1 /* $NetBSD: zs.c,v 1.16 2002/10/02 15:52:33 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross and Wayne Knowles 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Zilog Z8530 Dual UART driver (machine-dependent part) 41 * 42 * Runs two serial lines per chip using slave drivers. 43 * Plain tty/async lines use the zs_async slave. 44 */ 45 46 #include "opt_ddb.h" 47 #include "opt_kgdb.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/conf.h> 52 #include <sys/device.h> 53 #include <sys/file.h> 54 #include <sys/ioctl.h> 55 #include <sys/kernel.h> 56 #include <sys/proc.h> 57 #include <sys/tty.h> 58 #include <sys/time.h> 59 #include <sys/syslog.h> 60 61 #include <machine/cpu.h> 62 #include <machine/intr.h> 63 #include <machine/autoconf.h> 64 #include <machine/z8530var.h> 65 66 #include <dev/cons.h> 67 #include <dev/ic/z8530reg.h> 68 69 #include <sgimips/hpc/hpcvar.h> 70 #include <sgimips/hpc/hpcreg.h> 71 72 #include <dev/arcbios/arcbios.h> 73 #include <dev/arcbios/arcbiosvar.h> 74 75 /* 76 * Some warts needed by z8530tty.c - 77 * The default parity REALLY needs to be the same as the PROM uses, 78 * or you can not see messages done with printf during boot-up... 79 */ 80 int zs_def_cflag = (CREAD | CS8 | HUPCL); 81 82 #define PCLK 3672000 /* PCLK pin input clock rate */ 83 84 #ifndef ZS_DEFSPEED 85 #define ZS_DEFSPEED 9600 86 #endif 87 88 /* 89 * Define interrupt levels. 90 */ 91 #define ZSHARD_PRI 64 92 93 /* SGI shouldn't need ZS_DELAY() as recovery time is done in hardware? */ 94 #define ZS_DELAY() delay(3) 95 96 /* The layout of this is hardware-dependent (padding, order). */ 97 struct zschan { 98 u_char pad1[3]; 99 volatile u_char zc_csr; /* ctrl,status, and indirect access */ 100 u_char pad2[3]; 101 volatile u_char zc_data; /* data */ 102 }; 103 104 struct zsdevice { 105 struct zschan zs_chan_b; 106 struct zschan zs_chan_a; 107 }; 108 109 /* Return the byte offset of element within a structure */ 110 #define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el) 111 112 #define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a) 113 #define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b) 114 #define ZS_REG_CSR 0 115 #define ZS_REG_DATA 1 116 static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B}; 117 118 static void zscnprobe __P((struct consdev *)); 119 static void zscninit __P((struct consdev *)); 120 static int zscngetc __P((dev_t)); 121 static void zscnputc __P((dev_t, int)); 122 static void zscnpollc __P((dev_t, int)); 123 124 static int cons_port; 125 126 struct consdev zs_cn = { 127 zscnprobe, 128 zscninit, 129 zscngetc, 130 zscnputc, 131 zscnpollc 132 }; 133 134 /* Flags from cninit() */ 135 static int zs_consunit = -1; 136 static int zs_conschan = -1; 137 138 /* Default speed for all channels */ 139 static int zs_defspeed = ZS_DEFSPEED; 140 static volatile int zssoftpending; 141 142 static u_char zs_init_reg[16] = { 143 0, /* 0: CMD (reset, etc.) */ 144 0, /* 1: No interrupts yet. */ 145 ZSHARD_PRI, /* 2: IVECT */ 146 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 147 ZSWR4_CLK_X16 | ZSWR4_ONESB, 148 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 149 0, /* 6: TXSYNC/SYNCLO */ 150 0, /* 7: RXSYNC/SYNCHI */ 151 0, /* 8: alias for data port */ 152 ZSWR9_MASTER_IE, 153 0, /*10: Misc. TX/RX control bits */ 154 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA, 155 BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */ 156 0, /*13: BAUDHI (default=9600) */ 157 ZSWR14_BAUD_ENA, 158 ZSWR15_BREAK_IE, 159 }; 160 161 162 /**************************************************************** 