1 /* $NetBSD: skg.c,v 1.4 2011/10/30 21:08:33 phx Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 Frank Wille. 5 * All rights reserved. 6 * 7 * Written by Frank Wille for The NetBSD Project. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 33 #include <netinet/in.h> 34 #include <netinet/in_systm.h> 35 36 #include <lib/libsa/stand.h> 37 #include <lib/libsa/net.h> 38 39 #include "globals.h" 40 41 /* 42 * - reverse endian access every CSR. 43 * - no vtophys() translation, vaddr_t == paddr_t. 44 * - PIPT writeback cache aware. 45 */ 46 #define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v)) 47 #define CSR_READ_1(l, r) in8((l)->csr+(r)) 48 #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v)) 49 #define CSR_READ_2(l, r) in16rb((l)->csr+(r)) 50 #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v)) 51 #define CSR_READ_4(l, r) in32rb((l)->csr+(r)) 52 #define VTOPHYS(va) (uint32_t)(va) 53 #define DEVTOV(pa) (uint32_t)(pa) 54 #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz)) 55 #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz)) 56 #define DELAY(n) delay(n) 57 #define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A)) 58 59 struct desc { 60 uint32_t xd0, xd1, xd2, xd3, xd4; 61 uint32_t rsrvd[3]; 62 }; 63 #define CTL_LS 0x20000000 64 #define CTL_FS 0x40000000 65 #define CTL_OWN 0x80000000 66 #define CTL_DEFOPC 0x00550000 67 #define FRAMEMASK 0x0000ffff 68 #define RXSTAT_RXOK 0x00000100 69 70 #define SK_CSR 0x0004 71 #define CSR_SW_RESET 0x0001 72 #define CSR_SW_UNRESET 0x0002 73 #define CSR_MASTER_RESET 0x0004 74 #define CSR_MASTER_UNRESET 0x0008 75 #define SK_IMR 0x000c 76 #define SK_BMU_RX_CSR0 0x0060 77 #define SK_BMU_TXS_CSR0 0x0068 78 #define SK_MAC0 0x0100 79 #define SK_MAC1 0x0108 80 #define SK_GPIO 0x015c 81 #define SK_RAMCTL 0x01a0 82 #define SK_TXAR1_COUNTERCTL 0x0210 83 #define TXARCTL_ON 0x02 84 #define TXARCTL_FSYNC_ON 0x80 85 #define SK_RXQ1_CURADDR_LO 0x0420 86 #define SK_RXQ1_CURADDR_HI 0x0424 87 #define SK_RXQ1_BMU_CSR 0x0434 88 #define RXBMU_CLR_IRQ_EOF 0x00000002 89 #define RXBMU_RX_START 0x00000010 90 #define RXBMU_RX_STOP 0x00000020 91 #define RXBMU_POLL_ON 0x00000080 92 #define RXBMU_TRANSFER_SM_UNRESET 0x00000200 93 #define RXBMU_DESCWR_SM_UNRESET 0x00000800 94 #define RXBMU_DESCRD_SM_UNRESET 0x00002000 95 #define RXBMU_SUPERVISOR_SM_UNRESET 0x00008000 96 #define RXBMU_PFI_SM_UNRESET 0x00020000 97 #define RXBMU_FIFO_UNRESET 0x00080000 98 #define RXBMU_DESC_UNRESET 0x00200000 99 #define SK_TXQS1_CURADDR_LO 0x0620 100 #define SK_TXQS1_CURADDR_HI 0x0624 101 #define SK_TXQS1_BMU_CSR 0x0634 102 #define TXBMU_CLR_IRQ_EOF 0x00000002 103 #define TXBMU_TX_START 0x00000010 104 #define TXBMU_TX_STOP 0x00000020 105 #define TXBMU_POLL_ON 0x00000080 106 #define TXBMU_TRANSFER_SM_UNRESET 0x00000200 107 #define TXBMU_DESCWR_SM_UNRESET 0x00000800 108 #define TXBMU_DESCRD_SM_UNRESET 0x00002000 109 #define TXBMU_SUPERVISOR_SM_UNRESET 0x00008000 110 #define TXBMU_PFI_SM_UNRESET 0x00020000 111 #define TXBMU_FIFO_UNRESET 0x00080000 112 #define TXBMU_DESC_UNRESET 0x00200000 113 #define SK_RXRB1_START 0x0800 