xref: /netbsd-src/sys/arch/sgimips/hpc/if_sq.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_sq.c,v 1.33 2007/03/04 06:00:39 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Rafal K. Boni
5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * Portions of this code are derived from software contributed to The
9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.33 2007/03/04 06:00:39 christos Exp $");
37 
38 #include "bpfilter.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include <machine/endian.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67 #include <machine/sysconf.h>
68 
69 #include <dev/ic/seeq8003reg.h>
70 
71 #include <sgimips/hpc/sqvar.h>
72 #include <sgimips/hpc/hpcvar.h>
73 #include <sgimips/hpc/hpcreg.h>
74 
75 #include <dev/arcbios/arcbios.h>
76 #include <dev/arcbios/arcbiosvar.h>
77 
78 #define static
79 
80 /*
81  * Short TODO list:
82  *	(1) Do counters for bad-RX packets.
83  *	(2) Allow multi-segment transmits, instead of copying to a single,
84  *	    contiguous mbuf.
85  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
86  *	    seeq interrupts after sq_stop().
87  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
88  *	    mode.
89  *	(5) Should the driver filter out its own transmissions in non-EDLC
90  *	    mode?
91  *	(6) Multicast support -- multicast filter, address management, ...
92  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
93  *	    to figure out if RB0 is read-only as stated in one spot in the
94  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
95  *	    the correct thing?
96  */
97 
98 #if defined(SQ_DEBUG)
99  int sq_debug = 0;
100  #define SQ_DPRINTF(x) if (sq_debug) printf x
101 #else
102  #define SQ_DPRINTF(x)
103 #endif
104 
105 static int	sq_match(struct device *, struct cfdata *, void *);
106 static void	sq_attach(struct device *, struct device *, void *);
107 static int	sq_init(struct ifnet *);
108 static void	sq_start(struct ifnet *);
109 static void	sq_stop(struct ifnet *, int);
110 static void	sq_watchdog(struct ifnet *);
111 static int	sq_ioctl(struct ifnet *, u_long, void *);
112 
113 static void	sq_set_filter(struct sq_softc *);
114 static int	sq_intr(void *);
115 static int	sq_rxintr(struct sq_softc *);
116 static int	sq_txintr(struct sq_softc *);
117 static void	sq_txring_hpc1(struct sq_softc *);
118 static void	sq_txring_hpc3(struct sq_softc *);
119 static void	sq_reset(struct sq_softc *);
120 static int 	sq_add_rxbuf(struct sq_softc *, int);
121 static void 	sq_dump_buffer(u_int32_t addr, u_int32_t len);
122 static void	sq_trace_dump(struct sq_softc *);
123 
124 static void	enaddr_aton(const char*, u_int8_t*);
125 
126 CFATTACH_DECL(sq, sizeof(struct sq_softc),
127     sq_match, sq_attach, NULL, NULL);
128 
129 #define        ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
130 
131 #define sq_seeq_read(sc, off) \
132 	bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
133 #define sq_seeq_write(sc, off, val) \
134 	bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
135 
136 #define sq_hpc_read(sc, off) \
137 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
138 #define sq_hpc_write(sc, off, val) \
139 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
140 
141 /* MAC address offset for non-onboard implementations */
142 #define SQ_HPC_EEPROM_ENADDR	250
143 
144 #define SGI_OUI_0		0x08
145 #define SGI_OUI_1		0x00
146 #define SGI_OUI_2		0x69
147 
148 static int
149 sq_match(struct device *parent, struct cfdata *cf, void *aux)
150 {
151 	struct hpc_attach_args *ha = aux;
152 
153 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
154 		uint32_t reset, txstat;
155 
156 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
157 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
158 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
159 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
160 
161 		if (platform.badaddr((void *)reset, sizeof(reset)))
162 			return (0);
163 
164 		*(volatile uint32_t *)reset = 0x1;
165 		delay(20);
166 		*(volatile uint32_t *)reset = 0x0;
167 
168 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
169 			return (0);
170 
171 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
172 			return (1);
173 	}
174 
175 	return (0);
176 }
177 
178 static void
179 sq_attach(struct device *parent, struct device *self, void *aux)
180 {
181 	int i, err;
182 	const char* macaddr;
183 	struct sq_softc *sc = (void *)self;
184 	struct hpc_attach_args *haa = aux;
185 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
186 
187 	sc->sc_hpct = haa->ha_st;
188 	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
189 
190 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
191 				       haa->ha_dmaoff,
192 				       sc->hpc_regs->enet_regs_size,
193 				       &sc->sc_hpch)) != 0) {
194 		printf(": unable to map HPC DMA registers, error = %d\n", err);
