xref: /netbsd-src/sys/arch/sgimips/hpc/if_sq.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_sq.c,v 1.35 2010/01/19 22:06:22 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Rafal K. Boni
5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * Portions of this code are derived from software contributed to The
9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.35 2010/01/19 22:06:22 pooka Exp $");
37 
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 
51 #include <uvm/uvm_extern.h>
52 
53 #include <machine/endian.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #include <net/bpf.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 #include <machine/sysconf.h>
65 
66 #include <dev/ic/seeq8003reg.h>
67 
68 #include <sgimips/hpc/sqvar.h>
69 #include <sgimips/hpc/hpcvar.h>
70 #include <sgimips/hpc/hpcreg.h>
71 
72 #include <dev/arcbios/arcbios.h>
73 #include <dev/arcbios/arcbiosvar.h>
74 
75 #define static
76 
77 /*
78  * Short TODO list:
79  *	(1) Do counters for bad-RX packets.
80  *	(2) Allow multi-segment transmits, instead of copying to a single,
81  *	    contiguous mbuf.
82  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
83  *	    seeq interrupts after sq_stop().
84  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
85  *	    mode.
86  *	(5) Should the driver filter out its own transmissions in non-EDLC
87  *	    mode?
88  *	(6) Multicast support -- multicast filter, address management, ...
89  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
90  *	    to figure out if RB0 is read-only as stated in one spot in the
91  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
92  *	    the correct thing?
93  */
94 
95 #if defined(SQ_DEBUG)
96  int sq_debug = 0;
97  #define SQ_DPRINTF(x) if (sq_debug) printf x
98 #else
99  #define SQ_DPRINTF(x)
100 #endif
101 
102 static int	sq_match(struct device *, struct cfdata *, void *);
103 static void	sq_attach(struct device *, struct device *, void *);
104 static int	sq_init(struct ifnet *);
105 static void	sq_start(struct ifnet *);
106 static void	sq_stop(struct ifnet *, int);
107 static void	sq_watchdog(struct ifnet *);
108 static int	sq_ioctl(struct ifnet *, u_long, void *);
109 
110 static void	sq_set_filter(struct sq_softc *);
111 static int	sq_intr(void *);
112 static int	sq_rxintr(struct sq_softc *);
113 static int	sq_txintr(struct sq_softc *);
114 static void	sq_txring_hpc1(struct sq_softc *);
115 static void	sq_txring_hpc3(struct sq_softc *);
116 static void	sq_reset(struct sq_softc *);
117 static int 	sq_add_rxbuf(struct sq_softc *, int);
118 static void 	sq_dump_buffer(paddr_t addr, psize_t len);
119 static void	sq_trace_dump(struct sq_softc *);
120 
121 static void	enaddr_aton(const char*, u_int8_t*);
122 
123 CFATTACH_DECL(sq, sizeof(struct sq_softc),
124     sq_match, sq_attach, NULL, NULL);
125 
126 #define        ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
127 
128 #define sq_seeq_read(sc, off) \
129 	bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
130 #define sq_seeq_write(sc, off, val) \
131 	bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
132 
133 #define sq_hpc_read(sc, off) \
134 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
135 #define sq_hpc_write(sc, off, val) \
136 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
137 
138 /* MAC address offset for non-onboard implementations */
139 #define SQ_HPC_EEPROM_ENADDR	250
140 
141 #define SGI_OUI_0		0x08
142 #define SGI_OUI_1		0x00
143 #define SGI_OUI_2		0x69
144 
145 static int
146 sq_match(struct device *parent, struct cfdata *cf, void *aux)
147 {
148 	struct hpc_attach_args *ha = aux;
149 
150 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
151 		vaddr_t reset, txstat;
152 
153 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
155 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
156 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
157 
158 		if (platform.badaddr((void *)reset, sizeof(reset)))
159 			return (0);
160 
161 		*(volatile uint32_t *)reset = 0x1;
162 		delay(20);
163 		*(volatile uint32_t *)reset = 0x0;
164 
165 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
166 			return (0);
167 
168 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
169 			return (1);
170 	}
171 
172 	return (0);
173 }
174 
175 static void
176 sq_attach(struct device *parent, struct device *self, void *aux)
177 {
178 	int i, err;
179 	const char* macaddr;
180 	struct sq_softc *sc = (void *)self;
181 	struct hpc_attach_args *haa = aux;
182 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
183 
184 	sc->sc_hpct = haa->ha_st;
185 	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
186 
187 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
188 				       haa->ha_dmaoff,
189 				       sc->hpc_regs->enet_regs_size,
190 				       &sc->sc_hpch)) != 0) {
