xref: /netbsd-src/sys/arch/powerpc/oea/pmap.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $	*/
2 /*-
3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
8  *
9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl@kymasys.com>
10  * of Kyma Systems LLC.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36  * Copyright (C) 1995, 1996 TooLs GmbH.
37  * All rights reserved.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *	This product includes software developed by TooLs GmbH.
50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
51  *    derived from this software without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $");
67 
68 #define	PMAP_NOOPNAMES
69 
70 #ifdef _KERNEL_OPT
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74 #include "opt_ppcarch.h"
75 #endif
76 
77 #include <sys/param.h>
78 #include <sys/proc.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h>		/* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84 
85 #include <uvm/uvm.h>
86 #include <uvm/uvm_physseg.h>
87 
88 #include <machine/powerpc.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/pcb.h>
91 #include <powerpc/psl.h>
92 #include <powerpc/spr.h>
93 #include <powerpc/oea/spr.h>
94 #include <powerpc/oea/sr_601.h>
95 
96 #ifdef ALTIVEC
97 extern int pmap_use_altivec;
98 #endif
99 
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
104 #endif
105 
106 extern struct pmap kernel_pmap_;
107 static unsigned int pmap_pages_stolen;
108 static u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 static u_long pmap_pvo_enter_depth;
111 static u_long pmap_pvo_remove_depth;
112 #endif
113 
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117 
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120 
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define	PMAP_OEA 1
123 #endif
124 
125 #if defined(PMAP_OEA)
126 #define	_PRIxpte	"lx"
127 #else
128 #define	_PRIxpte	PRIx64
129 #endif
130 #define	_PRIxpa		"lx"
131 #define	_PRIxva		"lx"
132 #define	_PRIsr  	"lx"
133 
134 #ifdef PMAP_NEEDS_FIXUP
135 #if defined(PMAP_OEA)
136 #define	PMAPNAME(name)	pmap32_##name
137 #elif defined(PMAP_OEA64)
138 #define	PMAPNAME(name)	pmap64_##name
139 #elif defined(PMAP_OEA64_BRIDGE)
140 #define	PMAPNAME(name)	pmap64bridge_##name
141 #else
142 #error unknown variant for pmap
143 #endif
144 #endif /* PMAP_NEEDS_FIXUP */
145 
146 #ifdef PMAPNAME
147 #define	STATIC			static
148 #define pmap_pte_spill		PMAPNAME(pte_spill)
149 #define pmap_real_memory	PMAPNAME(real_memory)
150 #define pmap_init		PMAPNAME(init)
151 #define pmap_virtual_space	PMAPNAME(virtual_space)
152 #define pmap_create		PMAPNAME(create)
153 #define pmap_reference		PMAPNAME(reference)
154 #define pmap_destroy		PMAPNAME(destroy)
155 #define pmap_copy		PMAPNAME(copy)
156 #define pmap_update		PMAPNAME(update)
157 #define pmap_enter		PMAPNAME(enter)
158 #define pmap_remove		PMAPNAME(remove)
159 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
160 #define pmap_kremove		PMAPNAME(kremove)
161 #define pmap_extract		PMAPNAME(extract)
162 #define pmap_protect		PMAPNAME(protect)
163 #define pmap_unwire		PMAPNAME(unwire)
164 #define pmap_page_protect	PMAPNAME(page_protect)
165 #define pmap_query_bit		PMAPNAME(query_bit)
166 #define pmap_clear_bit		PMAPNAME(clear_bit)
167 
168 #define pmap_activate		PMAPNAME(activate)
169 #define pmap_deactivate		PMAPNAME(deactivate)
170 
171 #define pmap_pinit		PMAPNAME(pinit)
172 #define pmap_procwr		PMAPNAME(procwr)
173 
174 #define pmap_pool		PMAPNAME(pool)
175 #define pmap_upvo_pool		PMAPNAME(upvo_pool)
176 #define pmap_mpvo_pool		PMAPNAME(mpvo_pool)
177 #define pmap_pvo_table		PMAPNAME(pvo_table)
178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
179 #define pmap_pte_print		PMAPNAME(pte_print)
180 #define pmap_pteg_check		PMAPNAME(pteg_check)
181 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
182 #define pmap_print_pte		PMAPNAME(print_pte)
183 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
184 #endif
