1 /* $NetBSD: if_sq.c,v 1.60 2024/07/05 04:31:50 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Rafal K. Boni 5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * Portions of this code are derived from software contributed to The 9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.60 2024/07/05 04:31:50 rin Exp $"); 37 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/device.h> 42 #include <sys/callout.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/ioctl.h> 47 #include <sys/errno.h> 48 #include <sys/syslog.h> 49 50 #include <uvm/uvm_extern.h> 51 52 #include <machine/endian.h> 53 54 #include <net/if.h> 55 #include <net/if_dl.h> 56 #include <net/if_media.h> 57 #include <net/if_ether.h> 58 59 #include <net/bpf.h> 60 61 #include <sys/bus.h> 62 #include <machine/intr.h> 63 #include <machine/sysconf.h> 64 65 #include <dev/ic/seeq8003reg.h> 66 67 #include <sgimips/hpc/sqvar.h> 68 #include <sgimips/hpc/hpcvar.h> 69 #include <sgimips/hpc/hpcreg.h> 70 71 #include <dev/arcbios/arcbios.h> 72 #include <dev/arcbios/arcbiosvar.h> 73 74 #define static 75 76 /* 77 * Short TODO list: 78 * (1) Do counters for bad-RX packets. 79 * (2) Allow multi-segment transmits, instead of copying to a single, 80 * contiguous mbuf. 81 * (3) Verify sq_stop() turns off enough stuff; I was still getting 82 * seeq interrupts after sq_stop(). 83 * (4) Implement EDLC modes: especially packet auto-pad and simplex 84 * mode. 85 * (5) Should the driver filter out its own transmissions in non-EDLC 86 * mode? 87 * (6) Multicast support -- multicast filter, address management, ... 88 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need 89 * to figure out if RB0 is read-only as stated in one spot in the 90 * HPC spec or read-write (ie, is the 'write a one to clear it') 91 * the correct thing? 92 */ 93 94 #if defined(SQ_DEBUG) 95 int sq_debug = 0; 96 #define SQ_DPRINTF(x) if (sq_debug) printf x 97 #else 98 #define SQ_DPRINTF(x) 99 #endif 100 101 static int sq_match(device_t, cfdata_t, void *); 102 static void sq_attach(device_t, device_t, void *); 103 static int sq_init(struct ifnet *); 104 static void sq_start(struct ifnet *); 105 static void sq_stop(struct ifnet *, int); 106 static void sq_watchdog(struct ifnet *); 107 static int sq_ioctl(struct ifnet *, u_long, void *); 108 109 static void sq_set_filter(struct sq_softc *); 110 static int sq_intr(void *); 111 static int sq_rxintr(struct sq_softc *); 112 static int sq_txintr(struct sq_softc *); 113 static void sq_txring_hpc1(struct sq_softc *); 114 static void sq_txring_hpc3(struct sq_softc *); 115 static void sq_reset(struct sq_softc *); 116 static int sq_add_rxbuf(struct sq_softc *, int); 117 static void sq_dump_buffer(paddr_t, psize_t); 118 static void sq_trace_dump(struct sq_softc *); 119 120 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc), 121 sq_match, sq_attach, NULL, NULL); 122 123 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) 124 125 #define sq_seeq_read(sc, off) \ 126 bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3) 127 #define sq_seeq_write(sc, off, val) \ 128 bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val) 129 130 #define sq_hpc_read(sc, off) \ 131 bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off) 132 #define sq_hpc_write(sc, off, val) \ 133 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val) 134 135 /* MAC address offset for non-onboard implementations */ 136 #define SQ_HPC_EEPROM_ENADDR 250 137 138 #define SGI_OUI_0 0x08 139 #define SGI_OUI_1 0x00 140 #define SGI_OUI_2 0x69 141 142 static int 143 sq_match(device_t parent, cfdata_t cf, void *aux) 144 { 145 struct hpc_attach_args *ha = aux; 146 147 if (strcmp(ha->ha_name, cf->cf_name) == 0) { 148 vaddr_t reset, txstat; 149 150 reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh + 151 ha->ha_dmaoff + ha->hpc_regs->enetr_reset); 152 txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh + 153 ha->ha_devoff + (SEEQ_TXSTAT << 2)); 154 155 if (platform.badaddr((void *)reset, sizeof(reset))) 156 return 0; 157 158 *(volatile uint32_t *)reset = 0x1; 159 delay(20); 160 *(volatile uint32_t *)reset = 0x0; 161 162 if (platform.badaddr((void *)txstat, sizeof(txstat))) 163 return 0; 164 165 if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW) 166 return 1; 167 } 168 169 return 0; 170 } 171 172 static void 173 sq_attach(device_t parent, device_t self, void *aux) 174 { 175 int i, err; 176 const char* macaddr; 177 struct sq_softc *sc = device_private(self); 178 struct hpc_attach_args *haa = aux; 179 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 180 181 sc->sc_dev = self; 182 sc->sc_hpct = haa->ha_st; 183 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */ 184 185 