114 #define SK_RXRB1_END 0x0804 115 #define SK_RXRB1_WR_PTR 0x0808 116 #define SK_RXRB1_RD_PTR 0x080c 117 #define SK_RXRB1_CTLTST 0x0828 118 #define RBCTL_UNRESET 0x02 119 #define RBCTL_ON 0x08 120 #define RBCTL_STORENFWD_ON 0x20 121 #define SK_TXRBS1_START 0x0a00 122 #define SK_TXRBS1_END 0x0a04 123 #define SK_TXRBS1_WR_PTR 0x0a08 124 #define SK_TXRBS1_RD_PTR 0x0a0c 125 #define SK_TXRBS1_CTLTST 0x0a28 126 #define SK_RXMF1_CTRL_TEST 0x0c48 127 #define RFCTL_OPERATION_ON 0x00000008 128 #define RFCTL_RESET_CLEAR 0x00000002 129 #define SK_TXMF1_CTRL_TEST 0x0D48 130 #define TFCTL_OPERATION_ON 0x00000008 131 #define TFCTL_RESET_CLEAR 0x00000002 132 #define SK_GMAC_CTRL 0x0f00 133 #define GMAC_LOOP_OFF 0x00000010 134 #define GMAC_PAUSE_ON 0x00000008 135 #define GMAC_RESET_CLEAR 0x00000002 136 #define GMAC_RESET_SET 0x00000001 137 #define SK_GPHY_CTRL 0x0f04 138 #define GPHY_INT_POL_HI 0x08000000 139 #define GPHY_DIS_FC 0x02000000 140 #define GPHY_DIS_SLEEP 0x01000000 141 #define GPHY_ENA_XC 0x00040000 142 #define GPHY_ENA_PAUSE 0x00002000 143 #define GPHY_RESET_CLEAR 0x00000002 144 #define GPHY_RESET_SET 0x00000001 145 #define GPHY_ANEG_ALL 0x0009c000 146 #define GPHY_COPPER 0x00f00000 147 #define SK_LINK_CTRL 0x0f10 148 #define LINK_RESET_CLEAR 0x0002 149 #define LINK_RESET_SET 0x0001 150 151 #define YUKON_GPCR 0x2804 152 #define GPCR_TXEN 0x1000 153 #define GPCR_RXEN 0x0800 154 #define YUKON_SA1 0x281c 155 #define YUKON_SA2 0x2828 156 #define YUKON_SMICR 0x2880 157 #define SMICR_PHYAD(x) (((x) & 0x1f) << 11) 158 #define SMICR_REGAD(x) (((x) & 0x1f) << 6) 159 #define SMICR_OP_READ 0x0020 160 #define SMICR_OP_WRITE 0x0000 161 #define SMICR_READ_VALID 0x0010 162 #define SMICR_BUSY 0x0008 163 #define YUKON_SMIDR 0x2884 164 165 #define MII_PSSR 0x11 /* MAKPHY status register */ 166 #define PSSR_DUPLEX 0x2000 /* FDX */ 167 #define PSSR_RESOLVED 0x0800 /* speed and duplex resolved */ 168 #define PSSR_LINK 0x0400 /* link indication */ 169 #define PSSR_SPEED(x) (((x) >> 14) & 0x3) 170 #define SPEED10 0 171 #define SPEED100 1 172 #define SPEED1000 2 173 174 #define FRAMESIZE 1536 175 176 struct local { 177 struct desc txd[2]; 178 struct desc rxd[2]; 179 uint8_t rxstore[2][FRAMESIZE]; 180 unsigned csr, rx, tx, phy; 181 uint16_t pssr, anlpar; 182 }; 183 184 static int mii_read(struct local *, int, int); 185 static void mii_write(struct local *, int, int, int); 186 static void mii_initphy(struct local *); 187 static void mii_dealan(struct local *, unsigned); 188 189 int 190 skg_match(unsigned tag, void *data) 191 { 192 unsigned v; 193 194 v = pcicfgread(tag, PCI_ID_REG); 195 switch (v) { 196 case PCI_DEVICE(0x11ab, 0x4320): 197 return 1; 198 } 199 return 0; 200 } 201 202 void * 203 skg_init(unsigned tag, void *data) 204 { 205 struct local *l; 206 struct desc *txd, *rxd; 207 uint8_t *en; 208 unsigned i; 209 uint16_t reg; 210 211 l = ALLOC(struct local, 32); /* desc alignment */ 212 memset(l, 0, sizeof(struct local)); 213 l->csr = DEVTOV(pcicfgread(tag, 0x10)); /* use mem space */ 214 215 /* make sure the descriptor bytes are not reversed */ 216 i = pcicfgread(tag, 