195 		goto fail_0;
196 	}
197 
198 	sc->sc_regt = haa->ha_st;
199 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
200 				       haa->ha_devoff,
201 				       sc->hpc_regs->enet_devregs_size,
202 				       &sc->sc_regh)) != 0) {
203 		printf(": unable to map Seeq registers, error = %d\n", err);
204 		goto fail_0;
205 	}
206 
207 	sc->sc_dmat = haa->ha_dmat;
208 
209 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
210 				    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
211 				    1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
212 		printf(": unable to allocate control data, error = %d\n", err);
213 		goto fail_0;
214 	}
215 
216 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
217 				  sizeof(struct sq_control),
218 				  (void **)&sc->sc_control,
219 				  BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
220 		printf(": unable to map control data, error = %d\n", err);
221 		goto fail_1;
222 	}
223 
224 	if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
225 				     1, sizeof(struct sq_control), PAGE_SIZE,
226 				     BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
227 		printf(": unable to create DMA map for control data, error "
228 			"= %d\n", err);
229 		goto fail_2;
230 	}
231 
232 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
233 				   sizeof(struct sq_control),
234 				   NULL, BUS_DMA_NOWAIT)) != 0) {
235 		printf(": unable to load DMA map for control data, error "
236 			"= %d\n", err);
237 		goto fail_3;
238 	}
239 
240 	memset(sc->sc_control, 0, sizeof(struct sq_control));
241 
242 	/* Create transmit buffer DMA maps */
243 	for (i = 0; i < SQ_NTXDESC; i++) {
244 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
245 					 0, BUS_DMA_NOWAIT,
246 					 &sc->sc_txmap[i])) != 0) {
247 		    printf(": unable to create tx DMA map %d, error = %d\n",
248 			   i, err);
249 		    goto fail_4;
250 	    }
251 	}
252 
253 	/* Create receive buffer DMA maps */
254 	for (i = 0; i < SQ_NRXDESC; i++) {
255 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
256 					 0, BUS_DMA_NOWAIT,
257 					 &sc->sc_rxmap[i])) != 0) {
258 		    printf(": unable to create rx DMA map %d, error = %d\n",
259 			   i, err);
260 		    goto fail_5;
261 	    }
262 	}
263 
264 	/* Pre-allocate the receive buffers.  */
265 	for (i = 0; i < SQ_NRXDESC; i++) {
266 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
267 			printf(": unable to allocate or map rx buffer %d\n,"
268 			       " error = %d\n", i, err);
269 			goto fail_6;
270 		}
271 	}
272 
273 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
274 	    ETHER_ADDR_LEN);
275 
276 	/*
277 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
278 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
279 	 * but rather the DS1386 RTC's battery-backed ram is used.
280 	 */
281 	if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
282 	    sc->sc_enaddr[2] != SGI_OUI_2) {
283 		macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
284 		if (macaddr == NULL) {
285 			printf(": unable to get MAC address!\n");
286 			goto fail_6;
287 		}
288 		enaddr_aton(macaddr, sc->sc_enaddr);
289 	}
290 
291 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
292 					      self->dv_xname, "intr");
293 
294 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
295 		printf(": unable to establish interrupt!\n");
296 		goto fail_6;
297 	}
298 
299 	/* Reset the chip to a known state. */
300 	sq_reset(sc);
301 
302 	/*
303 	 * Determine if we're an 8003 or 80c03 by setting the first
304 	 * MAC address register to non-zero, and then reading it back.
305 	 * If it's zero, we have an 80c03, because we will have read
306 	 * the TxCollLSB register.
307 	 */
308 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
309 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
310 		sc->sc_type = SQ_TYPE_80C03;
311 	else
312 		sc->sc_type = SQ_TYPE_8003;
313 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
314 
315 	printf(": SGI Seeq %s\n",
316 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
317 
318 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
319 					   ether_sprintf(sc->sc_enaddr));
320 
321 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
322 	ifp->if_softc = sc;
323 	ifp->if_mtu = ETHERMTU;
324 	ifp->if_init = sq_init;
325 	ifp->if_stop = sq_stop;
326 	ifp->if_start = sq_start;
327 	ifp->if_ioctl = sq_ioctl;
328 	ifp->if_watchdog = sq_watchdog;
329 	ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
330 	IFQ_SET_READY(&ifp->if_snd);
331 
332 	if_attach(ifp);
333 	ether_ifattach(ifp, sc->sc_enaddr);
334 
335 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
336 	/* Done! */
337 	return;
338 
339 	/*
340 	 * Free any resources we've allocated during the failed attach
341 	 * attempt.  Do this in reverse order and fall through.