191 		printf(": unable to map HPC DMA registers, error = %d\n", err);
192 		goto fail_0;
193 	}
194 
195 	sc->sc_regt = haa->ha_st;
196 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
197 				       haa->ha_devoff,
198 				       sc->hpc_regs->enet_devregs_size,
199 				       &sc->sc_regh)) != 0) {
200 		printf(": unable to map Seeq registers, error = %d\n", err);
201 		goto fail_0;
202 	}
203 
204 	sc->sc_dmat = haa->ha_dmat;
205 
206 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
207 				    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
208 				    1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
209 		printf(": unable to allocate control data, error = %d\n", err);
210 		goto fail_0;
211 	}
212 
213 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
214 				  sizeof(struct sq_control),
215 				  (void **)&sc->sc_control,
216 				  BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
217 		printf(": unable to map control data, error = %d\n", err);
218 		goto fail_1;
219 	}
220 
221 	if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
222 				     1, sizeof(struct sq_control), PAGE_SIZE,
223 				     BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
224 		printf(": unable to create DMA map for control data, error "
225 			"= %d\n", err);
226 		goto fail_2;
227 	}
228 
229 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
230 				   sizeof(struct sq_control),
231 				   NULL, BUS_DMA_NOWAIT)) != 0) {
232 		printf(": unable to load DMA map for control data, error "
233 			"= %d\n", err);
234 		goto fail_3;
235 	}
236 
237 	memset(sc->sc_control, 0, sizeof(struct sq_control));
238 
239 	/* Create transmit buffer DMA maps */
240 	for (i = 0; i < SQ_NTXDESC; i++) {
241 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
242 					 0, BUS_DMA_NOWAIT,
243 					 &sc->sc_txmap[i])) != 0) {
244 		    printf(": unable to create tx DMA map %d, error = %d\n",
245 			   i, err);
246 		    goto fail_4;
247 	    }
248 	}
249 
250 	/* Create receive buffer DMA maps */
251 	for (i = 0; i < SQ_NRXDESC; i++) {
252 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
253 					 0, BUS_DMA_NOWAIT,
254 					 &sc->sc_rxmap[i])) != 0) {
255 		    printf(": unable to create rx DMA map %d, error = %d\n",
256 			   i, err);
257 		    goto fail_5;
258 	    }
259 	}
260 
261 	/* Pre-allocate the receive buffers.  */
262 	for (i = 0; i < SQ_NRXDESC; i++) {
263 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
264 			printf(": unable to allocate or map rx buffer %d\n,"
265 			       " error = %d\n", i, err);
266 			goto fail_6;
267 		}
268 	}
269 
270 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
271 	    ETHER_ADDR_LEN);
272 
273 	/*
274 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
275 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
276 	 * but rather the DS1386 RTC's battery-backed ram is used.
277 	 */
278 	if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
279 	    sc->sc_enaddr[2] != SGI_OUI_2) {
280 		macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
281 		if (macaddr == NULL) {
282 			printf(": unable to get MAC address!\n");
283 			goto fail_6;
284 		}
285 		enaddr_aton(macaddr, sc->sc_enaddr);
286 	}
287 
288 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
289 					      self->dv_xname, "intr");
290 
291 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
292 		printf(": unable to establish interrupt!\n");
293 		goto fail_6;
294 	}
295 
296 	/* Reset the chip to a known state. */
297 	sq_reset(sc);
298 
299 	/*
300 	 * Determine if we're an 8003 or 80c03 by setting the first
301 	 * MAC address register to non-zero, and then reading it back.
302 	 * If it's zero, we have an 80c03, because we will have read
303 	 * the TxCollLSB register.
304 	 */
305 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
306 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
307 		sc->sc_type = SQ_TYPE_80C03;
308 	else
309 		sc->sc_type = SQ_TYPE_8003;
310 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
311 
312 	printf(": SGI Seeq %s\n",
313 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
314 
315 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
316 					   ether_sprintf(sc->sc_enaddr));
317 
318 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
319 	ifp->if_softc = sc;
320 	ifp->if_mtu = ETHERMTU;
321 	ifp->if_init = sq_init;
322 	ifp->if_stop = sq_stop;
323 	ifp->if_start = sq_start;
324 	ifp->if_ioctl = sq_ioctl;
325 	ifp->if_watchdog = sq_watchdog;
326 	ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
327 	IFQ_SET_READY(&ifp->if_snd);
328 
329 	if_attach(ifp);
330 	ether_ifattach(ifp, sc->sc_enaddr);
331 
332 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
333 	/* Done! */
334 	return;
335 
336 	/*
337 	 * Free any resources we've allocated during the failed attach
338 	 * attempt.  Do this in reverse order and fall through.