163 * Autoconfig 164 ****************************************************************/ 165 166 /* Definition of the driver for autoconfig. */ 167 static int zs_hpc_match __P((struct device *, struct cfdata *, void *)); 168 static void zs_hpc_attach __P((struct device *, struct device *, void *)); 169 static int zs_print __P((void *, const char *name)); 170 171 CFATTACH_DECL(zsc_hpc, sizeof(struct zsc_softc), 172 zs_hpc_match, zs_hpc_attach, NULL, NULL); 173 174 extern struct cfdriver zsc_cd; 175 176 static int zshard __P((void *)); 177 void zssoft __P((void *)); 178 static int zs_get_speed __P((struct zs_chanstate *)); 179 struct zschan *zs_get_chan_addr (int zs_unit, int channel); 180 int zs_getc __P((void *)); 181 void zs_putc __P((void *, int)); 182 183 /* 184 * Is the zs chip present? 185 */ 186 static int 187 zs_hpc_match(parent, cf, aux) 188 struct device *parent; 189 struct cfdata *cf; 190 void *aux; 191 { 192 struct hpc_attach_args *ha = aux; 193 194 if (strcmp(ha->ha_name, cf->cf_name) == 0) 195 return (1); 196 197 return (0); 198 } 199 200 /* 201 * Attach a found zs. 202 * 203 * Match slave number to zs unit number, so that misconfiguration will 204 * not set up the keyboard as ttya, etc. 205 */ 206 static void 207 zs_hpc_attach(parent, self, aux) 208 struct device *parent; 209 struct device *self; 210 void *aux; 211 { 212 struct zsc_softc *zsc = (void *) self; 213 struct hpc_attach_args *haa = aux; 214 struct zsc_attach_args zsc_args; 215 struct zs_chanstate *cs; 216 struct zs_channel *ch; 217 int zs_unit, channel, err, s; 218 char *promconsdev; 219 220 promconsdev = ARCBIOS->GetEnvironmentVariable("ConsoleOut"); 221 222 zsc->zsc_bustag = haa->ha_st; 223 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh, 224 haa->ha_devoff, 0x10, 225 &zsc->zsc_base)) != 0) { 226 printf(": unable to map 85c30 registers, error = %d\n", err); 227 return; 228 } 229 230 zs_unit = zsc->zsc_dev.dv_unit; 231 printf("\n"); 232 233 /* 234 * Initialize software state for each channel. 235 * 236 * Done in reverse order of channels since the first serial port 237 * is actually attached to the *second* channel, and vice versa. 238 * Doing it this way should force a 'zstty*' to attach zstty0 to 239 * channel 1 and zstty1 to channel 0. They couldn't have wired 240 * it up in a more sensible fashion, could they? 241 */ 242 for (channel = 1; channel >= 0; channel--) { 243 zsc_args.channel = channel; 244 ch = &zsc->zsc_cs_store[channel]; 245 cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch; 246 247 cs->cs_reg_csr = NULL; 248 cs->cs_reg_data = NULL; 249 cs->cs_channel = channel; 250 cs->cs_private = NULL; 251 cs->cs_ops = &zsops_null; 252 cs->cs_brg_clk = PCLK / 16; 253 254 if (bus_space_subregion(zsc->zsc_bustag, zsc->zsc_base, 255 zs_chan_offset[channel], 256 sizeof(struct zschan), 257 &ch->cs_regs) != 0) { 258 printf(": cannot map regs\n"); 259 return; 260 } 261 ch->cs_bustag = zsc->zsc_bustag; 262 263 memcpy(cs->cs_creg, zs_init_reg, 16); 264 memcpy(cs->cs_preg, zs_init_reg, 16); 265 266 zsc_args.hwflags = 0; 267 zsc_args.consdev = NULL; 268 269 if (zs_consunit == -1 && zs_conschan == -1) { 270 /* 271 * If this channel is being used by the PROM console, 272 * pass the generic zs driver a 'no reset' flag so the 273 * channel gets left in the appropriate state after 274 * attach. 275 * 276 * Note: the channel mappings are swapped. 