342 	 */
343 fail_6:
344 	for (i = 0; i < SQ_NRXDESC; i++) {
345 		if (sc->sc_rxmbuf[i] != NULL) {
346 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
347 			m_freem(sc->sc_rxmbuf[i]);
348 		}
349 	}
350 fail_5:
351 	for (i = 0; i < SQ_NRXDESC; i++) {
352 	    if (sc->sc_rxmap[i] != NULL)
353 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
354 	}
355 fail_4:
356 	for (i = 0; i < SQ_NTXDESC; i++) {
357 	    if (sc->sc_txmap[i] !=  NULL)
358 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
359 	}
360 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
361 fail_3:
362 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
363 fail_2:
364 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
365 				      sizeof(struct sq_control));
366 fail_1:
367 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
368 fail_0:
369 	return;
370 }
371 
372 /* Set up data to get the interface up and running. */
373 int
374 sq_init(struct ifnet *ifp)
375 {
376 	int i;
377 	struct sq_softc *sc = ifp->if_softc;
378 
379 	/* Cancel any in-progress I/O */
380 	sq_stop(ifp, 0);
381 
382 	sc->sc_nextrx = 0;
383 
384 	sc->sc_nfreetx = SQ_NTXDESC;
385 	sc->sc_nexttx = sc->sc_prevtx = 0;
386 
387 	SQ_TRACE(SQ_RESET, sc, 0, 0);
388 
389 	/* Set into 8003 mode, bank 0 to program ethernet address */
390 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
391 
392 	/* Now write the address */
393 	for (i = 0; i < ETHER_ADDR_LEN; i++)
394 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
395 
396 	sc->sc_rxcmd = RXCMD_IE_CRC |
397 		       RXCMD_IE_DRIB |
398 		       RXCMD_IE_SHORT |
399 		       RXCMD_IE_END |
400 		       RXCMD_IE_GOOD;
401 
402 	/*
403 	 * Set the receive filter -- this will add some bits to the
404 	 * prototype RXCMD register.  Do this before setting the
405 	 * transmit config register, since we might need to switch
406 	 * banks.
407 	 */
408 	sq_set_filter(sc);
409 
410 	/* Set up Seeq transmit command register */
411 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
412 				      TXCMD_IE_COLL |
413 				      TXCMD_IE_16COLL |
414 				      TXCMD_IE_GOOD);
415 
416 	/* Now write the receive command register. */
417 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
418 
419 	/*
420 	 * Set up HPC ethernet PIO and DMA configurations.
421 	 *
422 	 * The PROM appears to do most of this for the onboard HPC3, but
423 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
424 	 * chip is configured and assume that it's correct for both.
425 	 */
426 	if (sc->hpc_regs->revision == 3) {
427 		u_int32_t dmareg, pioreg;
428 
429 		pioreg = HPC3_ENETR_PIOCFG_P1(1) |
430 			 HPC3_ENETR_PIOCFG_P2(6) |
431 			 HPC3_ENETR_PIOCFG_P3(1);
432 
433 		dmareg = HPC3_ENETR_DMACFG_D1(6) |
434 			 HPC3_ENETR_DMACFG_D2(2) |
435 			 HPC3_ENETR_DMACFG_D3(0) |
436 			 HPC3_ENETR_DMACFG_FIX_RXDC |
437 			 HPC3_ENETR_DMACFG_FIX_INTR |
438 			 HPC3_ENETR_DMACFG_FIX_EOP |
439 			 HPC3_ENETR_DMACFG_TIMEOUT;
440 
441 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
442 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
443 	}
444 
445 	/* Pass the start of the receive ring to the HPC */
446 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
447 
448 	/* And turn on the HPC ethernet receive channel */
449 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
450 	    sc->hpc_regs->enetr_ctl_active);
451 
452 	/*
453 	 * Turn off delayed receive interrupts on HPC1.
454 	 * (see Hollywood HPC Specification 2.1.4.3)
455 	 */
456 	if (sc->hpc_regs->revision != 3)
457 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
458 
459 	ifp->if_flags |= IFF_RUNNING;
460 	ifp->if_flags &= ~IFF_OACTIVE;
461 
462 	return 0;
463 }
464 
465 static void
466 sq_set_filter(struct sq_softc *sc)
467 {
468 	struct ethercom *ec = &sc->sc_ethercom;
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	struct ether_multi *enm;
471 	struct ether_multistep step;
472 
473 	/*
474 	 * Check for promiscuous mode.  Also implies
475 	 * all-multicast.
476 	 */
477 	if (ifp->if_flags & IFF_PROMISC) {
478 		sc->sc_rxcmd |= RXCMD_REC_ALL;
479 		ifp->if_flags |= IFF_ALLMULTI;
480 		return;
481 	}
482 
483 	/*
484 	 * The 8003 has no hash table.  If we have any multicast
485 	 * addresses on the list, enable reception of all multicast
486 	 * frames.
487 	 *
488 	 * XXX The 80c03 has a hash table.  We should use it.
489 	 */
490 
491 	ETHER_FIRST_MULTI(step, ec, enm);
492 
493 	if (enm == NULL) {
494 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
495 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
496 
497 		ifp->if_flags &= ~IFF_ALLMULTI;
498 		return;
499 	}
500 
501 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
502 	ifp->if_flags |= IFF_ALLMULTI;
503 }
504 
505 int
506 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
507 {
508 	int s, error = 0;
509 
510 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
511 
512 	s = splnet();
513 
514 	error = ether_ioctl(ifp, cmd, data);
515 	if (error == ENETRESET) {
516 		/*
517 		 * Multicast list has changed; set the hardware filter
518 		 * accordingly.