185 #if defined(DEBUG) || defined(PMAPCHECK)
186 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
187 #define pmapcheck		PMAPNAME(check)
188 #endif
189 #if defined(DEBUG) || defined(PMAPDEBUG)
190 #define pmapdebug		PMAPNAME(debug)
191 #endif
192 #define pmap_steal_memory	PMAPNAME(steal_memory)
193 #define pmap_bootstrap		PMAPNAME(bootstrap)
194 #else
195 #define	STATIC			/* nothing */
196 #endif /* PMAPNAME */
197 
198 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
199 STATIC void pmap_real_memory(paddr_t *, psize_t *);
200 STATIC void pmap_init(void);
201 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
202 STATIC pmap_t pmap_create(void);
203 STATIC void pmap_reference(pmap_t);
204 STATIC void pmap_destroy(pmap_t);
205 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
206 STATIC void pmap_update(pmap_t);
207 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
209 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
210 STATIC void pmap_kremove(vaddr_t, vsize_t);
211 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
212 
213 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
214 STATIC void pmap_unwire(pmap_t, vaddr_t);
215 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
216 STATIC bool pmap_query_bit(struct vm_page *, int);
217 STATIC bool pmap_clear_bit(struct vm_page *, int);
218 
219 STATIC void pmap_activate(struct lwp *);
220 STATIC void pmap_deactivate(struct lwp *);
221 
222 STATIC void pmap_pinit(pmap_t pm);
223 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
224 
225 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
226 STATIC void pmap_pte_print(volatile struct pte *);
227 STATIC void pmap_pteg_check(void);
228 STATIC void pmap_print_mmuregs(void);
229 STATIC void pmap_print_pte(pmap_t, vaddr_t);
230 STATIC void pmap_pteg_dist(void);
231 #endif
232 #if defined(DEBUG) || defined(PMAPCHECK)
233 STATIC void pmap_pvo_verify(void);
234 #endif
235 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
236 STATIC void pmap_bootstrap(paddr_t, paddr_t);
237 
238 #ifdef PMAPNAME
239 const struct pmap_ops PMAPNAME(ops) = {
240 	.pmapop_pte_spill = pmap_pte_spill,
241 	.pmapop_real_memory = pmap_real_memory,
242 	.pmapop_init = pmap_init,
243 	.pmapop_virtual_space = pmap_virtual_space,
244 	.pmapop_create = pmap_create,
245 	.pmapop_reference = pmap_reference,
246 	.pmapop_destroy = pmap_destroy,
247 	.pmapop_copy = pmap_copy,
248 	.pmapop_update = pmap_update,
249 	.pmapop_enter = pmap_enter,
250 	.pmapop_remove = pmap_remove,
251 	.pmapop_kenter_pa = pmap_kenter_pa,
252 	.pmapop_kremove = pmap_kremove,
253 	.pmapop_extract = pmap_extract,
254 	.pmapop_protect = pmap_protect,
255 	.pmapop_unwire = pmap_unwire,
256 	.pmapop_page_protect = pmap_page_protect,
257 	.pmapop_query_bit = pmap_query_bit,
258 	.pmapop_clear_bit = pmap_clear_bit,
259 	.pmapop_activate = pmap_activate,
260 	.pmapop_deactivate = pmap_deactivate,
261 	.pmapop_pinit = pmap_pinit,
262 	.pmapop_procwr = pmap_procwr,
263 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
264 	.pmapop_pte_print = pmap_pte_print,
265 	.pmapop_pteg_check = pmap_pteg_check,
266 	.pmapop_print_mmuregs = pmap_print_mmuregs,
267 	.pmapop_print_pte = pmap_print_pte,
268 	.pmapop_pteg_dist = pmap_pteg_dist,
269 #else
270 	.pmapop_pte_print = NULL,
271 	.pmapop_pteg_check = NULL,
272 	.pmapop_print_mmuregs = NULL,
273 	.pmapop_print_pte = NULL,
274 	.pmapop_pteg_dist = NULL,
275 #endif
276 #if defined(DEBUG) || defined(PMAPCHECK)
277 	.pmapop_pvo_verify = pmap_pvo_verify,
278 #else
279 	.pmapop_pvo_verify = NULL,
280 #endif
281 	.pmapop_steal_memory = pmap_steal_memory,
282 	.pmapop_bootstrap = pmap_bootstrap,
283 };
284 #endif /* !PMAPNAME */
285 
286 /*
287  * The following structure is aligned to 32 bytes
288  */
289 struct pvo_entry {
290 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
291 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
292 	struct pte pvo_pte;			/* Prebuilt PTE */