339 	 */
340 fail_6:
341 	for (i = 0; i < SQ_NRXDESC; i++) {
342 		if (sc->sc_rxmbuf[i] != NULL) {
343 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
344 			m_freem(sc->sc_rxmbuf[i]);
345 		}
346 	}
347 fail_5:
348 	for (i = 0; i < SQ_NRXDESC; i++) {
349 	    if (sc->sc_rxmap[i] != NULL)
350 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
351 	}
352 fail_4:
353 	for (i = 0; i < SQ_NTXDESC; i++) {
354 	    if (sc->sc_txmap[i] !=  NULL)
355 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
356 	}
357 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
358 fail_3:
359 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
360 fail_2:
361 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
362 				      sizeof(struct sq_control));
363 fail_1:
364 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
365 fail_0:
366 	return;
367 }
368 
369 /* Set up data to get the interface up and running. */
370 int
371 sq_init(struct ifnet *ifp)
372 {
373 	int i;
374 	struct sq_softc *sc = ifp->if_softc;
375 
376 	/* Cancel any in-progress I/O */
377 	sq_stop(ifp, 0);
378 
379 	sc->sc_nextrx = 0;
380 
381 	sc->sc_nfreetx = SQ_NTXDESC;
382 	sc->sc_nexttx = sc->sc_prevtx = 0;
383 
384 	SQ_TRACE(SQ_RESET, sc, 0, 0);
385 
386 	/* Set into 8003 mode, bank 0 to program ethernet address */
387 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
388 
389 	/* Now write the address */
390 	for (i = 0; i < ETHER_ADDR_LEN; i++)
391 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
392 
393 	sc->sc_rxcmd = RXCMD_IE_CRC |
394 		       RXCMD_IE_DRIB |
395 		       RXCMD_IE_SHORT |
396 		       RXCMD_IE_END |
397 		       RXCMD_IE_GOOD;
398 
399 	/*
400 	 * Set the receive filter -- this will add some bits to the
401 	 * prototype RXCMD register.  Do this before setting the
402 	 * transmit config register, since we might need to switch
403 	 * banks.
404 	 */
405 	sq_set_filter(sc);
406 
407 	/* Set up Seeq transmit command register */
408 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
409 				      TXCMD_IE_COLL |
410 				      TXCMD_IE_16COLL |
411 				      TXCMD_IE_GOOD);
412 
413 	/* Now write the receive command register. */
414 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
415 
416 	/*
417 	 * Set up HPC ethernet PIO and DMA configurations.
418 	 *
419 	 * The PROM appears to do most of this for the onboard HPC3, but
420 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
421 	 * chip is configured and assume that it's correct for both.
422 	 */
423 	if (sc->hpc_regs->revision == 3) {
424 		u_int32_t dmareg, pioreg;
425 
426 		pioreg = HPC3_ENETR_PIOCFG_P1(1) |
427 			 HPC3_ENETR_PIOCFG_P2(6) |
428 			 HPC3_ENETR_PIOCFG_P3(1);
429 
430 		dmareg = HPC3_ENETR_DMACFG_D1(6) |
431 			 HPC3_ENETR_DMACFG_D2(2) |
432 			 HPC3_ENETR_DMACFG_D3(0) |
433 			 HPC3_ENETR_DMACFG_FIX_RXDC |
434 			 HPC3_ENETR_DMACFG_FIX_INTR |
435 			 HPC3_ENETR_DMACFG_FIX_EOP |
436 			 HPC3_ENETR_DMACFG_TIMEOUT;
437 
438 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
439 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
440 	}
441 
442 	/* Pass the start of the receive ring to the HPC */
443 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
444 
445 	/* And turn on the HPC ethernet receive channel */
446 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
447 	    sc->hpc_regs->enetr_ctl_active);
448 
449 	/*
450 	 * Turn off delayed receive interrupts on HPC1.
451 	 * (see Hollywood HPC Specification 2.1.4.3)
452 	 */
453 	if (sc->hpc_regs->revision != 3)
454 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
455 
456 	ifp->if_flags |= IFF_RUNNING;
457 	ifp->if_flags &= ~IFF_OACTIVE;
458 
459 	return 0;
460 }
461 
462 static void
463 sq_set_filter(struct sq_softc *sc)
464 {
465 	struct ethercom *ec = &sc->sc_ethercom;
466 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
467 	struct ether_multi *enm;
468 	struct ether_multistep step;
469 
470 	/*
471 	 * Check for promiscuous mode.  Also implies
472 	 * all-multicast.
473 	 */
474 	if (ifp->if_flags & IFF_PROMISC) {
475 		sc->sc_rxcmd |= RXCMD_REC_ALL;
476 		ifp->if_flags |= IFF_ALLMULTI;
477 		return;
478 	}
479 
480 	/*
481 	 * The 8003 has no hash table.  If we have any multicast
482 	 * addresses on the list, enable reception of all multicast
483 	 * frames.
484 	 *
485 	 * XXX The 80c03 has a hash table.  We should use it.
486 	 */
487 
488 	ETHER_FIRST_MULTI(step, ec, enm);
489 
490 	if (enm == NULL) {
491 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
492 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
493 
494 		ifp->if_flags &= ~IFF_ALLMULTI;
495 		return;
496 	}
497 
498 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
499 	ifp->if_flags |= IFF_ALLMULTI;
500 }
501 
502 int
503 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
504 {
505 	int s, error = 0;
506 
507 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
508 
509 	s = splnet();
510 
511 	error = ether_ioctl(ifp, cmd, data);
512 	if (error == ENETRESET) {
513 		/*
514 		 * Multicast list has changed; set the hardware filter
515 		 * accordingly.