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh, 186 haa->ha_dmaoff, sc->hpc_regs->enet_regs_size, 187 &sc->sc_hpch)) != 0) { 188 printf(": unable to map HPC DMA registers, error = %d\n", err); 189 goto fail_0; 190 } 191 192 sc->sc_regt = haa->ha_st; 193 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh, 194 haa->ha_devoff, sc->hpc_regs->enet_devregs_size, 195 &sc->sc_regh)) != 0) { 196 printf(": unable to map Seeq registers, error = %d\n", err); 197 goto fail_0; 198 } 199 200 sc->sc_dmat = haa->ha_dmat; 201 202 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control), 203 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg, 204 BUS_DMA_NOWAIT)) != 0) { 205 printf(": unable to allocate control data, error = %d\n", err); 206 goto fail_0; 207 } 208 209 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg, 210 sizeof(struct sq_control), (void **)&sc->sc_control, 211 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 212 printf(": unable to map control data, error = %d\n", err); 213 goto fail_1; 214 } 215 216 if ((err = bus_dmamap_create(sc->sc_dmat, 217 sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE, 218 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) { 219 printf(": unable to create DMA map for control data, error " 220 "= %d\n", err); 221 goto fail_2; 222 } 223 224 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, 225 sc->sc_control, sizeof(struct sq_control), NULL, 226 BUS_DMA_NOWAIT)) != 0) { 227 printf(": unable to load DMA map for control data, error " 228 "= %d\n", err); 229 goto fail_3; 230 } 231 232 memset(sc->sc_control, 0, sizeof(struct sq_control)); 233 234 /* Create transmit buffer DMA maps */ 235 for (i = 0; i < SQ_NTXDESC; i++) { 236 if ((err = bus_dmamap_create(sc->sc_dmat, 237 MCLBYTES, 1, MCLBYTES, 0, 238 BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) { 239 printf(": unable to create tx DMA map %d, error = %d\n", 240 i, err); 241 goto fail_4; 242 } 243 } 244 245 /* Create receive buffer DMA maps */ 246 for (i = 0; i < SQ_NRXDESC; i++) { 247 if ((err = bus_dmamap_create(sc->sc_dmat, 248 MCLBYTES, 1, MCLBYTES, 0, 249 BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) { 250 printf(": unable to create rx DMA map %d, error = %d\n", 251 i, err); 252 goto fail_5; 253 } 254 } 255 256 /* Pre-allocate the receive buffers. */ 257 for (i = 0; i < SQ_NRXDESC; i++) { 258 if ((err = sq_add_rxbuf(sc, i)) != 0) { 259 printf(": unable to allocate or map rx buffer %d\n," 260 " error = %d\n", i, err); 261 goto fail_6; 262 } 263 } 264 265 memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR], 266 ETHER_ADDR_LEN); 267 268 /* 269 * If our mac address is bogus, obtain it from ARCBIOS. This will 270 * be true of the onboard HPC3 on IP22, since there is no eeprom, 271 * but rather the DS1386 RTC's battery-backed ram is used. 272 */ 273 if (sc->sc_enaddr[0] != SGI_OUI_0 || 274 sc->sc_enaddr[1] != SGI_OUI_1 || 275 sc->sc_enaddr[2] != SGI_OUI_2) { 276 macaddr = arcbios_GetEnvironmentVariable("eaddr"); 277 if (macaddr == NULL) { 278 printf(": unable to get MAC address!\n"); 279 goto fail_6; 280 } 281 ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr); 282 } 283 284 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL, 285 device_xname(self), "intr"); 286 287 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) { 288 printf(": unable to establish interrupt!\n"); 289 goto fail_6; 290 } 291 292 /* Reset the chip to a known state. */ 293 sq_reset(sc); 294 295 /* 296 * Determine if we're an 8003 or 80c03 by setting the first 297 * MAC address register to non-zero, and then reading it back. 298 * If it's zero, we have an 80c03, because we will have read 299 * the TxCollLSB register. 300 */ 301 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5); 302 if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0) 303 sc->sc_type = SQ_TYPE_80C03; 304 else 305 sc->sc_type = SQ_TYPE_8003; 306 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00); 307 308 printf(": SGI Seeq %s\n", 309 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003"); 310 311 printf("%s: Ethernet address %s\n", 312 device_xname(self), ether_sprintf(sc->sc_enaddr)); 313 314 strcpy(ifp->if_xname, device_xname(self)); 315 ifp->if_softc = sc; 316 ifp->if_mtu = ETHERMTU; 317 ifp->if_init = sq_init; 318 ifp->if_stop = sq_stop; 319 ifp->if_start = sq_start; 320 ifp->if_ioctl = sq_ioctl; 321 ifp->if_watchdog = sq_watchdog; 322 ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST; 323 IFQ_SET_READY(&ifp->if_snd); 324 325 if_attach(ifp); 326 if_deferred_start_init(ifp, NULL); 327 ether_ifattach(ifp, sc->sc_enaddr); 328 329 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace)); 330 /* Done! */ 331 return; 332 333 /* 334 * Free any resources we've allocated during the failed attach 335 * attempt. Do this in reverse order and fall through. 