1 /* $NetBSD: pte.h,v 1.1 2014/09/19 17:36:26 matt Exp $ */ 2 /*- 3 * Copyright (c) 2014 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Matt Thomas of 3am Software Foundry. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #ifndef _RISCV_PTE_H_ 32 #define _RISCV_PTE_H_ 33 34 // 35 // RV32 page table entry (4 GB VA space) 36 // [31..22] = PPN[1] 37 // [21..12] = PPN[0] 38 // [11.. 9] = software 39 // 40 // RV64 page table entry (4 TB VA space) 41 // [64..43] = 0 42 // [42..33] = PPN[2] 43 // [32..23] = PPN[1] 44 // [22..13] = PPN[0] 45 // [12.. 9] = software 46 // 47 // Common to both: 48 // [8] = SX 49 // [7] = SW 50 // [6] = SR 51 // [5] = UX 52 // [4] = UW 53 // [3] = UR 54 // [2] = G 55 // [1] = T 56 // [0] = V 57 // 58 59 #define NPTEPG (1 + __BITS(9, 0)) // PTEs per Page 60 #define NSEGPG NPTEPG 61 #define NPDEPG NPTEPG 62 #ifdef _LP64 63 #define PTE_PPN __BITS(63, 13) // Physical Page Number 64 #define PTE_PPN0 __BITS(42, 33) // 1K 8-byte SDEs / PAGE 65 #define PTE_PPN1 __BITS(32, 23) // 1K 8-byte PDEs / PAGE 66 #define PTE_PPN2 __BITS(22, 13) // 1K 8-byte PTEs / PAGE 67 typedef __uint64_t pt_entry_t; 68 typedef __uint64_t pd_entry_t; 69 #define atomic_cas_pte atomic_cas_64 70 #define atomic_cas_pde atomic_cas_64 71 #else 72 #define PTE_PPN __BITS(31, 12) // Physical Page Number 73 #define PTE_PPN0 __BITS(31, 22) // 1K 4-byte PDEs / PAGE 74 #define PTE_PPN1 __BITS(21, 12) // 1K 4-byte PTEs / PAGE 75 typedef __uint32_t pt_entry_t; 76 typedef __uint32_t pd_entry_t; 77 #define atomic_cas_pte atomic_cas_32 78 #define atomic_cas_pde atomic_cas_32 79 #endif 80 81 // These only mean something to NetBSD 82 #define PTE_NX __BIT(11) // Unexecuted 83 #define PTE_NW __BIT(10) // Unmodified 84 #define PTE_WIRED __BIT(9) // Do Not Delete 85 86 // These are hardware defined bits 87 #define PTE_SX __BIT(8) // Supervisor eXecute 88 #define PTE_SW __BIT(7) // Supervisor Write 89 #define PTE_SR __BIT(6) // Supervisor Read 90 #define PTE_UX __BIT(5) // User eXecute 91 #define PTE_UW __BIT(4) // User Write 92 #define PTE_UR __BIT(3) // User Read 93 #define PTE_G __BIT(2) // Global 94 #define PTE_T __BIT(1) // "Transit" (non-leaf) 95 #define PTE_V __BIT(0) // Valid 96 97 static inline bool 98 pte_valid_p(pt_entry_t pte) 99 { 100 return (pte & PTE_V) != 0; 101 } 102 103 static inline bool 104 pte_wired_p(pt_entry_t pte) 105 { 106 return (pte & PTE_WIRED) != 0; 107 } 108 109 static inline bool 110 pte_modified_p(pt_entry_t pte) 111 { 112 return (pte & PTE_NW) == 0 && (pte & (PTE_UW|PTE_SW)) != 0; 113 } 114 115 static inline bool 116 pte_cached_p(pt_entry_t pte) 117 { 118 return true; 119 } 120 121 static inline bool 122 pte_deferred_exec_p(pt_entry_t pte) 123 { 124 return (pte & PTE_NX) != 0; 125 } 126 127 static inline pt_entry_t 128 pte_wire_entry(pt_entry_t pte) 129 { 130 return pte | PTE_WIRED; 131 } 132 133 static inline pt_entry_t 134 pte_unwire_entry(pt_entry_t pte) 135 { 136 return pte & ~PTE_WIRED; 137 } 138 139 static inline paddr_t 140 pte_to_paddr(pt_entry_t pte) 141 { 142 return pte & ~PAGE_MASK; 143 } 144 145 static inline pt_entry_t 146 pte_nv_entry(bool kernel_p) 147 { 148 return