293 	pmap_t pvo_pmap;			/* ptr to owning pmap */
294 	vaddr_t pvo_vaddr;			/* VA of entry */
295 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
296 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
297 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
298 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
299 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
300 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
301 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
302 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
303 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
304 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
305 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
306 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
307 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
308 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
309 #define	PVO_REMOVE		6		/* PVO has been removed */
310 #define	PVO_WHERE_MASK		15
311 #define	PVO_WHERE_SHFT		8
312 } __attribute__ ((aligned (32)));
313 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
314 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
315 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
316 #define	PVO_PTEGIDX_CLR(pvo)	\
317 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
318 #define	PVO_PTEGIDX_SET(pvo,i)	\
319 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
320 #define	PVO_WHERE(pvo,w)	\
321 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
322 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
323 
324 TAILQ_HEAD(pvo_tqhead, pvo_entry);
325 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
326 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
327 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
328 
329 struct pool pmap_pool;		/* pool for pmap structures */
330 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
331 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
332 
333 /*
334  * We keep a cache of unmanaged pages to be used for pvo entries for
335  * unmanaged pages.
336  */
337 struct pvo_page {
338 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
339 };
340 SIMPLEQ_HEAD(pvop_head, pvo_page);
341 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
342 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
343 static u_long pmap_upvop_free;
344 static u_long pmap_upvop_maxfree;
345 static u_long pmap_mpvop_free;
346 static u_long pmap_mpvop_maxfree;
347 
348 static void *pmap_pool_ualloc(struct pool *, int);
349 static void *pmap_pool_malloc(struct pool *, int);
350 
351 static void pmap_pool_ufree(struct pool *, void *);
352 static void pmap_pool_mfree(struct pool *, void *);
353 
354 static struct pool_allocator pmap_pool_mallocator = {
355 	.pa_alloc = pmap_pool_malloc,
356 	.pa_free = pmap_pool_mfree,
357 	.pa_pagesz = 0,
358 };
359 
360 static struct pool_allocator pmap_pool_uallocator = {
361 	.pa_alloc = pmap_pool_ualloc,
362 	.pa_free = pmap_pool_ufree,
363 	.pa_pagesz = 0,
364 };
365 
366 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
367 void pmap_pte_print(volatile struct pte *);
368 void pmap_pteg_check(void);
369 void pmap_pteg_dist(void);
370 void pmap_print_pte(pmap_t, vaddr_t);
371 void pmap_print_mmuregs(void);
372 #endif
373 
374 #if defined(DEBUG) || defined(PMAPCHECK)
375 #ifdef PMAPCHECK
376 int pmapcheck = 1;
377 #else
378 int pmapcheck = 0;
379 #endif
380 void pmap_pvo_verify(void);
381 static void pmap_pvo_check(const struct pvo_entry *);
382 #define	PMAP_PVO_CHECK(pvo)	 		\
383 	do {					\
384 		if (pmapcheck)			\
385 			pmap_pvo_check(pvo);	\
386 	} while (0)
387 #else
388 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
389 #endif
390 static int pmap_pte_insert(int, struct pte *);
391 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
392 	vaddr_t, paddr_t, register_t, int);
393 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
394 static void pmap_pvo_free(struct pvo_entry *);