519 		 */
520 		if (ifp->if_flags & IFF_RUNNING)
521 			error = sq_init(ifp);
522 		else
523 			error = 0;
524 	}
525 
526 	splx(s);
527 	return (error);
528 }
529 
530 void
531 sq_start(struct ifnet *ifp)
532 {
533 	struct sq_softc *sc = ifp->if_softc;
534 	u_int32_t status;
535 	struct mbuf *m0, *m;
536 	bus_dmamap_t dmamap;
537 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
538 
539 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
540 		return;
541 
542 	/*
543 	 * Remember the previous number of free descriptors and
544 	 * the first descriptor we'll use.
545 	 */
546 	ofree = sc->sc_nfreetx;
547 	firsttx = sc->sc_nexttx;
548 
549 	/*
550 	 * Loop through the send queue, setting up transmit descriptors
551 	 * until we drain the queue, or use up all available transmit
552 	 * descriptors.
553 	 */
554 	while (sc->sc_nfreetx != 0) {
555 		/*
556 		 * Grab a packet off the queue.
557 		 */
558 		IFQ_POLL(&ifp->if_snd, m0);
559 		if (m0 == NULL)
560 			break;
561 		m = NULL;
562 
563 		dmamap = sc->sc_txmap[sc->sc_nexttx];
564 
565 		/*
566 		 * Load the DMA map.  If this fails, the packet either
567 		 * didn't fit in the alloted number of segments, or we were
568 		 * short on resources.  In this case, we'll copy and try
569 		 * again.
570 		 * Also copy it if we need to pad, so that we are sure there
571 		 * is room for the pad buffer.
572 		 * XXX the right way of doing this is to use a static buffer
573 		 * for padding and adding it to the transmit descriptor (see
574 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
575 		 * because we can't send packets with more than one fragment.
576 		 */
577 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
578 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
579 						      BUS_DMA_NOWAIT) != 0) {
580 			MGETHDR(m, M_DONTWAIT, MT_DATA);
581 			if (m == NULL) {
582 				printf("%s: unable to allocate Tx mbuf\n",
583 				    sc->sc_dev.dv_xname);
584 				break;
585 			}
586 			if (m0->m_pkthdr.len > MHLEN) {
587 				MCLGET(m, M_DONTWAIT);
588 				if ((m->m_flags & M_EXT) == 0) {
589 					printf("%s: unable to allocate Tx "
590 					    "cluster\n", sc->sc_dev.dv_xname);
591 					m_freem(m);
592 					break;
593 				}
594 			}
595 
596 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
597 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
598 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
599 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
600 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
601 			} else
602 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
603 
604 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
605 						m, BUS_DMA_NOWAIT)) != 0) {
606 				printf("%s: unable to load Tx buffer, "
607 				    "error = %d\n", sc->sc_dev.dv_xname, err);
608 				break;
609 			}
610 		}
611 
612 		/*
613 		 * Ensure we have enough descriptors free to describe
614 		 * the packet.
615 		 */
616 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617 			/*
618 			 * Not enough free descriptors to transmit this
619 			 * packet.  We haven't committed to anything yet,
620 			 * so just unload the DMA map, put the packet
621 			 * back on the queue, and punt.  Notify the upper
622 			 * layer that there are no more slots left.
623 			 *
624 			 * XXX We could allocate an mbuf and copy, but
625 			 * XXX it is worth it?
626 			 */
627 			ifp->if_flags |= IFF_OACTIVE;
628 			bus_dmamap_unload(sc->sc_dmat, dmamap);
629 			if (m != NULL)
630 				m_freem(m);
631 			break;
632 		}
633 
634 		IFQ_DEQUEUE(&ifp->if_snd, m0);
635 #if NBPFILTER > 0
636 		/*
637 		 * Pass the packet to any BPF listeners.
638 		 */
639 		if (ifp->if_bpf)
640 			bpf_mtap(ifp->if_bpf, m0);
641 #endif /* NBPFILTER > 0 */
642 		if (m != NULL) {
643 			m_freem(m0);
644 			m0 = m;
645 		}
646 
647 		/*
648 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
649 		 */
650 
651 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
652 
653 		/* Sync the DMA map. */
654 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
655 		    BUS_DMASYNC_PREWRITE);
656 
657 		/*
658 		 * Initialize the transmit descriptors.
659 		 */
660 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
661 		     seg < dmamap->dm_nsegs;
662 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
663 			if (sc->hpc_regs->revision == 3) {
664 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
665 					    dmamap->dm_segs[seg].ds_addr;
666 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
667 					    dmamap->dm_segs[seg].ds_len;
668 			} else {
669 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
670 					    dmamap->dm_segs[seg].ds_addr;
671 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
672 					    dmamap->dm_segs[seg].ds_len;
673 			}
674 			sc->sc_txdesc[nexttx].hdd_descptr=
675 					    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
676 			lasttx = nexttx;
677 			totlen += dmamap->dm_segs[seg].ds_len;
678 		}
679 
680 		/* Last descriptor gets end-of-packet */
681 		KASSERT(lasttx != -1);
682 		if (sc->hpc_regs->revision == 3)
683 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
684 			    HPC3_HDD_CTL_EOPACKET;
685 		else
686 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
687 			    HPC1_HDD_CTL_EOPACKET;
688 
689 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
690 						       sc->sc_nexttx, lasttx,
691 						       totlen));
692 
693 		if (ifp->if_flags & IFF_DEBUG) {
694 			printf("     transmit chain:\n");
695 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
696 				printf("     descriptor %d:\n", seg);
697 				printf("       hdd_bufptr:      0x%08x\n",
698 					(sc->hpc_regs->revision == 3) ?