kernel_p ? PTE_G : 0; 149 } 150 151 static inline pt_entry_t 152 pte_prot_nowrite(pt_entry_t pte) 153 { 154 return pte & ~(PTE_NW|PTE_SW|PTE_UW); 155 } 156 157 static inline pt_entry_t 158 pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot) 159 { 160 pte &= ~(PTE_NW|PTE_SW|PTE_UW); 161 if ((newprot & VM_PROT_EXECUTE) == 0) 162 pte &= ~(PTE_NX|PTE_SX|PTE_UX); 163 return pte; 164 } 165 166 static inline pt_entry_t 167 pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p) 168 { 169 KASSERT(prot & VM_PROT_READ); 170 pt_entry_t pt_entry = PTE_SR | (kernel_p ? 0 : PTE_UR); 171 if (prot & VM_PROT_EXECUTE) { 172 if (mdpg != NULL && !VM_PAGEMD_EXECPAGE_P(mdpg)) 173 pt_entry |= PTE_NX; 174 else 175 pt_entry |= kernel_p ? PTE_SX : PTE_UX; 176 } 177 if (prot & VM_PROT_WRITE) { 178 if (mdpg != NULL && !VM_PAGEMD_MODIFIED_P(mdpg)) 179 pt_entry |= PTE_NW; 180 else 181 pt_entry |= PTE_SW | (kernel_p ? 0 : PTE_UW); 182 } 183 return pt_entry; 184 } 185 186 static inline pt_entry_t 187 pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p) 188 { 189 #if 0 190 if (__predict_false(flags & PMAP_NOCACHE)) { 191 if (__predict_true(mdpg != NULL)) { 192 return pte_nocached_bits(); 193 } else { 194 return pte_ionocached_bits(); 195 } 196 } else { 197 if (__predict_false(mdpg != NULL)) { 198 return pte_cached_bits(); 199 } else { 200 return pte_iocached_bits(); 201 } 202 } 203 #else 204 return 0; 205 #endif 206 } 207 208 static inline pt_entry_t 209 pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot, 210 int flags, bool kernel_p) 211 { 212 pt_entry_t pte = (pt_entry_t) pa & ~PAGE_MASK; 213 214 pte |= pte_flag_bits(mdpg, flags, kernel_p); 215 pte |= pte_prot_bits(mdpg, prot, kernel_p); 216 217 if (mdpg == NULL && VM_PAGEMD_REFERENCED_P(mdpg)) 218 pte |= PTE_V; 219 220 return pte; 221 } 222 223 static inline pt_entry_t 224 pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot, 225 int flags) 226 { 227 pt_entry_t pte = (pt_entry_t) pa & ~PAGE_MASK; 228 229 pte |= PTE_WIRED | PTE_V; 230 pte |= pte_flag_bits(NULL, flags, true); 231 pte |= pte_prot_bits(NULL, prot, true); /* pretend unmanaged */ 232 233 return pte; 234 } 235 236 static inline void 237 pte_set(pt_entry_t *ptep, pt_entry_t pte) 238 { 239 *ptep = pte; 240 } 241 242 static inline pd_entry_t 243 pte_invalid_pde(void) 244 { 245 return 0; 246 } 247 248 static inline pd_entry_t 249 pte_pde_pdetab(paddr_t pa) 250 { 251 return PTE_V | PTE_G | PTE_T | pa; 252 } 253 254 static inline pd_entry_t 255 pte_pde_ptpage(paddr_t pa) 256 { 257 return PTE_V | PTE_G | PTE_T | pa; 258 } 259 260 static inline bool 261 pte_pde_valid_p(pd_entry_t pde) 262 { 263 return (pde & (PTE_V|PTE_T)) == (PTE_V|PTE_T); 264 } 265 266 static inline paddr_t 267 pte_pde_to_paddr(pd_entry_t pde) 268 { 269 return pde & ~PAGE_MASK; 270 } 271 272 static inline pd_entry_t 273 pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde) 274 { 275 #ifdef MULTIPROCESSOR 276 #ifdef _LP64 277 return atomic_cas_64(pdep, opde, npde); 278 #else 279 return atomic_cas_32(pdep, opde, npde); 280 #endif 281 #else 282 *pdep = npde; 283 return 0; 284 #endif 285 } 286 #endif /* _RISCV_PTE_H_ */ 287