336 */ 337 fail_6: 338 for (i = 0; i < SQ_NRXDESC; i++) { 339 if (sc->sc_rxmbuf[i] != NULL) { 340 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]); 341 m_freem(sc->sc_rxmbuf[i]); 342 } 343 } 344 fail_5: 345 for (i = 0; i < SQ_NRXDESC; i++) { 346 if (sc->sc_rxmap[i] != NULL) 347 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]); 348 } 349 fail_4: 350 for (i = 0; i < SQ_NTXDESC; i++) { 351 if (sc->sc_txmap[i] != NULL) 352 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]); 353 } 354 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap); 355 fail_3: 356 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap); 357 fail_2: 358 bus_dmamem_unmap(sc->sc_dmat, 359 (void *)sc->sc_control, sizeof(struct sq_control)); 360 fail_1: 361 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg); 362 fail_0: 363 return; 364 } 365 366 /* Set up data to get the interface up and running. */ 367 int 368 sq_init(struct ifnet *ifp) 369 { 370 int i; 371 struct sq_softc *sc = ifp->if_softc; 372 373 /* Cancel any in-progress I/O */ 374 sq_stop(ifp, 0); 375 376 sc->sc_nextrx = 0; 377 378 sc->sc_nfreetx = SQ_NTXDESC; 379 sc->sc_nexttx = sc->sc_prevtx = 0; 380 381 SQ_TRACE(SQ_RESET, sc, 0, 0); 382 383 /* Set into 8003 mode, bank 0 to program ethernet address */ 384 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0); 385 386 /* Now write the address */ 387 for (i = 0; i < ETHER_ADDR_LEN; i++) 388 sq_seeq_write(sc, i, sc->sc_enaddr[i]); 389 390 sc->sc_rxcmd = 391 RXCMD_IE_CRC | 392 RXCMD_IE_DRIB | 393 RXCMD_IE_SHORT | 394 RXCMD_IE_END | 395 RXCMD_IE_GOOD; 396 397 /* 398 * Set the receive filter -- this will add some bits to the 399 * prototype RXCMD register. Do this before setting the 400 * transmit config register, since we might need to switch 401 * banks. 402 */ 403 sq_set_filter(sc); 404 405 /* Set up Seeq transmit command register */ 406 sq_seeq_write(sc, SEEQ_TXCMD, 407 TXCMD_IE_UFLOW | 408 TXCMD_IE_COLL | 409 TXCMD_IE_16COLL | 410 TXCMD_IE_GOOD); 411 412 /* Now write the receive command register. */ 413 sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd); 414 415 /* 416 * Set up HPC ethernet PIO and DMA configurations. 417 * 418 * The PROM appears to do most of this for the onboard HPC3, but 419 * not for the Challenge S's IOPLUS chip. We copy how the onboard 420 * chip is configured and assume that it's correct for both. 421 */ 422 if (sc->hpc_regs->revision == 3) { 423 uint32_t dmareg, pioreg; 424 425 pioreg = 426 HPC3_ENETR_PIOCFG_P1(1) | 427 HPC3_ENETR_PIOCFG_P2(6) | 428 HPC3_ENETR_PIOCFG_P3(1); 429 430 dmareg = 431 HPC3_ENETR_DMACFG_D1(6) | 432 HPC3_ENETR_DMACFG_D2(2) | 433 HPC3_ENETR_DMACFG_D3(0) | 434 HPC3_ENETR_DMACFG_FIX_RXDC | 435 HPC3_ENETR_DMACFG_FIX_INTR | 436 HPC3_ENETR_DMACFG_FIX_EOP | 437 HPC3_ENETR_DMACFG_TIMEOUT; 438 439 sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg); 440 sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg); 441 } 442 443 /* Pass the start of the receive ring to the HPC */ 444 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0)); 445 446 /* And turn on the HPC ethernet receive channel */ 447 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 448 sc->hpc_regs->enetr_ctl_active); 449 450 /* 451 * Turn off delayed receive interrupts on HPC1. 452 * (see Hollywood HPC Specification 2.1.4.3) 453 */ 454 if (sc->hpc_regs->revision != 3) 455 sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF); 456 457 ifp->if_flags |= IFF_RUNNING; 458 459 return 0; 460 } 461 462 static void 463 sq_set_filter(struct sq_softc *sc) 464 { 465 struct ethercom *ec = &sc->sc_ethercom; 466 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 467 struct ether_multi *enm; 468 struct ether_multistep step; 469 470 /* 471 * Check for promiscuous mode. Also implies 472 * all-multicast. 473 */ 474 if (ifp->if_flags & IFF_PROMISC) { 475 sc->sc_rxcmd |= RXCMD_REC_ALL; 476 ifp->if_flags |= IFF_ALLMULTI; 477 return; 478 } 479 480 /* 481 * The 8003 has no hash table. If we have any multicast 482 * addresses on the list, enable reception of all multicast 483 * frames. 484 * 485 * XXX The 80c03 has a hash table. We should use it. 486 */ 487 488 ETHER_FIRST_MULTI(step, ec, enm); 489 490 if (enm == NULL) { 491 sc->sc_rxcmd &= ~RXCMD_REC_MASK; 492 sc->sc_rxcmd |= RXCMD_REC_BROAD; 493 494 ifp->if_flags &= ~IFF_ALLMULTI; 495 return; 496 } 497 498 sc->sc_rxcmd |= RXCMD_REC_MULTI; 499 ifp->if_flags |= IFF_ALLMULTI; 500 } 501 502 int 503 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data) 504 { 505 int s, error = 0; 506 507 SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0); 508 509 s = splnet(); 510 511 error = ether_ioctl(ifp, cmd, data); 512 if (error == ENETRESET) { 513 /* 514 * Multicast list has changed; set the hardware filter 515 * accordingly. 