277 */ 278 if (promconsdev != NULL && 279 strlen(promconsdev) == 9 && 280 strncmp(promconsdev, "serial", 6) == 0 && 281 (promconsdev[7] == '0' || promconsdev[7] == '1')) { 282 if (promconsdev[7] == '1' && channel == 0) 283 zsc_args.hwflags |= ZS_HWFLAG_NORESET; 284 else if (promconsdev[7] == '0' && channel == 1) 285 zsc_args.hwflags |= ZS_HWFLAG_NORESET; 286 } 287 } 288 289 /* If console, don't stomp speed, let zstty know */ 290 if (zs_unit == zs_consunit && channel == zs_conschan) { 291 zsc_args.consdev = &zs_cn; 292 zsc_args.hwflags = ZS_HWFLAG_CONSOLE; 293 294 cs->cs_defspeed = zs_get_speed(cs); 295 } else 296 cs->cs_defspeed = zs_defspeed; 297 298 cs->cs_defcflag = zs_def_cflag; 299 300 /* Make these correspond to cs_defcflag (-crtscts) */ 301 cs->cs_rr0_dcd = ZSRR0_DCD; 302 cs->cs_rr0_cts = 0; 303 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 304 cs->cs_wr5_rts = 0; 305 306 /* 307 * Clear the master interrupt enable. 308 * The INTENA is common to both channels, 309 * so just do it on the A channel. 310 */ 311 if (channel == 0) { 312 zs_write_reg(cs, 9, 0); 313 } 314 /* 315 * Look for a child driver for this channel. 316 * The child attach will setup the hardware. 317 */ 318 if (!config_found(self, (void *)&zsc_args, zs_print)) { 319 /* No sub-driver. Just reset it. */ 320 u_char reset = (channel == 0) ? 321 ZSWR9_A_RESET : ZSWR9_B_RESET; 322 323 s = splhigh(); 324 zs_write_reg(cs, 9, reset); 325 splx(s); 326 } 327 } 328 329 330 zsc->sc_si = softintr_establish(IPL_SOFTSERIAL, zssoft, zsc); 331 cpu_intr_establish(haa->ha_irq, IPL_TTY, zshard, NULL); 332 333 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL, 334 self->dv_xname, "intr"); 335 336 /* 337 * Set the master interrupt enable and interrupt vector. 338 * (common to both channels, do it on A) 339 */ 340 cs = zsc->zsc_cs[0]; 341 s = splhigh(); 342 /* interrupt vector */ 343 zs_write_reg(cs, 2, zs_init_reg[2]); 344 /* master interrupt control (enable) */ 345 zs_write_reg(cs, 9, zs_init_reg[9]); 346 splx(s); 347 } 348 349 static int 350 zs_print(aux, name) 351 void *aux; 352 const char *name; 353 { 354 struct zsc_attach_args *args = aux; 355 356 if (name != NULL) 357 printf("%s: ", name); 358 359 if (args->channel != -1) 360 printf(" channel %d", args->channel); 361 362 return UNCONF; 363 } 364 365 /* 366 * Our ZS chips all share a common, autovectored interrupt, 367 * so we have to look at all of them on each interrupt. 368 */ 369 static int 370 zshard(arg) 371 void *arg; 372 { 373 register struct zsc_softc *zsc; 374 register int rr3, unit, rval, softreq; 375 376 rval = 0; 377 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { 378 zsc = zsc_cd.cd_devs[unit]; 379 if (zsc == NULL) 380 continue; 381 382 zsc->zsc_intrcnt.ev_count++; 383 while ((rr3 = zsc_intr_hard(zsc))) { 384 rval |= rr3; 385 } 386 387 softreq = zsc->zsc_cs[0]->cs_softreq; 388 softreq |= zsc->zsc_cs[1]->cs_softreq; 389 if (softreq && (zssoftpending == 0)) { 390 zssoftpending = 1; 391 softintr_schedule(zsc->sc_si); 392 } 393 } 394 return rval; 395 } 396 397 /* 398 * Similar scheme as for zshard (look at all of them) 399 */ 400 void 401 zssoft(arg) 402 void *arg; 403 { 404 register struct zsc_softc *zsc; 405 register int s, unit; 406 407 /* This is not the only ISR on this IPL. */ 408 if (zssoftpending == 0) 409 return; 410 411 /* 412 * The soft intr. bit will be set by zshard only if 413 * the variable zssoftpending is zero. The order of 414 * these next two statements prevents our clearing 415 * the soft intr bit just after zshard has set it. 416 */ 417 /*isr_soft_clear(ZSSOFT_PRI);*/ 418 zssoftpending = 0; 419 420 /* Make sure we call the tty layer at spltty. */ 421 s = spltty(); 422 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { 423 zsc = zsc_cd.cd_devs[unit]; 424 if (zsc == NULL) 425 continue; 426 (void) zsc_intr_soft(zsc); 427 } 428 splx(s); 429 return; 430 } 431 432 433 /* 434 * Compute the current baud rate given a ZS channel. 