699 					    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
700 					    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
701 				printf("       hdd_ctl: 0x%08x\n",
702 					(sc->hpc_regs->revision == 3) ?
703 					    sc->sc_txdesc[seg].hpc3_hdd_ctl:
704 					    sc->sc_txdesc[seg].hpc1_hdd_ctl);
705 				printf("       hdd_descptr:      0x%08x\n",
706 					sc->sc_txdesc[seg].hdd_descptr);
707 
708 				if (seg == lasttx)
709 					break;
710 			}
711 		}
712 
713 		/* Sync the descriptors we're using. */
714 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
715 				BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
716 
717 		/* Store a pointer to the packet so we can free it later */
718 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
719 
720 		/* Advance the tx pointer. */
721 		sc->sc_nfreetx -= dmamap->dm_nsegs;
722 		sc->sc_nexttx = nexttx;
723 	}
724 
725 	/* All transmit descriptors used up, let upper layers know */
726 	if (sc->sc_nfreetx == 0)
727 		ifp->if_flags |= IFF_OACTIVE;
728 
729 	if (sc->sc_nfreetx != ofree) {
730 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
731 			    sc->sc_dev.dv_xname, lasttx - firsttx + 1,
732 			    firsttx, lasttx));
733 
734 		/*
735 		 * Cause a transmit interrupt to happen on the
736 		 * last packet we enqueued, mark it as the last
737 		 * descriptor.
738 		 *
739 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
740 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
741 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
742 		 */
743 		KASSERT(lasttx != -1);
744 		if (sc->hpc_regs->revision == 3) {
745 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
746 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
747 		} else {
748 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
749 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
750 			    HPC1_HDD_CTL_EOCHAIN;
751 		}
752 
753 		SQ_CDTXSYNC(sc, lasttx, 1,
754 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
755 
756 		/*
757 		 * There is a potential race condition here if the HPC
758 		 * DMA channel is active and we try and either update
759 		 * the 'next descriptor' pointer in the HPC PIO space
760 		 * or the 'next descriptor' pointer in a previous desc-
761 		 * riptor.
762 		 *
763 		 * To avoid this, if the channel is active, we rely on
764 		 * the transmit interrupt routine noticing that there
765 		 * are more packets to send and restarting the HPC DMA
766 		 * engine, rather than mucking with the DMA state here.
767 		 */
768 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
769 
770 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
771 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
772 
773 			/*
774 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
775 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
776 			 */
777 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
778 			    ~HPC3_HDD_CTL_EOCHAIN;
779 
780 			if (sc->hpc_regs->revision != 3)
781 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
782 				    &= ~HPC1_HDD_CTL_INTR;
783 
784 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
785 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
786 		} else if (sc->hpc_regs->revision == 3) {
787 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
788 
789 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
790 			    firsttx));
791 
792 			/* Kick DMA channel into life */
793 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
794 		} else {
795 			/*
796 			 * In the HPC1 case where transmit DMA is
797 			 * inactive, we can either kick off if
798 			 * the ring was previously empty, or call
799 			 * our transmit interrupt handler to
800 			 * figure out if the ring stopped short
801 			 * and restart at the right place.