395 static void pmap_pvo_free_list(struct pvo_head *);
396 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
397 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
398 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
399 static void pvo_set_exec(struct pvo_entry *);
400 static void pvo_clear_exec(struct pvo_entry *);
401 
402 static void tlbia(void);
403 
404 static void pmap_release(pmap_t);
405 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
406 
407 static uint32_t pmap_pvo_reclaim_nextidx;
408 #ifdef DEBUG
409 static int pmap_pvo_reclaim_debugctr;
410 #endif
411 
412 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
413 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
414 
415 static int pmap_initialized;
416 
417 #if defined(DEBUG) || defined(PMAPDEBUG)
418 #define	PMAPDEBUG_BOOT		0x0001
419 #define	PMAPDEBUG_PTE		0x0002
420 #define	PMAPDEBUG_EXEC		0x0008
421 #define	PMAPDEBUG_PVOENTER	0x0010
422 #define	PMAPDEBUG_PVOREMOVE	0x0020
423 #define	PMAPDEBUG_ACTIVATE	0x0100
424 #define	PMAPDEBUG_CREATE	0x0200
425 #define	PMAPDEBUG_ENTER		0x1000
426 #define	PMAPDEBUG_KENTER	0x2000
427 #define	PMAPDEBUG_KREMOVE	0x4000
428 #define	PMAPDEBUG_REMOVE	0x8000
429 
430 unsigned int pmapdebug = 0;
431 
432 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
433 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
434 #else
435 # define DPRINTF(x, ...)	do { } while (0)
436 # define DPRINTFN(n, x, ...)	do { } while (0)
437 #endif
438 
439 
440 #ifdef PMAPCOUNTERS
441 /*
442  * From pmap_subr.c
443  */
444 extern struct evcnt pmap_evcnt_mappings;
445 extern struct evcnt pmap_evcnt_unmappings;
446 
447 extern struct evcnt pmap_evcnt_kernel_mappings;
448 extern struct evcnt pmap_evcnt_kernel_unmappings;
449 
450 extern struct evcnt pmap_evcnt_mappings_replaced;
451 
452 extern struct evcnt pmap_evcnt_exec_mappings;
453 extern struct evcnt pmap_evcnt_exec_cached;
454 
455 extern struct evcnt pmap_evcnt_exec_synced;
456 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
457 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
458 
459 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
460 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
461 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
462 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
463 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
464 
465 extern struct evcnt pmap_evcnt_updates;
466 extern struct evcnt pmap_evcnt_collects;
467 extern struct evcnt pmap_evcnt_copies;
468 
469 extern struct evcnt pmap_evcnt_ptes_spilled;
470 extern struct evcnt pmap_evcnt_ptes_unspilled;
471 extern struct evcnt pmap_evcnt_ptes_evicted;
472 
473 extern struct evcnt pmap_evcnt_ptes_primary[8];
474 extern struct evcnt pmap_evcnt_ptes_secondary[8];
475 extern struct evcnt pmap_evcnt_ptes_removed;
476 extern struct evcnt pmap_evcnt_ptes_changed;
477 extern struct evcnt pmap_evcnt_pvos_reclaimed;
478 extern struct evcnt pmap_evcnt_pvos_failed;
479 
480 extern struct evcnt pmap_evcnt_zeroed_pages;
481 extern struct evcnt pmap_evcnt_copied_pages;
482 extern struct evcnt pmap_evcnt_idlezeroed_pages;
483 
484 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
485 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
486 #else
487 #define	PMAPCOUNT(ev)	((void) 0)
488 #define	PMAPCOUNT2(ev)	((void) 0)
489 #endif
490 
491 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
492 
493 /* XXXSL: this needs to be moved to assembler */
494 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
495 
496 #ifdef MD_TLBSYNC
497 #define TLBSYNC()	MD_TLBSYNC()
498 #else
499 #define	TLBSYNC()	__asm volatile("tlbsync")
500 #endif
501 #define	SYNC()		__asm volatile("sync")
502 #define	EIEIO()		__asm volatile("eieio")
503 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
504 #define	MFMSR()		mfmsr()
505 #define	MTMSR(psl)	mtmsr(psl)
506 #define	MFPVR()		mfpvr()
507 #define	MFSRIN(va)	mfsrin(va)
508 #define	MFTB()		mfrtcltbl()
509 
510 #if defined(DDB) && !defined(PMAP_OEA64)
