s: max collisions reached\n",
1083 			    device_xname(sc->sc_dev));
1084 			if_statinc_ref(ifp, nsr, if_oerrors);
1085 			if_statadd_ref(ifp, nsr, if_collisions, 16);
1086 		}
1087 	}
1088 	IF_STAT_PUTREF(ifp);
1089 
1090 	/* prevtx now points to next xmit packet not yet finished */
1091 	if (sc->hpc_regs->revision == 3)
1092 		sq_txring_hpc3(sc);
1093 	else
1094 		sq_txring_hpc1(sc);
1095 
1096 	/* If all packets have left the coop, cancel watchdog */
1097 	if (sc->sc_nfreetx == SQ_NTXDESC)
1098 		ifp->if_timer = 0;
1099 
1100 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1101 	if_schedule_deferred_start(ifp);
1102 
1103 	return 1;
1104 }
1105 
1106 /*
1107  * Reclaim used transmit descriptors and restart the transmit DMA
1108  * engine if necessary.
1109  */
1110 static void
1111 sq_txring_hpc1(struct sq_softc *sc)
1112 {
1113 	/*
1114 	 * HPC1 doesn't tag transmitted descriptors, however,
1115 	 * the NDBP register points to the next descriptor that
1116 	 * has not yet been processed. If DMA is not in progress,
1117 	 * we can safely reclaim all descriptors up to NDBP, and,
1118 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1119 	 * is active, we can only safely reclaim up to CBP.
1120 	 *
1121 	 * For now, we'll only reclaim on inactive DMA and assume
1122 	 * that a sufficiently large ring keeps us out of trouble.
1123 	 */
1124 	uint32_t reclaimto, status;
1125 	int reclaimall, i = sc->sc_prevtx;
1126 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1127 
1128 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1129 	if (status & HPC1_ENETX_CTL_ACTIVE) {
1130 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1131 		return;
1132 	} else
1133 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1134 
1135 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1136 		reclaimall = 1;
1137 	else
1138 		reclaimall = 0;
1139 
1140 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1141 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1142 			break;
1143 
1144 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1145 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1146 
1147 		/* Sync the packet data, unload DMA map, free mbuf */
1148 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1149 		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1150 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1151 		m_freem(sc->sc_txmbuf[i]);
1152 		sc->sc_txmbuf[i] = NULL;
1153 
1154 		if_statinc(ifp, if_opackets);
1155 		sc->sc_nfreetx++;
1156 
1157 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1158 
1159 		i = SQ_NEXTTX(i);
1160 	}
1161 
1162 	if (sc->sc_nfreetx < SQ_NTXDESC) {
1163 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1164 
1165 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1166 
1167 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1168 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1169 
1170 		/* Kick DMA channel into life */
1171 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1172 
1173 		/*
1174 		 * Set a watchdog timer in case the chip
1175 		 * flakes out.
1176 		 */
1177 		ifp->if_timer = 5;
1178 	}
1179 
1180 	sc->sc_prevtx = i;
1181 }
1182 
1183 /*
1184  * Reclaim used transmit descriptors and restart the transmit DMA
1185  * engine if necessary.
1186  */
1187 static void
1188 sq_txring_hpc3(struct sq_softc *sc)
1189 {
1190 	/*
1191 	 * HPC3 tags descriptors with a bit once they've been
1192 	 * transmitted. We need only free each XMITDONE'd
1193 	 * descriptor, and restart the DMA engine if any
1194 	 * descriptors are left over.
1195 	 */
1196 	int i;
1197 	uint32_t status = 0;
1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 
1200 	i = sc->sc_prevtx;
1201 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1202 		/*
1203 		 * Check status first so we don't end up with a case of
1204 		 * the buffer not being finished while the DMA channel
1205 		 * has gone idle.
1206 		 */
1207 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1208 
1209 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1210 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1211 
1212 		/* Check for used descriptor and restart DMA chain if needed */
1213 		if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1214 		    HPC3_HDD_CTL_XMITDONE) == 0) {
1215 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1216 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1217 
1218 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1219 				    SQ_CDTXADDR(sc, i));
1220 
1221 				/* Kick DMA channel into life */
1222 				sq_hpc_write(sc, HPC3_ENETX_CTL,
1223 				    HPC3_ENETX_CTL_ACTIVE);
1224 
1225 				/*
1226 				 * Set a watchdog timer in case the chip
1227 				 * flakes out.
1228 				 */
1229 				ifp->if_timer = 5;
1230 			} else
1231 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1232 			break;
1233 		}
1234 
1235 		/* Sync the packet data, unload DMA map, free mbuf */
1236 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1237 		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1238 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1239 		m_freem(sc->sc_txmbuf[i]);
1240 		sc->sc_txmbuf[i] = NULL;
1241 
1242 		if_statinc(ifp, if_opackets);
1243 		sc->sc_nfreetx++;
1244 
1245 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1246 		i = SQ_NEXTTX(i);
1247 	}
1248 
1249 	sc->sc_prevtx = i;
1250 }
1251 
1252 void
1253 sq_reset(struct sq_softc *sc)
1254 {
1255 
1256 	/* Stop HPC dma channels */
1257 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1258 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1259 
1260 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1261 	delay(20);
1262 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1263 }
1264 
1265 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1266 int
1267 sq_add_rxbuf(struct sq_softc *sc, int idx)
1268 {
1269 	int err;
1270 	struct mbuf *m;
1271 
1272 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1273 	if (m == NULL)
1274 		return ENOBUFS;
1275 
1276 	MCLGET(m, M_DONTWAIT);
1277 	if ((m->m_flags & M_EXT) == 0) {
1278 		m_freem(m);
1279 		return ENOBUFS;
1280 	}
1281 
1282 	if (sc->sc_rxmbuf[idx] != NULL)
1283 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1284 
1285 	sc->sc_rxmbuf[idx] = m;
1286 
1287 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1288 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1289 		printf("%s: can't load rx DMA map %d, error = %d\n",
1290 		    device_xname(sc->sc_dev), idx, err);
1291 		panic("sq_add_rxbuf");	/* XXX */
1292 	}
1293 
1294 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1295 	    0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1296 
1297 	SQ_INIT_RXDESC(sc, idx);
1298 
1299 	return 0;
1300 }
1301 
1302 void
1303 sq_dump_buffer(paddr_t addr, psize_t len)
1304 {
1305 	u_int i;
1306 	uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1307 
1308 	if (len == 0)
1309 		return;
1310 
1311 	printf("%p: ", physaddr);
1312 
1313 	for (i = 0; i < len; i++) {
1314 		printf("%02x ", *(physaddr + i) & 0xff);
1315 		if ((i % 16) == 15 && i != len - 1)
1316 		    printf("\n%p: ", physaddr + i);
1317 	}
1318 
1319 	printf("\n");
1320 }
1321