516 */ 517 if (ifp->if_flags & IFF_RUNNING) 518 error = sq_init(ifp); 519 else 520 error = 0; 521 } 522 523 splx(s); 524 return error; 525 } 526 527 void 528 sq_start(struct ifnet *ifp) 529 { 530 struct sq_softc *sc = ifp->if_softc; 531 uint32_t status; 532 struct mbuf *m0, *m; 533 bus_dmamap_t dmamap; 534 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg; 535 536 if ((ifp->if_flags & IFF_RUNNING) == 0) 537 return; 538 539 /* 540 * Remember the previous number of free descriptors and 541 * the first descriptor we'll use. 542 */ 543 ofree = sc->sc_nfreetx; 544 firsttx = sc->sc_nexttx; 545 546 /* 547 * Loop through the send queue, setting up transmit descriptors 548 * until we drain the queue, or use up all available transmit 549 * descriptors. 550 */ 551 while (sc->sc_nfreetx != 0) { 552 /* 553 * Grab a packet off the queue. 554 */ 555 IFQ_POLL(&ifp->if_snd, m0); 556 if (m0 == NULL) 557 break; 558 m = NULL; 559 560 dmamap = sc->sc_txmap[sc->sc_nexttx]; 561 562 /* 563 * Load the DMA map. If this fails, the packet either 564 * didn't fit in the allotted number of segments, or we were 565 * short on resources. In this case, we'll copy and try 566 * again. 567 * Also copy it if we need to pad, so that we are sure there 568 * is room for the pad buffer. 569 * XXX the right way of doing this is to use a static buffer 570 * for padding and adding it to the transmit descriptor (see 571 * sys/dev/pci/if_tl.c for example). We can't do this here yet 572 * because we can't send packets with more than one fragment. 573 */ 574 if (m0->m_pkthdr.len < ETHER_PAD_LEN || 575 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 576 BUS_DMA_NOWAIT) != 0) { 577 MGETHDR(m, M_DONTWAIT, MT_DATA); 578 if (m == NULL) { 579 printf("%s: unable to allocate Tx mbuf\n", 580 device_xname(sc->sc_dev)); 581 break; 582 } 583 if (m0->m_pkthdr.len > MHLEN) { 584 MCLGET(m, M_DONTWAIT); 585 if ((m->m_flags & M_EXT) == 0) { 586 printf("%s: unable to allocate Tx " 587 "cluster\n", 588 device_xname(sc->sc_dev)); 589 m_freem(m); 590 break; 591 } 592 } 593 594 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 595 if (m0->m_pkthdr.len < ETHER_PAD_LEN) { 596 memset(mtod(m, char *) + m0->m_pkthdr.len, 0, 597 ETHER_PAD_LEN - m0->m_pkthdr.len); 598 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN; 599 } else 600 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 601 602 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 603 m, BUS_DMA_NOWAIT)) != 0) { 604 printf("%s: unable to load Tx buffer, " 605 "error = %d\n", 606 device_xname(sc->sc_dev), err); 607 break; 608 } 609 } 610 611 /* 612 * Ensure we have enough descriptors free to describe 613 * the packet. 614 */ 615 if (dmamap->dm_nsegs > sc->sc_nfreetx) { 616 /* 617 * Not enough free descriptors to transmit this 618 * packet. We haven't committed to anything yet, 619 * so just unload the DMA map, put the packet 620 * back on the queue, and punt. 621 * 622 * XXX We could allocate an mbuf and copy, but 623 * XXX it is worth it? 624 */ 625 bus_dmamap_unload(sc->sc_dmat, dmamap); 626 m_freem(m); 627 break; 628 } 629 630 IFQ_DEQUEUE(&ifp->if_snd, m0); 631 /* 632 * Pass the packet to any BPF listeners. 633 */ 634 bpf_mtap(ifp, m0, BPF_D_OUT); 635 if (m != NULL) { 636 m_freem(m0); 637 m0 = m; 638 } 639 640 /* 641 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 642 */ 643 644 SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0); 645 646 /* Sync the DMA map. */ 647 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 648 BUS_DMASYNC_PREWRITE); 649 650 /* 651 * Initialize the transmit descriptors. 652 */ 653 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0; 654 seg < dmamap->dm_nsegs; 655 seg++, nexttx = SQ_NEXTTX(nexttx)) { 656 if (sc->hpc_regs->revision == 3) { 657 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr = 658 dmamap->dm_segs[seg].ds_addr; 659 sc->sc_txdesc[nexttx].hpc3_hdd_ctl = 660 dmamap->dm_segs[seg].ds_len; 661 } else { 662 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr = 663 dmamap->dm_segs[seg].ds_addr; 664 sc->sc_txdesc[nexttx].hpc1_hdd_ctl = 665 dmamap->dm_segs[seg].ds_len; 666 } 667 sc->sc_txdesc[nexttx].hdd_descptr = 668 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx)); 669 lasttx = nexttx; 670 totlen += dmamap->dm_segs[seg].ds_len; 671 } 672 673 /* Last descriptor gets end-of-packet */ 674 KASSERT(lasttx != -1); 675 if (sc->hpc_regs->revision == 3) 676 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |= 677 HPC3_HDD_CTL_EOPACKET; 678 else 679 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= 680 HPC1_HDD_CTL_EOPACKET; 681 682 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", 683 device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen)); 684 685 if (ifp->if_flags & IFF_DEBUG) { 686 printf(" transmit chain:\n"); 687 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) { 688 printf(" descriptor %d:\n", seg); 689 printf(" hdd_bufptr: 0x%08x\n", 690 (sc->hpc_regs->revision == 3) ? 