802 			 */
803 			if (ofree == SQ_NTXDESC) {
804 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
805 
806 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
807 				    SQ_CDTXADDR(sc, firsttx));
808 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
809 				    SQ_CDTXADDR(sc, firsttx));
810 				sq_hpc_write(sc, HPC1_ENETX_CBP,
811 				    SQ_CDTXADDR(sc, firsttx));
812 
813 				/* Kick DMA channel into life */
814 				sq_hpc_write(sc, HPC1_ENETX_CTL,
815 				    HPC1_ENETX_CTL_ACTIVE);
816 			} else
817 				sq_txring_hpc1(sc);
818 		}
819 
820 		/* Set a watchdog timer in case the chip flakes out. */
821 		ifp->if_timer = 5;
822 	}
823 }
824 
825 void
826 sq_stop(struct ifnet *ifp, int disable)
827 {
828 	int i;
829 	struct sq_softc *sc = ifp->if_softc;
830 
831 	for (i =0; i < SQ_NTXDESC; i++) {
832 		if (sc->sc_txmbuf[i] != NULL) {
833 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
834 			m_freem(sc->sc_txmbuf[i]);
835 			sc->sc_txmbuf[i] = NULL;
836 		}
837 	}
838 
839 	/* Clear Seeq transmit/receive command registers */
840 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
841 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
842 
843 	sq_reset(sc);
844 
845 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
846 	ifp->if_timer = 0;
847 }
848 
849 /* Device timeout/watchdog routine. */
850 void
851 sq_watchdog(struct ifnet *ifp)
852 {
853 	u_int32_t status;
854 	struct sq_softc *sc = ifp->if_softc;
855 
856 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
857 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
858 		     "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
859 				       sc->sc_nexttx, sc->sc_nfreetx, status);
860 
861 	sq_trace_dump(sc);
862 
863 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
864 	sc->sq_trace_idx = 0;
865 
866 	++ifp->if_oerrors;
867 
868 	sq_init(ifp);
869 }
870 
871 static void
872 sq_trace_dump(struct sq_softc *sc)
873 {
874 	int i;
875 	const char *act;
876 
877 	for (i = 0; i < sc->sq_trace_idx; i++) {
878 		switch (sc->sq_trace[i].action) {
879 		case SQ_RESET:		act = "SQ_RESET";		break;
880 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
881 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
882 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
883 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
884 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
885 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
886 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
887 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
888 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
889 		default:		act = "UNKNOWN";
890 		}
891 
892 		printf("%s: [%03d] action %-16s buf %03d free %03d "
893 		    "status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
894 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
895 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
896 	}
897 }
898 
899 static int
900 sq_intr(void *arg)
901 {
902 	struct sq_softc *sc = arg;
903 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
904 	int handled = 0;
905 	u_int32_t stat;
906 
907 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
908 
909 	if ((stat & 2) == 0)
910 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
911 		    sc->sc_dev.dv_xname));
912 	else
913 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
914 
915 	/*
916 	 * If the interface isn't running, the interrupt couldn't
917 	 * possibly have come from us.
918 	 */
919 	if ((ifp->if_flags & IFF_RUNNING) == 0)
920 		return 0;
921 
922 	sc->sq_intrcnt.ev_count++;
923 
924 	/* Always check for received packets */
925 	if (sq_rxintr(sc) != 0)
926 		handled++;
927 
928 	/* Only handle transmit interrupts if we actually sent something */
929 	if (sc->sc_nfreetx < SQ_NTXDESC) {
930 		sq_txintr(sc);
931 		handled++;
932 	}
933 
934 #if NRND > 0
935 	if (handled)
936 		rnd_add_uint32(&sc->rnd_source, stat);
937 #endif
938 	return (handled);
939 }
940 
941 static int
942 sq_rxintr(struct sq_softc *sc)
943 {
944 	int count = 0;
945 	struct mbuf* m;
946 	int i, framelen;
947 	u_int8_t pktstat;
948 	u_int32_t status;
949 	u_int32_t ctl_reg;
950 	int new_end, orig_end;
951 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
952 
953 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
954 		SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
955 		    BUS_DMASYNC_POSTWRITE);
956 
957 		/*
958 		 * If this is a CPU-owned buffer, we're at the end of the list.
959 		 */
960 		if (sc->hpc_regs->revision == 3)
961 			ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
962 			    HPC3_HDD_CTL_OWN;
963 		else
964 			ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
965 			    HPC1_HDD_CTL_OWN;
966 
967 		if (ctl_reg) {
968 #if defined(SQ_DEBUG)
969 			u_int32_t reg;
970 
971 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
972 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
973 			    sc->sc_dev.dv_xname, i, reg));
974 #endif
975 			break;
976 		}
977 
978 		count++;
979 
980 		m = sc->sc_rxmbuf[i];
981 		framelen = m->m_ext.ext_size - 3;
982 		if (sc->hpc_regs->revision == 3)
983 		    framelen -=
984 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
985 		else
986 		    framelen -=
987 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
988 
989 		/* Now sync the actual packet data */
990 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
991 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
992 
993 		pktstat = *((u_int8_t*)m->m_data + framelen + 2);
994 
995 		if ((pktstat & RXSTAT_GOOD) == 0) {
996 			ifp->if_ierrors++;
997 
998 			if (pktstat & RXSTAT_OFLOW)
999 				printf("%s: receive FIFO overflow\n",
1000 				    sc->sc_dev.dv_xname);
1001 
1002 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1003 			    sc->sc_rxmap[i]->dm_mapsize,
1004 			    BUS_DMASYNC_PREREAD);
1005 			SQ_INIT_RXDESC(sc, i);