0x44); 217 pcicfgwrite(tag, 0x44, i & ~4); 218 219 /* reset the chip */ 220 CSR_WRITE_2(l, SK_CSR, CSR_SW_RESET); 221 CSR_WRITE_2(l, SK_CSR, CSR_MASTER_RESET); 222 CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_SET); 223 DELAY(1000); 224 CSR_WRITE_2(l, SK_CSR, CSR_SW_UNRESET); 225 DELAY(2); 226 CSR_WRITE_2(l, SK_CSR, CSR_MASTER_UNRESET); 227 CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_CLEAR); 228 CSR_WRITE_4(l, SK_RAMCTL, 2); /* enable RAM interface */ 229 230 mii_initphy(l); 231 232 /* read ethernet address */ 233 en = data; 234 if (brdtype == BRD_SYNOLOGY) 235 read_mac_from_flash(en); 236 else 237 for (i = 0; i < 6; i++) 238 en[i] = CSR_READ_1(l, SK_MAC0 + i); 239 printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", 240 en[0], en[1], en[2], en[3], en[4], en[5]); 241 DPRINTF(("PHY %d (%04x.%04x)\n", l->phy, 242 mii_read(l, l->phy, 2), mii_read(l, l->phy, 3))); 243 244 /* set station address */ 245 for (i = 0; i < 3; i++) 246 CSR_WRITE_2(l, YUKON_SA1 + i * 4, 247 (en[i * 2] << 8) | en[i * 2 + 1]); 248 249 /* configure RX and TX MAC FIFO */ 250 CSR_WRITE_1(l, SK_RXMF1_CTRL_TEST, RFCTL_RESET_CLEAR); 251 CSR_WRITE_4(l, SK_RXMF1_CTRL_TEST, RFCTL_OPERATION_ON); 252 CSR_WRITE_1(l, SK_TXMF1_CTRL_TEST, TFCTL_RESET_CLEAR); 253 CSR_WRITE_4(l, SK_TXMF1_CTRL_TEST, TFCTL_OPERATION_ON); 254 255 mii_dealan(l, 5); 256 257 switch (PSSR_SPEED(l->pssr)) { 258 case SPEED1000: 259 printf("1000Mbps"); 260 break; 261 case SPEED100: 262 printf("100Mbps"); 263 break; 264 case SPEED10: 265 printf("10Mbps"); 266 break; 267 } 268 if (l->pssr & PSSR_DUPLEX) 269 printf("-FDX"); 270 printf("\n"); 271 272 /* configure RAM buffers, assuming 64k RAM */ 273 CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_UNRESET); 274 CSR_WRITE_4(l, SK_RXRB1_START, 0); 275 CSR_WRITE_4(l, SK_RXRB1_WR_PTR, 0); 276 CSR_WRITE_4(l, SK_RXRB1_RD_PTR, 0); 277 CSR_WRITE_4(l, SK_RXRB1_END, 0xfff); 278 CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_ON); 279 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_UNRESET); 280 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_STORENFWD_ON); 281 CSR_WRITE_4(l, SK_TXRBS1_START, 0x1000); 282 CSR_WRITE_4(l, SK_TXRBS1_WR_PTR, 0x1000); 283 CSR_WRITE_4(l, SK_TXRBS1_RD_PTR, 0x1000); 284 CSR_WRITE_4(l, SK_TXRBS1_END, 0x1fff); 285 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_ON); 286 287 /* setup descriptors and BMU */ 288 CSR_WRITE_1(l, SK_TXAR1_COUNTERCTL, TXARCTL_ON|TXARCTL_FSYNC_ON); 289 290 txd = &l->txd[0]; 291 txd[0].xd1 = htole32(VTOPHYS(&txd[1])); 292 txd[1].xd1 = htole32(VTOPHYS(&txd[0])); 293 rxd = &l->rxd[0]; 294 rxd[0].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN); 295 rxd[0].xd1 = htole32(VTOPHYS(&rxd[1])); 296 rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0])); 297 rxd[1].