xref: /netbsd-src/sys/arch/riscv/include/pte.h (revision b5c47949a45ac972130c38cf13dfd8afb1f09285)
1 /* $NetBSD: pte.h,v 1.5 2020/11/01 19:47:46 skrll Exp $ */
2 
3 /*
4  * Copyright (c) 2014, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas (of 3am Software Foundry) and Maxime Villard.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef _RISCV_PTE_H_
33 #define _RISCV_PTE_H_
34 
35 #ifdef _LP64	/* Sv39 */
36 #define PTE_PPN		__BITS(53, 10)
37 #define	PTE_PPN0	__BITS(18, 10)
38 #define	PTE_PPN1	__BITS(27, 19)
39 #define	PTE_PPN2	__BITS(53, 28)
40 typedef __uint64_t pt_entry_t;
41 typedef __uint64_t pd_entry_t;
42 #define atomic_cas_pte	atomic_cas_64
43 #else		/* Sv32 */
44 #define PTE_PPN		__BITS(31, 10)
45 #define	PTE_PPN0	__BITS(19, 10)
46 #define	PTE_PPN1	__BITS(31, 20)
47 typedef __uint32_t pt_entry_t;
48 typedef __uint32_t pd_entry_t;
49 #define atomic_cas_pte	atomic_cas_32
50 #endif
51 
52 #define PTE_PPN_SHIFT	10
53 
54 #define NPTEPG		(PAGE_SIZE / sizeof(pt_entry_t))
55 #define NSEGPG		NPTEPG
56 #define NPDEPG		NPTEPG
57 
58 /* Software PTE bits. */
59 #define	PTE_WIRED	__BIT(8)
60 
61 /* Hardware PTE bits. */
62 // These are hardware defined bits
63 #define	PTE_D		__BIT(7)	// Dirty
64 #define	PTE_A		__BIT(6)	// Accessed
65 #define	PTE_G		__BIT(5)	// Global
66 #define	PTE_U		__BIT(4)	// User
67 #define	PTE_X		__BIT(3)	// eXecute
68 #define	PTE_W		__BIT(2)	// Write
69 #define	PTE_R		__BIT(1)	// Read
70 #define	PTE_V		__BIT(0)	// Valid
71 
72 #define PA_TO_PTE(pa)	(((pa) >> PAGE_SHIFT) << PTE_PPN_SHIFT)
73 #define PTE_TO_PA(pte)	(((pte) >> PTE_PPN_SHIFT) << PAGE_SHIFT)
74 
75 #define	L2_SHIFT	30
76 #define	L1_SHIFT	21
77 #define	L0_SHIFT	12
78 
79 #define	L2_SIZE 	(1 << L2_SHIFT)
80 #define	L1_SIZE 	(1 << L1_SHIFT)
81 #define	L0_SIZE 	(1 << L0_SHIFT)
82 
83 #define	L2_OFFSET 	(L2_SIZE - 1)
84 #define	L1_OFFSET 	(L1_SIZE - 1)
85 #define	L0_OFFSET 	(L0_SIZE - 1)
86 
87 #define	Ln_ENTRIES	(1 << 9)
88 #define	Ln_ADDR_MASK	(Ln_ENTRIES - 1)
89 
90 #define pl2_i(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
91 #define pl1_i(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
92 #define pl0_i(va)	(((va) >> L0_SHIFT) & Ln_ADDR_MASK)
93 
94 static inline bool
95 pte_valid_p(pt_entry_t pte)
96 {
97 	return (pte & PTE_V) != 0;
98 }
99 
100 static inline bool
101 pte_wired_p(pt_entry_t pte)
102 {
103 	return (pte & PTE_WIRED) != 0;
104 }
105 
106 static inline bool
107 pte_modified_p(pt_entry_t pte)
108 {
109 	return (pte & PTE_D) != 0;
110 }
111 
112 static inline bool
113 pte_cached_p(pt_entry_t pte)
114 {
115 	return true;
116 }
117 
118 static inline bool
119 pte_deferred_exec_p(pt_entry_t pte)
120 {
121 	return false;
122 }
123 
124 static inline pt_entry_t
125 pte_wire_entry(pt_entry_t pte)
126 {
127 	return pte | PTE_WIRED;
128 }
129 
130 static inline pt_entry_t
131 pte_unwire_entry(pt_entry_t pte)
132 {
133 	return pte & ~PTE_WIRED;
134 }
135 
136 static inline paddr_t
137 pte_to_paddr(pt_entry_t pte)
138 {
139 	return pte & ~PAGE_MASK;
140 }
141 
142 static inline pt_entry_t
143 pte_nv_entry(bool kernel_p)
144 {
145 	return kernel_p ? PTE_G : 0;
146 }
147 
148 static inline pt_entry_t
149 pte_prot_nowrite(pt_entry_t pte)
150 {
151 	return pte & ~PTE_W;
152 }
153 
154 static inline pt_entry_t
155 pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
156 {
157 	if ((newprot & VM_PROT_READ) == 0)
158 		pte &= ~PTE_R;
159 	if ((newprot & VM_PROT_WRITE) == 0)
160 		pte &= ~PTE_W;
161 	if ((newprot & VM_PROT_EXECUTE) == 0)
162 		pte &= ~PTE_X;
163 	return pte;
164 }
165 
166 static inline pt_entry_t
167 pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
168 {
169 	pt_entry_t pte;
170 
171 	KASSERT(prot & VM_PROT_READ);
172 
173 	pte = PTE_R;
174 	if (prot & VM_PROT_EXECUTE) {
175 		pte |= PTE_X;
176 	}
177 	if (prot & VM_PROT_WRITE) {
178 		pte |= PTE_W;
179 	}
180 
181 	return pte;
182 }
183 
184 static inline pt_entry_t
185 pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
186 {
187 #if 0
188 	if (__predict_false(flags & PMAP_NOCACHE)) {
189 		if (__predict_true(mdpg != NULL)) {
190 			return pte_nocached_bits();
191 		} else {
192 			return pte_ionocached_bits();
193 		}
194 	} else {
195 		if (__predict_false(mdpg != NULL)) {
196 			return pte_cached_bits();
197 		} else {
198 			return pte_iocached_bits();
199 		}
200 	}
201 #else
202 	return 0;
203 #endif
204 }
205 
206 static inline pt_entry_t
207 pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
208     int flags, bool kernel_p)
209 {
210 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
211 
212 	pte |= pte_flag_bits(mdpg, flags, kernel_p);
213 	pte |= pte_prot_bits(mdpg, prot, kernel_p);
214 
215 	if (mdpg == NULL && VM_PAGEMD_REFERENCED_P(mdpg))
216 		pte |= PTE_V;
217 
218 	return pte;
219 }
220 
221 static inline pt_entry_t
222 pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
223     int flags)
224 {
225 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
226 
227 	pte |= PTE_WIRED | PTE_V;
228 	pte |= pte_flag_bits(NULL, flags, true);
229 	pte |= pte_prot_bits(NULL, prot, true); /* pretend unmanaged */
230 
231 	return pte;
232 }
233 
234 static inline void
235 pte_set(pt_entry_t *ptep, pt_entry_t pte)
236 {
237 	*ptep = pte;
238 }
239 
240 static inline pt_entry_t
241 pte_value(pt_entry_t pte)
242 {
243 	return pte;
244 }
245 
246 #endif /* _RISCV_PTE_H_ */
247