1006 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1007 			    sc->sc_dev.dv_xname, i));
1008 			continue;
1009 		}
1010 
1011 		if (sq_add_rxbuf(sc, i) != 0) {
1012 			ifp->if_ierrors++;
1013 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1014 			    sc->sc_rxmap[i]->dm_mapsize,
1015 			    BUS_DMASYNC_PREREAD);
1016 			SQ_INIT_RXDESC(sc, i);
1017 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1018 			    "failed\n", sc->sc_dev.dv_xname, i));
1019 			continue;
1020 		}
1021 
1022 
1023 		m->m_data += 2;
1024 		m->m_pkthdr.rcvif = ifp;
1025 		m->m_pkthdr.len = m->m_len = framelen;
1026 
1027 		ifp->if_ipackets++;
1028 
1029 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1030 			    sc->sc_dev.dv_xname, i, framelen));
1031 
1032 #if NBPFILTER > 0
1033 		if (ifp->if_bpf)
1034 			bpf_mtap(ifp->if_bpf, m);
1035 #endif
1036 		(*ifp->if_input)(ifp, m);
1037 	}
1038 
1039 
1040 	/* If anything happened, move ring start/end pointers to new spot */
1041 	if (i != sc->sc_nextrx) {
1042 		/*
1043 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1044 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1045 		 */
1046 
1047 		new_end = SQ_PREVRX(i);
1048 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1049 		SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
1050 		    BUS_DMASYNC_PREWRITE);
1051 
1052 		orig_end = SQ_PREVRX(sc->sc_nextrx);
1053 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1054 		SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
1055 		    BUS_DMASYNC_PREWRITE);
1056 
1057 		sc->sc_nextrx = i;
1058 	}
1059 
1060 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1061 
1062 	/* If receive channel is stopped, restart it... */
1063 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1064 		/* Pass the start of the receive ring to the HPC */
1065 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
1066 		    sc->sc_nextrx));
1067 
1068 		/* And turn on the HPC ethernet receive channel */
1069 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1070 		    sc->hpc_regs->enetr_ctl_active);
1071 	}
1072 
1073 	return count;
1074 }
1075 
1076 static int
1077 sq_txintr(struct sq_softc *sc)
1078 {
1079 	int shift = 0;
1080 	u_int32_t status, tmp;
1081 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1082 
1083 	if (sc->hpc_regs->revision != 3)
1084 		shift = 16;
1085 
1086 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1087 
1088 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1089 
1090 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1091 	if ((status & tmp) == 0) {
1092 		if (status & TXSTAT_COLL)
1093 			ifp->if_collisions++;
1094 
1095 		if (status & TXSTAT_UFLOW) {
1096 			printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
1097 			ifp->if_oerrors++;
1098 		}
1099 
1100 		if (status & TXSTAT_16COLL) {
1101 			printf("%s: max collisions reached\n",
1102 			    sc->sc_dev.dv_xname);
1103 			ifp->if_oerrors++;
1104 			ifp->if_collisions += 16;
1105 		}
1106 	}
1107 
1108 	/* prevtx now points to next xmit packet not yet finished */
1109 	if (sc->hpc_regs->revision == 3)
1110 		sq_txring_hpc3(sc);
1111 	else
1112 		sq_txring_hpc1(sc);
1113 
1114 	/* If we have buffers free, let upper layers know */
1115 	if (sc->sc_nfreetx > 0)
1116 		ifp->if_flags &= ~IFF_OACTIVE;
1117 
1118 	/* If all packets have left the coop, cancel watchdog */
1119 	if (sc->sc_nfreetx == SQ_NTXDESC)
1120 		ifp->if_timer = 0;
1121 
1122 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1123 	sq_start(ifp);
1124 
1125 	return 1;
1126 }
1127 
1128 /*
1129  * Reclaim used transmit descriptors and restart the transmit DMA
1130  * engine if necessary.
1131  */
1132 static void
1133 sq_txring_hpc1(struct sq_softc *sc)
1134 {
1135 	/*
1136 	 * HPC1 doesn't tag transmitted descriptors, however,
1137 	 * the NDBP register points to the next descriptor that
1138 	 * has not yet been processed. If DMA is not in progress,
1139 	 * we can safely reclaim all descriptors up to NDBP, and,
1140 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1141 	 * is active, we can only safely reclaim up to CBP.
1142 	 *
1143 	 * For now, we'll only reclaim on inactive DMA and assume
1144 	 * that a sufficiently large ring keeps us out of trouble.
1145 	 */
1146 	u_int32_t reclaimto, status;
1147 	int reclaimall, i = sc->sc_prevtx;
1148 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1149 
1150 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1151 	if (status & HPC1_ENETX_CTL_ACTIVE) {
1152 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1153 		return;
1154 	} else
1155 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1156 
1157 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1158 		reclaimall = 1;
1159 	else
1160 		reclaimall = 0;
1161 
1162 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1163 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1164 			break;
1165 
1166 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1167 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1168 
1169 		/* Sync the packet data, unload DMA map, free mbuf */
1170 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1171 				sc->sc_txmap[i]->dm_mapsize,
1172 				BUS_DMASYNC_POSTWRITE);
1173 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1174 		m_freem(sc->sc_txmbuf[i]);
1175 		sc->sc_txmbuf[i] = NULL;
1176 
1177 		ifp->if_opackets++;
1178 		sc->sc_nfreetx++;
1179 
1180 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1181 
1182 		i = SQ_NEXTTX(i);
1183 	}
1184 
1185 	if (sc->sc_nfreetx < SQ_NTXDESC) {
1186 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1187 
1188 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1189 
1190 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1191 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1192 
1193 		/* Kick DMA channel into life */
1194 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1195 
1196 		/*
1197 		 * Set a watchdog timer in case the chip
1198 		 * flakes out.