435 */ 436 static int 437 zs_get_speed(cs) 438 struct zs_chanstate *cs; 439 { 440 int tconst; 441 442 tconst = zs_read_reg(cs, 12); 443 tconst |= zs_read_reg(cs, 13) << 8; 444 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 445 } 446 447 /* 448 * MD functions for setting the baud rate and control modes. 449 */ 450 int 451 zs_set_speed(cs, bps) 452 struct zs_chanstate *cs; 453 int bps; /* bits per second */ 454 { 455 int tconst, real_bps; 456 457 #if 0 458 while (!(zs_read_csr(cs) & ZSRR0_TX_READY)) 459 {/*nop*/} 460 #endif 461 /* Wait for transmit buffer to empty */ 462 if (bps == 0) { 463 return (0); 464 } 465 466 #ifdef DIAGNOSTIC 467 if (cs->cs_brg_clk == 0) 468 panic("zs_set_speed"); 469 #endif 470 471 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 472 if (tconst < 0) 473 return (EINVAL); 474 475 /* Convert back to make sure we can do it. */ 476 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 477 478 /* XXX - Allow some tolerance here? */ 479 #if 0 480 if (real_bps != bps) 481 return (EINVAL); 482 #endif 483 484 cs->cs_preg[12] = tconst; 485 cs->cs_preg[13] = tconst >> 8; 486 487 /* Caller will stuff the pending registers. */ 488 return (0); 489 } 490 491 int 492 zs_set_modes(cs, cflag) 493 struct zs_chanstate *cs; 494 int cflag; /* bits per second */ 495 { 496 int s; 497 498 /* 499 * Output hardware flow control on the chip is horrendous: 500 * if carrier detect drops, the receiver is disabled, and if 501 * CTS drops, the transmitter is stoped IN MID CHARACTER! 502 * Therefore, NEVER set the HFC bit, and instead use the 503 * status interrupt to detect CTS changes. 504 */ 505 s = splzs(); 506 cs->cs_rr0_pps = 0; 507 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 508 cs->cs_rr0_dcd = 0; 509 if ((cflag & MDMBUF) == 0) 510 cs->cs_rr0_pps = ZSRR0_DCD; 511 } else 512 cs->cs_rr0_dcd = ZSRR0_DCD; 513 if ((cflag & CRTSCTS) != 0) { 514 cs->cs_wr5_dtr = ZSWR5_DTR; 515 cs->cs_wr5_rts = ZSWR5_RTS; 516 cs->cs_rr0_cts = ZSRR0_CTS; 517 } else if ((cflag & MDMBUF) != 0) { 518 cs->cs_wr5_dtr = 0; 519 cs->cs_wr5_rts = ZSWR5_DTR; 520 cs->cs_rr0_cts = ZSRR0_DCD; 521 } else { 522 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 523 cs->cs_wr5_rts = 0; 524 cs->cs_rr0_cts = 0; 525 } 526 splx(s); 527 528 /* Caller will stuff the pending registers. */ 529 return (0); 530 } 531 532 533 /* 534 * Read or write the chip with suitable delays. 535 */ 536 537 u_char 538 zs_read_reg(cs, reg) 539 struct zs_chanstate *cs; 540 u_char reg; 541 { 542 u_char val; 543 struct zs_channel *zsc = (struct zs_channel *)cs; 544 545 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); 546 ZS_DELAY(); 547 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); 548 ZS_DELAY(); 549 return val; 550 } 551 552 void 553 zs_write_reg(cs, reg, val) 554 struct zs_chanstate *cs; 555 u_char reg, val; 556 { 557 struct zs_channel *zsc = (struct zs_channel *)cs; 558 559 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); 560 ZS_DELAY(); 561 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); 562 ZS_DELAY(); 563 } 564 565 u_char 566 zs_read_csr(cs) 567 struct zs_chanstate *cs; 568 { 569 struct zs_channel *zsc = (struct zs_channel *)cs; 570 register u_char val; 571 572 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); 573 ZS_DELAY(); 574 return val; 575 } 576 577 void 578 zs_write_csr(cs, val) 