516 		 */
517 		if (ifp->if_flags & IFF_RUNNING)
518 			error = sq_init(ifp);
519 		else
520 			error = 0;
521 	}
522 
523 	splx(s);
524 	return (error);
525 }
526 
527 void
528 sq_start(struct ifnet *ifp)
529 {
530 	struct sq_softc *sc = ifp->if_softc;
531 	u_int32_t status;
532 	struct mbuf *m0, *m;
533 	bus_dmamap_t dmamap;
534 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
535 
536 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
537 		return;
538 
539 	/*
540 	 * Remember the previous number of free descriptors and
541 	 * the first descriptor we'll use.
542 	 */
543 	ofree = sc->sc_nfreetx;
544 	firsttx = sc->sc_nexttx;
545 
546 	/*
547 	 * Loop through the send queue, setting up transmit descriptors
548 	 * until we drain the queue, or use up all available transmit
549 	 * descriptors.
550 	 */
551 	while (sc->sc_nfreetx != 0) {
552 		/*
553 		 * Grab a packet off the queue.
554 		 */
555 		IFQ_POLL(&ifp->if_snd, m0);
556 		if (m0 == NULL)
557 			break;
558 		m = NULL;
559 
560 		dmamap = sc->sc_txmap[sc->sc_nexttx];
561 
562 		/*
563 		 * Load the DMA map.  If this fails, the packet either
564 		 * didn't fit in the alloted number of segments, or we were
565 		 * short on resources.  In this case, we'll copy and try
566 		 * again.
567 		 * Also copy it if we need to pad, so that we are sure there
568 		 * is room for the pad buffer.
569 		 * XXX the right way of doing this is to use a static buffer
570 		 * for padding and adding it to the transmit descriptor (see
571 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
572 		 * because we can't send packets with more than one fragment.
573 		 */
574 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
575 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
576 						      BUS_DMA_NOWAIT) != 0) {
577 			MGETHDR(m, M_DONTWAIT, MT_DATA);
578 			if (m == NULL) {
579 				printf("%s: unable to allocate Tx mbuf\n",
580 				    sc->sc_dev.dv_xname);
581 				break;
582 			}
583 			if (m0->m_pkthdr.len > MHLEN) {
584 				MCLGET(m, M_DONTWAIT);
585 				if ((m->m_flags & M_EXT) == 0) {
586 					printf("%s: unable to allocate Tx "
587 					    "cluster\n", sc->sc_dev.dv_xname);
588 					m_freem(m);
589 					break;
590 				}
591 			}
592 
593 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
594 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
595 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
596 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
597 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
598 			} else
599 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
600 
601 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
602 						m, BUS_DMA_NOWAIT)) != 0) {
603 				printf("%s: unable to load Tx buffer, "
604 				    "error = %d\n", sc->sc_dev.dv_xname, err);
605 				break;
606 			}
607 		}
608 
609 		/*
610 		 * Ensure we have enough descriptors free to describe
611 		 * the packet.
612 		 */
613 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
614 			/*
615 			 * Not enough free descriptors to transmit this
616 			 * packet.  We haven't committed to anything yet,
617 			 * so just unload the DMA map, put the packet
618 			 * back on the queue, and punt.  Notify the upper
619 			 * layer that there are no more slots left.
620 			 *
621 			 * XXX We could allocate an mbuf and copy, but
622 			 * XXX it is worth it?
623 			 */
624 			ifp->if_flags |= IFF_OACTIVE;
625 			bus_dmamap_unload(sc->sc_dmat, dmamap);
626 			if (m != NULL)
627 				m_freem(m);
628 			break;
629 		}
630 
631 		IFQ_DEQUEUE(&ifp->if_snd, m0);
632 		/*
633 		 * Pass the packet to any BPF listeners.
634 		 */
635 		if (ifp->if_bpf)
636 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
637 		if (m != NULL) {
638 			m_freem(m0);
639 			m0 = m;
640 		}
641 
642 		/*
643 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
644 		 */
645 
646 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
647 
648 		/* Sync the DMA map. */
649 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
650 		    BUS_DMASYNC_PREWRITE);
651 
652 		/*
653 		 * Initialize the transmit descriptors.
654 		 */
655 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
656 		     seg < dmamap->dm_nsegs;
657 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
658 			if (sc->hpc_regs->revision == 3) {
659 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
660 					    dmamap->dm_segs[seg].ds_addr;
661 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
662 					    dmamap->dm_segs[seg].ds_len;
663 			} else {
664 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
665 					    dmamap->dm_segs[seg].ds_addr;
666 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
667 					    dmamap->dm_segs[seg].ds_len;
668 			}
669 			sc->sc_txdesc[nexttx].hdd_descptr=
670 					    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
671 			lasttx = nexttx;
672 			totlen += dmamap->dm_segs[seg].ds_len;
673 		}
674 
675 		/* Last descriptor gets end-of-packet */
676 		KASSERT(lasttx != -1);
677 		if (sc->hpc_regs->revision == 3)
678 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
679 			    HPC3_HDD_CTL_EOPACKET;
680 		else
681 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
682 			    HPC1_HDD_CTL_EOPACKET;
683 
684 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
685 						       sc->sc_nexttx, lasttx,
686 						       totlen));
687 
688 		if (ifp->if_flags & IFF_DEBUG) {
689 			printf("     transmit chain:\n");
690 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
691 				printf("     descriptor %d:\n", seg);
692 				printf("       hdd_bufptr:      0x%08x\n",
693 					(sc->hpc_regs->revision == 3) ?