691 sc->sc_txdesc[seg].hpc3_hdd_bufptr : 692 sc->sc_txdesc[seg].hpc1_hdd_bufptr); 693 printf(" hdd_ctl: 0x%08x\n", 694 (sc->hpc_regs->revision == 3) ? 695 sc->sc_txdesc[seg].hpc3_hdd_ctl: 696 sc->sc_txdesc[seg].hpc1_hdd_ctl); 697 printf(" hdd_descptr: 0x%08x\n", 698 sc->sc_txdesc[seg].hdd_descptr); 699 700 if (seg == lasttx) 701 break; 702 } 703 } 704 705 /* Sync the descriptors we're using. */ 706 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs, 707 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 708 709 /* Store a pointer to the packet so we can free it later */ 710 sc->sc_txmbuf[sc->sc_nexttx] = m0; 711 712 /* Advance the tx pointer. */ 713 sc->sc_nfreetx -= dmamap->dm_nsegs; 714 sc->sc_nexttx = nexttx; 715 } 716 717 if (sc->sc_nfreetx != ofree) { 718 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n", 719 device_xname(sc->sc_dev), lasttx - firsttx + 1, 720 firsttx, lasttx)); 721 722 /* 723 * Cause a transmit interrupt to happen on the 724 * last packet we enqueued, mark it as the last 725 * descriptor. 726 * 727 * HPC1_HDD_CTL_INTR will generate an interrupt on 728 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in 729 * addition to HPC3_HDD_CTL_INTR to interrupt. 730 */ 731 KASSERT(lasttx != -1); 732 if (sc->hpc_regs->revision == 3) { 733 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |= 734 HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN; 735 } else { 736 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR; 737 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |= 738 HPC1_HDD_CTL_EOCHAIN; 739 } 740 741 SQ_CDTXSYNC(sc, lasttx, 1, 742 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 743 744 /* 745 * There is a potential race condition here if the HPC 746 * DMA channel is active and we try and either update 747 * the 'next descriptor' pointer in the HPC PIO space 748 * or the 'next descriptor' pointer in a previous desc- 749 * riptor. 750 * 751 * To avoid this, if the channel is active, we rely on 752 * the transmit interrupt routine noticing that there 753 * are more packets to send and restarting the HPC DMA 754 * engine, rather than mucking with the DMA state here. 755 */ 756 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl); 757 758 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) { 759 SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status); 760 761 /* 762 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and 763 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN 764 */ 765 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &= 766 ~HPC3_HDD_CTL_EOCHAIN; 767 768 if (sc->hpc_regs->revision != 3) 769 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl 770 &= ~HPC1_HDD_CTL_INTR; 771 772 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1, 773 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 774 } else if (sc->hpc_regs->revision == 3) { 775 SQ_TRACE(SQ_START_DMA, sc, firsttx, status); 776 777 sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc, 778 firsttx)); 779 780 /* Kick DMA channel into life */ 781 sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE); 782 } else { 783 /* 784 * In the HPC1 case where transmit DMA is 785 * inactive, we can either kick off if 786 * the ring was previously empty, or call 787 * our transmit interrupt handler to 788 * figure out if the ring stopped short 789 * and restart at the right place. 790 */ 791 if (ofree == SQ_NTXDESC) { 792 SQ_TRACE(SQ_START_DMA, sc, firsttx, status); 793 794 sq_hpc_write(sc, HPC1_ENETX_NDBP, 795 SQ_CDTXADDR(sc, firsttx)); 796 sq_hpc_write(sc, HPC1_ENETX_CFXBP, 797 SQ_CDTXADDR(sc, firsttx)); 798 sq_hpc_write(sc, HPC1_ENETX_CBP, 799 SQ_CDTXADDR(sc, firsttx)); 800 801 /* Kick DMA channel into life */ 802 sq_hpc_write(sc, HPC1_ENETX_CTL, 803 HPC1_ENETX_CTL_ACTIVE); 804 } else 805 sq_txring_hpc1(sc); 806 } 807 808 /* Set a watchdog timer in case the chip flakes out. */ 809 ifp->if_timer = 5; 810 } 811 } 812 813 void 814 sq_stop(struct ifnet *ifp, int disable) 815 { 816 int i; 817 struct sq_softc *sc = ifp->if_softc; 818 819 for (i = 0; i < SQ_NTXDESC; i++) { 820 if (sc->sc_txmbuf[i] != NULL) { 821 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]); 822 m_freem(sc->sc_txmbuf[i]); 823 sc->sc_txmbuf[i] = NULL; 824 } 825 } 826 827 /* Clear Seeq transmit/receive command registers */ 828 sq_seeq_write(sc, SEEQ_TXCMD, 0); 829 