579 struct zs_chanstate *cs; 580 u_char val; 581 { 582 struct zs_channel *zsc = (struct zs_channel *)cs; 583 584 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); 585 ZS_DELAY(); 586 } 587 588 u_char 589 zs_read_data(cs) 590 struct zs_chanstate *cs; 591 { 592 struct zs_channel *zsc = (struct zs_channel *)cs; 593 register u_char val; 594 595 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA); 596 ZS_DELAY(); 597 return val; 598 } 599 600 void 601 zs_write_data(cs, val) 602 struct zs_chanstate *cs; 603 u_char val; 604 { 605 struct zs_channel *zsc = (struct zs_channel *)cs; 606 607 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val); 608 ZS_DELAY(); 609 } 610 611 void 612 zs_abort(cs) 613 struct zs_chanstate *cs; 614 { 615 #if defined(KGDB) 616 zskgdb(cs); 617 #elif defined(DDB) 618 Debugger(); 619 #endif 620 } 621 622 623 /*********************************************************/ 624 /* Polled character I/O functions for console and KGDB */ 625 /*********************************************************/ 626 627 struct zschan * 628 zs_get_chan_addr(zs_unit, channel) 629 int zs_unit, channel; 630 { 631 static int dumped_addr = 0; 632 struct zsdevice *addr; 633 struct zschan *zc; 634 635 addr = (struct zsdevice *) MIPS_PHYS_TO_KSEG1(0x1fbd9830); 636 637 if (channel == 0) { 638 zc = &addr->zs_chan_b; 639 } else { 640 zc = &addr->zs_chan_a; 641 } 642 643 if (dumped_addr == 0) { 644 dumped_addr++; 645 printf("zs channel %d had address %p\n", channel, zc); 646 } 647 648 return (zc); 649 } 650 651 int 652 zs_getc(arg) 653 void *arg; 654 { 655 register volatile struct zschan *zc = arg; 656 register int s, c, rr0; 657 658 s = splzs(); 659 /* Wait for a character to arrive. */ 660 do { 661 rr0 = zc->zc_csr; 662 ZS_DELAY(); 663 } while ((rr0 & ZSRR0_RX_READY) == 0); 664 665 c = zc->zc_data; 666 ZS_DELAY(); 667 splx(s); 668 669 return (c); 670 } 671 672 /* 673 * Polled output char. 674 */ 675 void 676 zs_putc(arg, c) 677 void *arg; 678 int c; 679 { 680 register volatile struct zschan *zc = arg; 681 register int s, rr0; 682 683 s = splzs(); 684 /* Wait for transmitter to become ready. */ 685 do { 686 rr0 = zc->zc_csr; 687 ZS_DELAY(); 688 } while ((rr0 & ZSRR0_TX_READY) == 0); 689 690 zc->zc_data = c; 691 wbflush(); 692 ZS_DELAY(); 693 splx(s); 694 } 695 696 /***************************************************************/ 697 void 698 zscnprobe(cn) 699 struct consdev *cn; 700 { 701 } 702 703 void 704 zscninit(cn) 705 struct consdev *cn; 706 { 707 extern const struct cdevsw zstty_cdevsw; 708 char* consdev; 709 710 if ((consdev = ARCBIOS->GetEnvironmentVariable("ConsoleOut")) == NULL) 711 panic("zscninit without valid ARCS ConsoleOut setting!"); 712 713 if (strlen(consdev) != 9 || 714 strncmp(consdev, "serial", 6) != 0) 715 panic("zscninit with ARCS console not set to serial!"); 716 717 cons_port = consdev[7] - '0'; 718 719 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port); 720 cn->cn_pri = CN_REMOTE; 721 722 /* Mark this unit as the console */ 723 zs_consunit = 0; 724 725 /* SGI hardware wires serial port 1 to channel B, port 2 to A */ 726 if (cons_port == 0) 727 zs_conschan = 1; 728 else 729 zs_conschan = 0; 730 } 731 732 int 733 zscngetc(dev) 734 dev_t dev; 735 { 736 struct zschan *zs; 737 738 zs = zs_get_chan_addr(0, cons_port); 739 return zs_getc(zs); 740 } 741 742 void 743 zscnputc(dev, c) 744 dev_t dev; 745 int c; 746 { 747 struct zschan *zs; 748 749 zs = zs_get_chan_addr(0, cons_port); 750 zs_putc(zs, c); 751 } 752 753 void 754 zscnpollc(dev, on) 755 dev_t dev; 756 int on; 757 { 758 } 759