694 					    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
695 					    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
696 				printf("       hdd_ctl: 0x%08x\n",
697 					(sc->hpc_regs->revision == 3) ?
698 					    sc->sc_txdesc[seg].hpc3_hdd_ctl:
699 					    sc->sc_txdesc[seg].hpc1_hdd_ctl);
700 				printf("       hdd_descptr:      0x%08x\n",
701 					sc->sc_txdesc[seg].hdd_descptr);
702 
703 				if (seg == lasttx)
704 					break;
705 			}
706 		}
707 
708 		/* Sync the descriptors we're using. */
709 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
710 				BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
711 
712 		/* Store a pointer to the packet so we can free it later */
713 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
714 
715 		/* Advance the tx pointer. */
716 		sc->sc_nfreetx -= dmamap->dm_nsegs;
717 		sc->sc_nexttx = nexttx;
718 	}
719 
720 	/* All transmit descriptors used up, let upper layers know */
721 	if (sc->sc_nfreetx == 0)
722 		ifp->if_flags |= IFF_OACTIVE;
723 
724 	if (sc->sc_nfreetx != ofree) {
725 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
726 			    sc->sc_dev.dv_xname, lasttx - firsttx + 1,
727 			    firsttx, lasttx));
728 
729 		/*
730 		 * Cause a transmit interrupt to happen on the
731 		 * last packet we enqueued, mark it as the last
732 		 * descriptor.
733 		 *
734 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
735 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
736 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
737 		 */
738 		KASSERT(lasttx != -1);
739 		if (sc->hpc_regs->revision == 3) {
740 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
741 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
742 		} else {
743 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
744 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
745 			    HPC1_HDD_CTL_EOCHAIN;
746 		}
747 
748 		SQ_CDTXSYNC(sc, lasttx, 1,
749 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
750 
751 		/*
752 		 * There is a potential race condition here if the HPC
753 		 * DMA channel is active and we try and either update
754 		 * the 'next descriptor' pointer in the HPC PIO space
755 		 * or the 'next descriptor' pointer in a previous desc-
756 		 * riptor.
757 		 *
758 		 * To avoid this, if the channel is active, we rely on
759 		 * the transmit interrupt routine noticing that there
760 		 * are more packets to send and restarting the HPC DMA
761 		 * engine, rather than mucking with the DMA state here.
762 		 */
763 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
764 
765 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
766 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
767 
768 			/*
769 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
770 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
771 			 */
772 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
773 			    ~HPC3_HDD_CTL_EOCHAIN;
774 
775 			if (sc->hpc_regs->revision != 3)
776 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
777 				    &= ~HPC1_HDD_CTL_INTR;
778 
779 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
780 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
781 		} else if (sc->hpc_regs->revision == 3) {
782 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
783 
784 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
785 			    firsttx));
786 
787 			/* Kick DMA channel into life */
788 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
789 		} else {
790 			/*
791 			 * In the HPC1 case where transmit DMA is
792 			 * inactive, we can either kick off if
793 			 * the ring was previously empty, or call
794 			 * our transmit interrupt handler to
795 			 * figure out if the ring stopped short
796 			 * and restart at the right place.