sq_seeq_write(sc, SEEQ_RXCMD, 0); 830 831 sq_reset(sc); 832 833 ifp->if_flags &= ~IFF_RUNNING; 834 ifp->if_timer = 0; 835 } 836 837 /* Device timeout/watchdog routine. */ 838 void 839 sq_watchdog(struct ifnet *ifp) 840 { 841 uint32_t status; 842 struct sq_softc *sc = ifp->if_softc; 843 844 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl); 845 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, " 846 "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx, 847 sc->sc_nexttx, sc->sc_nfreetx, status); 848 849 sq_trace_dump(sc); 850 851 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace)); 852 sc->sq_trace_idx = 0; 853 854 if_statinc(ifp, if_oerrors); 855 856 sq_init(ifp); 857 } 858 859 static void 860 sq_trace_dump(struct sq_softc *sc) 861 { 862 int i; 863 const char *act; 864 865 for (i = 0; i < sc->sq_trace_idx; i++) { 866 switch (sc->sq_trace[i].action) { 867 case SQ_RESET: act = "SQ_RESET"; break; 868 case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break; 869 case SQ_START_DMA: act = "SQ_START_DMA"; break; 870 case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break; 871 case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break; 872 case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break; 873 case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break; 874 case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break; 875 case SQ_IOCTL: act = "SQ_IOCTL"; break; 876 case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break; 877 default: act = "UNKNOWN"; 878 } 879 880 printf("%s: [%03d] action %-16s buf %03d free %03d " 881 "status %08x line %d\n", device_xname(sc->sc_dev), i, act, 882 sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf, 883 sc->sq_trace[i].status, sc->sq_trace[i].line); 884 } 885 } 886 887 static int 888 sq_intr(void *arg) 889 { 890 struct sq_softc *sc = arg; 891 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 892 int handled = 0; 893 uint32_t stat; 894 895 stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset); 896 897 if ((stat & 2) == 0) { 898 SQ_DPRINTF(("%s: Unexpected interrupt!\n", 899 device_xname(sc->sc_dev))); 900 } else 901 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2)); 902 903 /* 904 * If the interface isn't running, the interrupt couldn't 905 * possibly have come from us. 906 */ 907 if ((ifp->if_flags & IFF_RUNNING) == 0) 908 return 0; 909 910 sc->sq_intrcnt.ev_count++; 911 912 /* Always check for received packets */ 913 if (sq_rxintr(sc) != 0) 914 handled++; 915 916 /* Only handle transmit interrupts if we actually sent something */ 917 if (sc->sc_nfreetx < SQ_NTXDESC) { 918 sq_txintr(sc); 919 handled++; 920 } 921 922 if (handled) 923 rnd_add_uint32(&sc->rnd_source, stat); 924 return handled; 925 } 926 927 static int 928 sq_rxintr(struct sq_softc *sc) 929 { 930 int count = 0; 931 struct mbuf* m; 932 int i, framelen; 933 uint8_t pktstat; 934 uint32_t status; 935 uint32_t ctl_reg; 936 int new_end, orig_end; 937 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 938 939 for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) { 940 SQ_CDRXSYNC(sc, i, 941 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 942 943 /* 944 * If this is a CPU-owned buffer, we're at the end of the list. 945 */ 946 if (sc->hpc_regs->revision == 3) 947 ctl_reg = 948 sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN; 949 else 950 ctl_reg = 951 sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN; 952 953 if (ctl_reg) { 954 #if defined(SQ_DEBUG) 955 uint32_t reg; 956 957 reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl); 958 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n", 959 device_xname(sc->sc_dev), i, reg)); 960 #endif 961 break; 962 } 963 964 count++; 965 966 m = sc->sc_rxmbuf[i]; 967 framelen = m->m_ext.ext_size - 3; 968 if (sc->hpc_regs->revision == 3) 969 framelen -= 970 HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl); 971 else 972 framelen -= 973 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl); 974 975 /* Now sync the actual packet data */ 976 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0, 977 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD); 978 979 pktstat = *((uint8_t *)m->m_data + framelen + 2); 980 981 if ((pktstat & RXSTAT_GOOD) == 0) { 982 if_statinc(ifp, if_ierrors); 983 984 if (pktstat & RXSTAT_OFLOW) 985 printf("%s: receive FIFO overflow\n", 986 device_xname(sc->sc_dev)); 987 988 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0, 989 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD); 990 SQ_INIT_RXDESC(sc, i); 991 SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n", 992 device_xname(sc->sc_dev), i)); 993 continue; 994 } 995 996 if (sq_add_rxbuf(sc, i) != 0) { 997 