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN); 298 rxd[1].xd1 = htole32(VTOPHYS(&rxd[0])); 299 rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1])); 300 wbinv(l, sizeof(struct local)); 301 302 CSR_WRITE_4(l, SK_RXQ1_BMU_CSR, 303 RXBMU_TRANSFER_SM_UNRESET|RXBMU_DESCWR_SM_UNRESET| 304 RXBMU_DESCRD_SM_UNRESET|RXBMU_SUPERVISOR_SM_UNRESET| 305 RXBMU_PFI_SM_UNRESET|RXBMU_FIFO_UNRESET| 306 RXBMU_DESC_UNRESET); 307 CSR_WRITE_4(l, SK_RXQ1_CURADDR_LO, VTOPHYS(rxd)); 308 CSR_WRITE_4(l, SK_RXQ1_CURADDR_HI, 0); 309 310 CSR_WRITE_4(l, SK_TXQS1_BMU_CSR, 311 TXBMU_TRANSFER_SM_UNRESET|TXBMU_DESCWR_SM_UNRESET| 312 TXBMU_DESCRD_SM_UNRESET|TXBMU_SUPERVISOR_SM_UNRESET| 313 TXBMU_PFI_SM_UNRESET|TXBMU_FIFO_UNRESET| 314 TXBMU_DESC_UNRESET|TXBMU_POLL_ON); 315 CSR_WRITE_4(l, SK_TXQS1_CURADDR_LO, VTOPHYS(txd)); 316 CSR_WRITE_4(l, SK_TXQS1_CURADDR_HI, 0); 317 318 CSR_WRITE_4(l, SK_IMR, 0); 319 CSR_WRITE_4(l, SK_RXQ1_BMU_CSR, RXBMU_RX_START); 320 reg = CSR_READ_2(l, YUKON_GPCR); 321 reg |= GPCR_TXEN | GPCR_RXEN; 322 CSR_WRITE_2(l, YUKON_GPCR, reg); 323 324 return l; 325 } 326 327 int 328 skg_send(void *dev, char *buf, unsigned len) 329 { 330 struct local *l = dev; 331 volatile struct desc *txd; 332 unsigned loop; 333 334 wbinv(buf, len); 335 txd = &l->txd[l->tx]; 336 txd->xd2 = htole32(VTOPHYS(buf)); 337 txd->xd0 = htole32((len & FRAMEMASK)|CTL_DEFOPC|CTL_FS|CTL_LS|CTL_OWN); 338 wbinv(txd, sizeof(struct desc)); 339 CSR_WRITE_4(l, SK_BMU_TXS_CSR0, TXBMU_TX_START); 340 loop = 100; 341 do { 342 if ((le32toh(txd->xd0) & CTL_OWN) == 0) 343 goto done; 344 DELAY(10); 345 inv(txd, sizeof(struct desc)); 346 } while (--loop > 0); 347 printf("xmit failed\n"); 348 return -1; 349 done: 350 l->tx ^= 1; 351 return len; 352 } 353 354 int 355 skg_recv(void *dev, char *buf, unsigned maxlen, unsigned timo) 356 { 357 struct local *l = dev; 358 volatile struct desc *rxd; 359 unsigned bound, ctl, rxstat, len; 360 uint8_t *ptr; 361 362 bound = 1000 * timo; 363 #if 0 364 printf("recving with %u sec. timeout\n", timo); 365 #endif 366 again: 367 rxd = &l->rxd[l->rx]; 368 do { 369 inv(rxd, sizeof(struct desc)); 370 ctl = le32toh(rxd->xd0); 371 if ((ctl & CTL_OWN) == 0) 372 goto gotone; 373 DELAY(1000); /* 1 milli second */ 374 } while (--bound > 0); 375 errno = 0; 376 return -1; 377 gotone: 378 rxstat = le32toh(rxd->xd4); 379 if ((rxstat & RXSTAT_RXOK) == 0) { 380 rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN); 381 wbinv(rxd, sizeof(struct desc)); 382 l->rx ^= 1; 383 goto again; 384 } 385 len = ctl & FRAMEMASK; 386 if (len > maxlen) 387 len = maxlen; 388 ptr = l->rxstore[l->rx]; 389 inv(ptr, len); 390 memcpy(buf, ptr, len); 391 rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN); 392 wbinv(rxd, sizeof(struct desc)); 393 l->rx ^= 1; 394 return len; 395 } 396 397 static int 398 mii_read(struct local *l, int phy, int reg) 399 { 400 unsigned loop, v; 401 402 CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) | 403 SMICR_OP_READ); 404 loop = 1000; 405 do { 406 DELAY(1); 407 v = CSR_READ_2(l, YUKON_SMICR); 408 } while ((v & SMICR_READ_VALID) == 0 && --loop); 409 if (loop == 0) { 410 printf("mii_read timeout!\n"); 411 return 0; 412 } 413 return CSR_READ_2(l, YUKON_SMIDR); 414 } 415 416 static void 417 mii_write(struct local *l, int phy, int reg, int data) 418 { 419 unsigned loop, v; 420 421 CSR_WRITE_2(l, YUKON_SMIDR, data); 422 CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) | 423 SMICR_OP_WRITE); 424 loop = 1000; 425 do { 426 DELAY(1); 427 v = CSR_READ_2(l, YUKON_SMICR); 428 } while ((v & SMICR_BUSY) != 0 && --loop); 429 if (loop == 0) 430 printf("mii_write timeout!