797 			 */
798 			if (ofree == SQ_NTXDESC) {
799 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
800 
801 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
802 				    SQ_CDTXADDR(sc, firsttx));
803 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
804 				    SQ_CDTXADDR(sc, firsttx));
805 				sq_hpc_write(sc, HPC1_ENETX_CBP,
806 				    SQ_CDTXADDR(sc, firsttx));
807 
808 				/* Kick DMA channel into life */
809 				sq_hpc_write(sc, HPC1_ENETX_CTL,
810 				    HPC1_ENETX_CTL_ACTIVE);
811 			} else
812 				sq_txring_hpc1(sc);
813 		}
814 
815 		/* Set a watchdog timer in case the chip flakes out. */
816 		ifp->if_timer = 5;
817 	}
818 }
819 
820 void
821 sq_stop(struct ifnet *ifp, int disable)
822 {
823 	int i;
824 	struct sq_softc *sc = ifp->if_softc;
825 
826 	for (i =0; i < SQ_NTXDESC; i++) {
827 		if (sc->sc_txmbuf[i] != NULL) {
828 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
829 			m_freem(sc->sc_txmbuf[i]);
830 			sc->sc_txmbuf[i] = NULL;
831 		}
832 	}
833 
834 	/* Clear Seeq transmit/receive command registers */
835 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
836 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
837 
838 	sq_reset(sc);
839 
840 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
841 	ifp->if_timer = 0;
842 }
843 
844 /* Device timeout/watchdog routine. */
845 void
846 sq_watchdog(struct ifnet *ifp)
847 {
848 	u_int32_t status;
849 	struct sq_softc *sc = ifp->if_softc;
850 
851 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
852 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
853 		     "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
854 				       sc->sc_nexttx, sc->sc_nfreetx, status);
855 
856 	sq_trace_dump(sc);
857 
858 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
859 	sc->sq_trace_idx = 0;
860 
861 	++ifp->if_oerrors;
862 
863 	sq_init(ifp);
864 }
865 
866 static void
867 sq_trace_dump(struct sq_softc *sc)
868 {
869 	int i;
870 	const char *act;
871 
872 	for (i = 0; i < sc->sq_trace_idx; i++) {
873 		switch (sc->sq_trace[i].action) {
874 		case SQ_RESET:		act = "SQ_RESET";		break;
875 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
876 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
877 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
878 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
879 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
880 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
881 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
882 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
883 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
884 		default:		act = "UNKNOWN";
885 		}
886 
887 		printf("%s: [%03d] action %-16s buf %03d free %03d "
888 		    "status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
889 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
890 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
891 	}
892 }
893 
894 static int
895 sq_intr(void *arg)
896 {
897 	struct sq_softc *sc = arg;
898 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
899 	int handled = 0;
900 	u_int32_t stat;
901 
902 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
903 
904 	if ((stat & 2) == 0)
905 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
906 		    sc->sc_dev.dv_xname));
907 	else
908 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
909 
910 	/*
911 	 * If the interface isn't running, the interrupt couldn't
912 	 * possibly have come from us.
913 	 */
914 	if ((ifp->if_flags & IFF_RUNNING) == 0)
915 		return 0;
916 
917 	sc->sq_intrcnt.ev_count++;
918 
919 	/* Always check for received packets */
920 	if (sq_rxintr(sc) != 0)
921 		handled++;
922 
923 	/* Only handle transmit interrupts if we actually sent something */
924 	if (sc->sc_nfreetx < SQ_NTXDESC) {
925 		sq_txintr(sc);
926 		handled++;
927 	}
928 
929 #if NRND > 0
930 	if (handled)
931 		rnd_add_uint32(&sc->rnd_source, stat);
932 #endif
933 	return (handled);
934 }
935 
936 static int
937 sq_rxintr(struct sq_softc *sc)
938 {
939 	int count = 0;
940 	struct mbuf* m;
941 	int i, framelen;
942 	u_int8_t pktstat;
943 	u_int32_t status;
944 	u_int32_t ctl_reg;
945 	int new_end, orig_end;
946 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
947 
948 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
949 		SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
950 		    BUS_DMASYNC_POSTWRITE);
951 
952 		/*
953 		 * If this is a CPU-owned buffer, we're at the end of the list.
954 		 */
955 		if (sc->hpc_regs->revision == 3)
956 			ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
957 			    HPC3_HDD_CTL_OWN;
958 		else
959 			ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
960 			    HPC1_HDD_CTL_OWN;
961 
962 		if (ctl_reg) {
963 #if defined(SQ_DEBUG)
964 			u_int32_t reg;
965 
966 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
967 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
968 			    sc->sc_dev.dv_xname, i, reg));
969 #endif
970 			break;
971 		}
972 
973 		count++;
974 
975 		m = sc->sc_rxmbuf[i];
976 		framelen = m->m_ext.ext_size - 3;
977 		if (sc->hpc_regs->revision == 3)
978 		    framelen -=
979 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
980 		else
981 		    framelen -=
982 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
983 
984 		/* Now sync the actual packet data */
985 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
986 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
987 
988 		pktstat = *((u_int8_t*)m->m_data + framelen + 2);
989 
990 		if ((pktstat & RXSTAT_GOOD) == 0) {
991 			ifp->if_ierrors++;
992 
993 			if (pktstat & RXSTAT_OFLOW)
994 				printf("%s: receive FIFO overflow\n",
995 				    sc->sc_dev.dv_xname);
996 
997 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
998 			    sc->sc_rxmap[i]->dm_mapsize,
999 			    BUS_DMASYNC_PREREAD);
1000 			SQ_INIT_RXDESC(sc, i);