if_statinc(ifp, if_ierrors); 998 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0, 999 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD); 1000 SQ_INIT_RXDESC(sc, i); 1001 SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() " 1002 "failed\n", device_xname(sc->sc_dev), i)); 1003 continue; 1004 } 1005 1006 1007 m->m_data += 2; 1008 m_set_rcvif(m, ifp); 1009 m->m_pkthdr.len = m->m_len = framelen; 1010 1011 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n", 1012 device_xname(sc->sc_dev), i, framelen)); 1013 1014 if_percpuq_enqueue(ifp->if_percpuq, m); 1015 } 1016 1017 1018 /* If anything happened, move ring start/end pointers to new spot */ 1019 if (i != sc->sc_nextrx) { 1020 /* 1021 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and 1022 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN 1023 */ 1024 1025 new_end = SQ_PREVRX(i); 1026 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN; 1027 SQ_CDRXSYNC(sc, new_end, 1028 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1029 1030 orig_end = SQ_PREVRX(sc->sc_nextrx); 1031 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN; 1032 SQ_CDRXSYNC(sc, orig_end, 1033 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1034 1035 sc->sc_nextrx = i; 1036 } 1037 1038 status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl); 1039 1040 /* If receive channel is stopped, restart it... */ 1041 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) { 1042 /* Pass the start of the receive ring to the HPC */ 1043 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, 1044 SQ_CDRXADDR(sc, sc->sc_nextrx)); 1045 1046 /* And turn on the HPC ethernet receive channel */ 1047 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 1048 sc->hpc_regs->enetr_ctl_active); 1049 } 1050 1051 return count; 1052 } 1053 1054 static int 1055 sq_txintr(struct sq_softc *sc) 1056 { 1057 int shift = 0; 1058 uint32_t status, tmp; 1059 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1060 1061 if (sc->hpc_regs->revision != 3) 1062 shift = 16; 1063 1064 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift; 1065 1066 SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status); 1067 1068 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1069 tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD; 1070 if ((status & tmp) == 0) { 1071 if (status & TXSTAT_COLL) 1072 if_statinc_ref(ifp, nsr, if_collisions); 1073 1074 if (status & TXSTAT_UFLOW) { 1075 printf("%s: transmit underflow\n", 1076 device_xname(sc->sc_dev)); 1077 if_statinc_ref(ifp, nsr, if_oerrors); 1078 } 1079 1080 if (status & TXSTAT_16COLL) { 1081 printf("%s: max collisions reached\n", 1082 device_xname(sc->sc_dev)); 1083 if_statinc_ref(ifp, nsr, if_oerrors); 1084 if_statadd_ref(ifp, nsr, if_collisions, 16); 1085 } 1086 } 1087 IF_STAT_PUTREF(ifp); 1088 1089 /* prevtx now points to next xmit packet not yet finished */ 1090 if (sc->hpc_regs->revision == 3) 1091 sq_txring_hpc3(sc); 1092 else 1093 sq_txring_hpc1(sc); 1094 1095 /* If all packets have left the coop, cancel watchdog */ 1096 if (sc->sc_nfreetx == SQ_NTXDESC) 1097 ifp->if_timer = 0; 1098 1099 SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status); 1100 if_schedule_deferred_start(ifp); 1101 1102 return 1; 1103 } 1104 1105 /* 1106 * Reclaim used transmit descriptors and restart the transmit DMA 1107 * engine if necessary. 1108 */ 1109 static void 1110 sq_txring_hpc1(struct sq_softc *sc) 1111 { 1112 /* 1113 * HPC1 doesn't tag transmitted descriptors, however, 1114 * the NDBP register points to the next descriptor that 1115 * has not yet been processed. If DMA is not in progress, 1116 * we can safely reclaim all descriptors up to NDBP, and, 1117 * if necessary, restart DMA at NDBP. Otherwise, if DMA 1118 * is active, we can only safely reclaim up to CBP. 1119 * 1120 * For now, we'll only reclaim on inactive DMA and assume 1121 * that a sufficiently large ring keeps us out of trouble. 1122 */ 1123 uint32_t reclaimto, status; 1124 int reclaimall, i = sc->sc_prevtx; 1125 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1126 1127 status = sq_hpc_read(sc, HPC1_ENETX_CTL); 1128 if (status & HPC1_ENETX_CTL_ACTIVE) { 1129 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status); 1130 return; 1131 } else 1132 reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP); 1133 1134 if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto) 1135 reclaimall = 1; 1136 else 1137 reclaimall = 0; 1138 1139 while (sc->sc_nfreetx < SQ_NTXDESC) { 1140 if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall) 1141 break; 1142 1143 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs, 1144 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1145 1146 /* Sync the packet data, unload