\n"); 431 } 432 433 #define MII_BMCR 0x00 /* Basic mode control register (rw) */ 434 #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */ 435 #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */ 436 #define MII_BMSR 0x01 /* Basic mode status register (ro) */ 437 #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */ 438 #define BMSR_LINK 0x0004 /* Link status */ 439 #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */ 440 #define ANAR_FC 0x0400 /* local device supports PAUSE */ 441 #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */ 442 #define ANAR_TX 0x0080 /* local device supports 100bTx */ 443 #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */ 444 #define ANAR_10 0x0020 /* local device supports 10bT */ 445 #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */ 446 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */ 447 #define MII_GTCR 0x09 /* 1000baseT control */ 448 #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */ 449 #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */ 450 #define MII_GTSR 0x0a /* 1000baseT status */ 451 #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */ 452 #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */ 453 454 static void 455 mii_initphy(struct local *l) 456 { 457 unsigned val; 458 459 l->phy = 0; 460 461 /* take PHY out of reset */ 462 val = CSR_READ_4(l, SK_GPIO); 463 CSR_WRITE_4(l, SK_GPIO, (val | 0x2000000) & ~0x200); 464 465 /* GMAC and GPHY reset */ 466 CSR_WRITE_4(l, SK_GPHY_CTRL, GPHY_RESET_SET); 467 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET); 468 DELAY(1000); 469 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_CLEAR); 470 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET); 471 DELAY(1000); 472 473 val = GPHY_INT_POL_HI | GPHY_DIS_FC | GPHY_DIS_SLEEP | GPHY_ENA_XC | 474 GPHY_ANEG_ALL | GPHY_ENA_PAUSE | GPHY_COPPER; 475 CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_SET); 476 DELAY(1000); 477 CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_CLEAR); 478 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_LOOP_OFF | GMAC_PAUSE_ON | 479 GMAC_RESET_CLEAR); 480 } 481 482 static void 483 mii_dealan(struct local *l, unsigned timo) 484 { 485 unsigned bmsr, bound; 486 487 mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | 488 ANAR_10 | ANAR_CSMA | ANAR_FC); 489 mii_write(l, l->phy, MII_GTCR, GANA_1000TFDX | GANA_1000THDX); 490 mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); 491 l->anlpar = 0; 492 bound = getsecs() + timo; 493 do { 494 bmsr = mii_read(l, l->phy, MII_BMSR) | 495 mii_read(l, l->phy, MII_BMSR); /* read twice */ 496 if ((bmsr & BMSR_LINK) && (bmsr & BMSR_ACOMP)) { 497 l->pssr = mii_read(l, l->phy, MII_PSSR); 498 l->anlpar = mii_read(l, l->phy, MII_ANLPAR); 499 if ((l->pssr & PSSR_RESOLVED) == 0) 500 continue; 501 break; 502 } 503 DELAY(10 * 1000); 504 } while (getsecs() < bound); 505 } 506