1199 		 */
1200 		ifp->if_timer = 5;
1201 	}
1202 
1203 	sc->sc_prevtx = i;
1204 }
1205 
1206 /*
1207  * Reclaim used transmit descriptors and restart the transmit DMA
1208  * engine if necessary.
1209  */
1210 static void
1211 sq_txring_hpc3(struct sq_softc *sc)
1212 {
1213 	/*
1214 	 * HPC3 tags descriptors with a bit once they've been
1215 	 * transmitted. We need only free each XMITDONE'd
1216 	 * descriptor, and restart the DMA engine if any
1217 	 * descriptors are left over.
1218 	 */
1219 	int i;
1220 	u_int32_t status = 0;
1221 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222 
1223 	i = sc->sc_prevtx;
1224 	while (sc->sc_nfreetx < SQ_NTXDESC) {
1225 		/*
1226 		 * Check status first so we don't end up with a case of
1227 		 * the buffer not being finished while the DMA channel
1228 		 * has gone idle.
1229 		 */
1230 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1231 
1232 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1233 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1234 
1235 		/* Check for used descriptor and restart DMA chain if needed */
1236 		if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
1237 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1238 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1239 
1240 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1241 				    SQ_CDTXADDR(sc, i));
1242 
1243 				/* Kick DMA channel into life */
1244 				sq_hpc_write(sc, HPC3_ENETX_CTL,
1245 				    HPC3_ENETX_CTL_ACTIVE);
1246 
1247 				/*
1248 				 * Set a watchdog timer in case the chip
1249 				 * flakes out.
1250 				 */
1251 				ifp->if_timer = 5;
1252 			} else
1253 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1254 			break;
1255 		}
1256 
1257 		/* Sync the packet data, unload DMA map, free mbuf */
1258 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1259 				sc->sc_txmap[i]->dm_mapsize,
1260 				BUS_DMASYNC_POSTWRITE);
1261 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1262 		m_freem(sc->sc_txmbuf[i]);
1263 		sc->sc_txmbuf[i] = NULL;
1264 
1265 		ifp->if_opackets++;
1266 		sc->sc_nfreetx++;
1267 
1268 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1269 		i = SQ_NEXTTX(i);
1270 	}
1271 
1272 	sc->sc_prevtx = i;
1273 }
1274 
1275 void
1276 sq_reset(struct sq_softc *sc)
1277 {
1278 	/* Stop HPC dma channels */
1279 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1280 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1281 
1282 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1283 	delay(20);
1284 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1285 }
1286 
1287 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1288 int
1289 sq_add_rxbuf(struct sq_softc *sc, int idx)
1290 {
1291 	int err;
1292 	struct mbuf *m;
1293 
1294 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1295 	if (m == NULL)
1296 		return (ENOBUFS);
1297 
1298 	MCLGET(m, M_DONTWAIT);
1299 	if ((m->m_flags & M_EXT) == 0) {
1300 		m_freem(m);
1301 		return (ENOBUFS);
1302 	}
1303 
1304 	if (sc->sc_rxmbuf[idx] != NULL)
1305 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1306 
1307 	sc->sc_rxmbuf[idx] = m;
1308 
1309 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1310 				   m->m_ext.ext_buf, m->m_ext.ext_size,
1311 				   NULL, BUS_DMA_NOWAIT)) != 0) {
1312 		printf("%s: can't load rx DMA map %d, error = %d\n",
1313 		    sc->sc_dev.dv_xname, idx, err);
1314 		panic("sq_add_rxbuf");	/* XXX */
1315 	}
1316 
1317 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
1318 			sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1319 
1320 	SQ_INIT_RXDESC(sc, idx);
1321 
1322 	return 0;
1323 }
1324 
1325 void
1326 sq_dump_buffer(u_int32_t addr, u_int32_t len)
1327 {
1328 	u_int i;
1329 	u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1((void *)addr);
1330 
1331 	if (len == 0)
1332 		return;
1333 
1334 	printf("%p: ", physaddr);
1335 
1336 	for (i = 0; i < len; i++) {
1337 		printf("%02x ", *(physaddr + i) & 0xff);
1338 		if ((i % 16) ==  15 && i != len - 1)
1339 		    printf("\n%p: ", physaddr + i);
1340 	}
1341 
1342 	printf("\n");
1343 }
1344 
1345 void
1346 enaddr_aton(const char* str, u_int8_t* eaddr)
1347 {
1348 	int i;
1349 	char c;
1350 
1351 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1352 		if (*str == ':')
1353 			str++;
1354 
1355 		c = *str++;
1356 		if (isdigit(c)) {
1357 			eaddr[i] = (c - '0');
1358 		} else if (isxdigit(c)) {
1359 			eaddr[i] = (toupper(c) + 10 - 'A');
1360 		}
1361 
1362 		c = *str++;
1363 		if (isdigit(c)) {
1364 			eaddr[i] = (eaddr[i] << 4) | (c - '0');
1365 		} else if (isxdigit(c)) {
1366 			eaddr[i] = (eaddr[i] << 4) | (toupper(c) + 10 - 'A');
1367 		}
1368 	}
1369 }
1370