1001 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1002 			    sc->sc_dev.dv_xname, i));
1003 			continue;
1004 		}
1005 
1006 		if (sq_add_rxbuf(sc, i) != 0) {
1007 			ifp->if_ierrors++;
1008 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1009 			    sc->sc_rxmap[i]->dm_mapsize,
1010 			    BUS_DMASYNC_PREREAD);
1011 			SQ_INIT_RXDESC(sc, i);
1012 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1013 			    "failed\n", sc->sc_dev.dv_xname, i));
1014 			continue;
1015 		}
1016 
1017 
1018 		m->m_data += 2;
1019 		m->m_pkthdr.rcvif = ifp;
1020 		m->m_pkthdr.len = m->m_len = framelen;
1021 
1022 		ifp->if_ipackets++;
1023 
1024 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1025 			    sc->sc_dev.dv_xname, i, framelen));
1026 
1027 		if (ifp->if_bpf)
1028 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
1029 		(*ifp->if_input)(ifp, m);
1030 	}
1031 
1032 
1033 	/* If anything happened, move ring start/end pointers to new spot */
1034 	if (i != sc->sc_nextrx) {
1035 		/*
1036 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1037 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1038 		 */
1039 
1040 		new_end = SQ_PREVRX(i);
1041 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1042 		SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
1043 		    BUS_DMASYNC_PREWRITE);
1044 
1045 		orig_end = SQ_PREVRX(sc->sc_nextrx);
1046 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1047 		SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
1048 		    BUS_DMASYNC_PREWRITE);
1049 
1050 		sc->sc_nextrx = i;
1051 	}
1052 
1053 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1054 
1055 	/* If receive channel is stopped, restart it... */
1056 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1057 		/* Pass the start of the receive ring to the HPC */
1058 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
1059 		    sc->sc_nextrx));
1060 
1061 		/* And turn on the HPC ethernet receive channel */
1062 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1063 		    sc->hpc_regs->enetr_ctl_active);
1064 	}
1065 
1066 	return count;
1067 }
1068 
1069 static int
1070 sq_txintr(struct sq_softc *sc)
1071 {
1072 	int shift = 0;
1073 	u_int32_t status, tmp;
1074 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1075 
1076 	if (sc->hpc_regs->revision != 3)
1077 		shift = 16;
1078 
1079 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1080 
1081 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1082 
1083 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1084 	if ((status & tmp) == 0) {
1085 		if (status & TXSTAT_COLL)
1086 			ifp->if_collisions++;
1087 
1088 		if (status & TXSTAT_UFLOW) {
1089 			printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
1090 			ifp->if_oerrors++;
1091 		}
1092 
1093 		if (status & TXSTAT_16COLL) {
1094 			printf("%s: max collisions reached\n",
1095 			    sc->sc_dev.dv_xname);
1096 			ifp->if_oerrors++;
1097 			ifp->if_collisions += 16;
1098 		}
1099 	}
1100 
1101 	/* prevtx now points to next xmit packet not yet finished */
1102 	if (sc->hpc_regs->revision == 3)
1103 		sq_txring_hpc3(sc);
1104 	else
1105 		sq_txring_hpc1(sc);
1106 
1107 	/* If we have buffers free, let upper layers know */
1108 	if (sc->sc_nfreetx > 0)
1109 		ifp->if_flags &= ~IFF_OACTIVE;
1110 
1111 	/* If all packets have left the coop, cancel watchdog */
1112 	if (sc->sc_nfreetx == SQ_NTXDESC)
1113 		ifp->if_timer = 0;
1114 
1115 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1116 	sq_start(ifp);
1117 
1118 	return 1;
1119 }
1120 
1121 /*
1122  * Reclaim used transmit descriptors and restart the transmit DMA
1123  * engine if necessary.
1124  */
1125 static void
1126 sq_txring_hpc1(struct sq_softc *sc)
1127 {
1128 	/*
1129 	 * HPC1 doesn't tag transmitted descriptors, however,
1130 	 * the NDBP register points to the next descriptor that
1131 	 * has not yet been processed. If DMA is not in progress,
1132 	 * we can safely reclaim all descriptors up to NDBP, and,
1133 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1134 	 * is active, we can only safely reclaim up to CBP.
1135 	 *
1136 	 * For now, we'll only reclaim on inactive DMA and assume
1137 	 * that a sufficiently large ring keeps us out of trouble.
1138 	 */
1139 	u_int32_t reclaimto, status;
1140 	int reclaimall, i = sc->sc_prevtx;
1141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1142 
1143 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1144 	if (status & HPC1_ENETX_CTL_ACTIVE) {
1145 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1146 		return;
1147 	} else
1148 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1149 
1150 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1151 		reclaimall = 1;
1152 	else
1153 		reclaimall = 0;
1154 
1155 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1156 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1157 			break;
1158 
1159 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1160 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1161 
1162 		/* Sync the packet data, unload DMA map, free mbuf */
1163 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1164 				sc->sc_txmap[i]->dm_mapsize,
1165 				BUS_DMASYNC_POSTWRITE);
1166 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1167 		m_freem(sc->sc_txmbuf[i]);
1168 		sc->sc_txmbuf[i] = NULL;
1169 
1170 		ifp->if_opackets++;
1171 		sc->sc_nfreetx++;
1172 
1173 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1174 
1175 		i = SQ_NEXTTX(i);
1176 	}
1177 
1178 	if (sc->sc_nfreetx < SQ_NTXDESC) {
1179 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1180 
1181 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1182 
1183 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1184 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1185 
1186 		/* Kick DMA channel into life */
1187 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1188 
1189 		/*
1190 		 * Set a watchdog timer in case the chip
1191 		 * flakes out.