DMA map, free mbuf */ 1147 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 1148 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1149 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]); 1150 m_freem(sc->sc_txmbuf[i]); 1151 sc->sc_txmbuf[i] = NULL; 1152 1153 if_statinc(ifp, if_opackets); 1154 sc->sc_nfreetx++; 1155 1156 SQ_TRACE(SQ_DONE_DMA, sc, i, status); 1157 1158 i = SQ_NEXTTX(i); 1159 } 1160 1161 if (sc->sc_nfreetx < SQ_NTXDESC) { 1162 SQ_TRACE(SQ_RESTART_DMA, sc, i, status); 1163 1164 KASSERT(reclaimto == SQ_CDTXADDR(sc, i)); 1165 1166 sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto); 1167 sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto); 1168 1169 /* Kick DMA channel into life */ 1170 sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE); 1171 1172 /* 1173 * Set a watchdog timer in case the chip 1174 * flakes out. 1175 */ 1176 ifp->if_timer = 5; 1177 } 1178 1179 sc->sc_prevtx = i; 1180 } 1181 1182 /* 1183 * Reclaim used transmit descriptors and restart the transmit DMA 1184 * engine if necessary. 1185 */ 1186 static void 1187 sq_txring_hpc3(struct sq_softc *sc) 1188 { 1189 /* 1190 * HPC3 tags descriptors with a bit once they've been 1191 * transmitted. We need only free each XMITDONE'd 1192 * descriptor, and restart the DMA engine if any 1193 * descriptors are left over. 1194 */ 1195 int i; 1196 uint32_t status = 0; 1197 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1198 1199 i = sc->sc_prevtx; 1200 while (sc->sc_nfreetx < SQ_NTXDESC) { 1201 /* 1202 * Check status first so we don't end up with a case of 1203 * the buffer not being finished while the DMA channel 1204 * has gone idle. 1205 */ 1206 status = sq_hpc_read(sc, HPC3_ENETX_CTL); 1207 1208 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs, 1209 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1210 1211 /* Check for used descriptor and restart DMA chain if needed */ 1212 if ((sc->sc_txdesc[i].hpc3_hdd_ctl & 1213 HPC3_HDD_CTL_XMITDONE) == 0) { 1214 if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) { 1215 SQ_TRACE(SQ_RESTART_DMA, sc, i, status); 1216 1217 sq_hpc_write(sc, HPC3_ENETX_NDBP, 1218 SQ_CDTXADDR(sc, i)); 1219 1220 /* Kick DMA channel into life */ 1221 sq_hpc_write(sc, HPC3_ENETX_CTL, 1222 HPC3_ENETX_CTL_ACTIVE); 1223 1224 /* 1225 * Set a watchdog timer in case the chip 1226 * flakes out. 1227 */ 1228 ifp->if_timer = 5; 1229 } else 1230 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status); 1231 break; 1232 } 1233 1234 /* Sync the packet data, unload DMA map, free mbuf */ 1235 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 1236 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1237 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]); 1238 m_freem(sc->sc_txmbuf[i]); 1239 sc->sc_txmbuf[i] = NULL; 1240 1241 if_statinc(ifp, if_opackets); 1242 sc->sc_nfreetx++; 1243 1244 SQ_TRACE(SQ_DONE_DMA, sc, i, status); 1245 i = SQ_NEXTTX(i); 1246 } 1247 1248 sc->sc_prevtx = i; 1249 } 1250 1251 void 1252 sq_reset(struct sq_softc *sc) 1253 { 1254 1255 /* Stop HPC dma channels */ 1256 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0); 1257 sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0); 1258 1259 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3); 1260 delay(20); 1261 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0); 1262 } 1263 1264 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */ 1265 int 1266 sq_add_rxbuf(struct sq_softc *sc, int idx) 1267 { 1268 int err; 1269 struct mbuf *m; 1270 1271 MGETHDR(m, M_DONTWAIT, MT_DATA); 1272 if (m == NULL) 1273 return ENOBUFS; 1274 1275 MCLGET(m, M_DONTWAIT); 1276 if ((m->m_flags & M_EXT) == 0) { 1277 m_freem(m); 1278 return ENOBUFS; 1279 } 1280 1281 if (sc->sc_rxmbuf[idx] != NULL) 1282 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]); 1283 1284 sc->sc_rxmbuf[idx] = m; 1285 1286 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx], 1287 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) { 1288 printf("%s: can't load rx DMA map %d, error = %d\n", 1289 device_xname(sc->sc_dev), idx, err); 1290 panic("sq_add_rxbuf"); /* XXX */ 1291 } 1292 1293 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 1294 0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD); 1295 1296 SQ_INIT_RXDESC(sc, idx); 1297 1298 return 0; 1299 } 1300 1301 void 1302 sq_dump_buffer(paddr_t addr, psize_t len) 1303 { 1304 u_int i; 1305 uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr); 1306 1307 if (len == 0) 1308 return; 1309 1310 printf("%p: ", physaddr); 1311 1312 for (i = 0; i < len; i++) { 1313 printf("%02x ", *(physaddr + i) & 0xff); 1314 if ((i % 16) == 15 && i != len - 1) 1315 printf("\n%p: ", physaddr + i); 1316 } 1317 1318 printf("\n"); 1319 } 1320