1192 		 */
1193 		ifp->if_timer = 5;
1194 	}
1195 
1196 	sc->sc_prevtx = i;
1197 }
1198 
1199 /*
1200  * Reclaim used transmit descriptors and restart the transmit DMA
1201  * engine if necessary.
1202  */
1203 static void
1204 sq_txring_hpc3(struct sq_softc *sc)
1205 {
1206 	/*
1207 	 * HPC3 tags descriptors with a bit once they've been
1208 	 * transmitted. We need only free each XMITDONE'd
1209 	 * descriptor, and restart the DMA engine if any
1210 	 * descriptors are left over.
1211 	 */
1212 	int i;
1213 	u_int32_t status = 0;
1214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1215 
1216 	i = sc->sc_prevtx;
1217 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1218 		/*
1219 		 * Check status first so we don't end up with a case of
1220 		 * the buffer not being finished while the DMA channel
1221 		 * has gone idle.
1222 		 */
1223 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1224 
1225 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1226 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1227 
1228 		/* Check for used descriptor and restart DMA chain if needed */
1229 		if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
1230 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1231 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1232 
1233 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1234 				    SQ_CDTXADDR(sc, i));
1235 
1236 				/* Kick DMA channel into life */
1237 				sq_hpc_write(sc, HPC3_ENETX_CTL,
1238 				    HPC3_ENETX_CTL_ACTIVE);
1239 
1240 				/*
1241 				 * Set a watchdog timer in case the chip
1242 				 * flakes out.
1243 				 */
1244 				ifp->if_timer = 5;
1245 			} else
1246 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1247 			break;
1248 		}
1249 
1250 		/* Sync the packet data, unload DMA map, free mbuf */
1251 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1252 				sc->sc_txmap[i]->dm_mapsize,
1253 				BUS_DMASYNC_POSTWRITE);
1254 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1255 		m_freem(sc->sc_txmbuf[i]);
1256 		sc->sc_txmbuf[i] = NULL;
1257 
1258 		ifp->if_opackets++;
1259 		sc->sc_nfreetx++;
1260 
1261 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1262 		i = SQ_NEXTTX(i);
1263 	}
1264 
1265 	sc->sc_prevtx = i;
1266 }
1267 
1268 void
1269 sq_reset(struct sq_softc *sc)
1270 {
1271 	/* Stop HPC dma channels */
1272 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1273 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1274 
1275 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1276 	delay(20);
1277 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1278 }
1279 
1280 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1281 int
1282 sq_add_rxbuf(struct sq_softc *sc, int idx)
1283 {
1284 	int err;
1285 	struct mbuf *m;
1286 
1287 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1288 	if (m == NULL)
1289 		return (ENOBUFS);
1290 
1291 	MCLGET(m, M_DONTWAIT);
1292 	if ((m->m_flags & M_EXT) == 0) {
1293 		m_freem(m);
1294 		return (ENOBUFS);
1295 	}
1296 
1297 	if (sc->sc_rxmbuf[idx] != NULL)
1298 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1299 
1300 	sc->sc_rxmbuf[idx] = m;
1301 
1302 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1303 				   m->m_ext.ext_buf, m->m_ext.ext_size,
1304 				   NULL, BUS_DMA_NOWAIT)) != 0) {
1305 		printf("%s: can't load rx DMA map %d, error = %d\n",
1306 		    sc->sc_dev.dv_xname, idx, err);
1307 		panic("sq_add_rxbuf");	/* XXX */
1308 	}
1309 
1310 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
1311 			sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1312 
1313 	SQ_INIT_RXDESC(sc, idx);
1314 
1315 	return 0;
1316 }
1317 
1318 void
1319 sq_dump_buffer(paddr_t addr, psize_t len)
1320 {
1321 	u_int i;
1322 	u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1(addr);
1323 
1324 	if (len == 0)
1325 		return;
1326 
1327 	printf("%p: ", physaddr);
1328 
1329 	for (i = 0; i < len; i++) {
1330 		printf("%02x ", *(physaddr + i) & 0xff);
1331 		if ((i % 16) ==  15 && i != len - 1)
1332 		    printf("\n%p: ", physaddr + i);
1333 	}
1334 
1335 	printf("\n");
1336 }
1337 
1338 void
1339 enaddr_aton(const char* str, u_int8_t* eaddr)
1340 {
1341 	int i;
1342 	char c;
1343 
1344 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1345 		if (*str == ':')
1346 			str++;
1347 
1348 		c = *str++;
1349 		if (isdigit(c)) {
1350 			eaddr[i] = (c - '0');
1351 		} else if (isxdigit(c)) {
1352 			eaddr[i] = (toupper(c) + 10 - 'A');
1353 		}
1354 
1355 		c = *str++;
1356 		if (isdigit(c)) {
1357 			eaddr[i] = (eaddr[i] << 4) | (c - '0');
1358 		} else if (isxdigit(c)) {
1359 			eaddr[i] = (eaddr[i] << 4) | (toupper(c) + 10 - 'A');
1360 		}
1361 	}
1362 }
1363