511 static inline register_t
512 mfsrin(vaddr_t va)
513 {
514 	register_t sr;
515 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
516 	return sr;
517 }
518 #endif	/* DDB && !PMAP_OEA64 */
519 
520 #if defined (PMAP_OEA64_BRIDGE)
521 extern void mfmsr64 (register64_t *result);
522 #endif /* PMAP_OEA64_BRIDGE */
523 
524 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
525 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
526 
527 static inline register_t
528 pmap_interrupts_off(void)
529 {
530 	register_t msr = MFMSR();
531 	if (msr & PSL_EE)
532 		MTMSR(msr & ~PSL_EE);
533 	return msr;
534 }
535 
536 static void
537 pmap_interrupts_restore(register_t msr)
538 {
539 	if (msr & PSL_EE)
540 		MTMSR(msr);
541 }
542 
543 static inline u_int32_t
544 mfrtcltbl(void)
545 {
546 #ifdef PPC_OEA601
547 	if ((MFPVR() >> 16) == MPC601)
548 		return (mfrtcl() >> 7);
549 	else
550 #endif
551 		return (mftbl());
552 }
553 
554 /*
555  * These small routines may have to be replaced,
556  * if/when we support processors other that the 604.
557  */
558 
559 void
560 tlbia(void)
561 {
562 	char *i;
563 
564 	SYNC();
565 #if defined(PMAP_OEA)
566 	/*
567 	 * Why not use "tlbia"?  Because not all processors implement it.
568 	 *
569 	 * This needs to be a per-CPU callback to do the appropriate thing
570 	 * for the CPU. XXX
571 	 */
572 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
573 		TLBIE(i);
574 		EIEIO();
575 		SYNC();
576 	}
577 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
578 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
579 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
580 		TLBIEL(i);
581 		EIEIO();
582 		SYNC();
583 	}
584 #endif
585 	TLBSYNC();
586 	SYNC();
587 }
588 
589 static inline register_t
590 va_to_vsid(const struct pmap *pm, vaddr_t addr)
591 {
592 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
593 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
594 #else /* PMAP_OEA64 */
595 #if 0
596 	const struct ste *ste;
597 	register_t hash;
598 	int i;
599 
600 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
601 
602 	/*
603 	 * Try the primary group first
604 	 */
605 	ste = pm->pm_stes[hash].stes;
606 	for (i = 0; i < 8; i++, ste++) {
607 		if (ste->ste_hi & STE_V) &&
608 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
609 			return ste;
610 	}
611 
612 	/*
613 	 * Then the secondary group.
614 	 */
615 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
616 	for (i = 0; i < 8; i++, ste++) {
617 		if (ste->ste_hi & STE_V) &&
618 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
619 			return addr;
620 	}
621 
622 	return NULL;
623 #else
624 	/*
625 	 * Rather than searching the STE groups for the VSID, we know
626 	 * how we generate that from the ESID and so do that.
627 	 */
628 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
629 #endif
630 #endif /* PMAP_OEA */
631 }
632 
633 static inline register_t
634 va_to_pteg(const struct pmap *pm, vaddr_t addr)
635 {
636 	register_t hash;
637 
638 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
639 	return hash & pmap_pteg_mask;
640 }
641 
642 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
643 /*
644  * Given a PTE in the page table, calculate the VADDR that hashes to it.
645  * The only bit of magic is that the top 4 bits of the address doesn't
646  * technically exist in the PTE.  But we know we reserved 4 bits of the
647  * VSID for it so that's how we get it.
648  */
649 static vaddr_t
650 pmap_pte_to_va(volatile const struct pte *pt)
651 {
652 	vaddr_t va;
653 	uintptr_t ptaddr = (uintptr_t) pt;
654 
655 	if (pt->pte_hi & PTE_HID)
656 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
657 
658 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
659 #if defined(PMAP_OEA)
660 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
661 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
662 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
663 #endif
664 	va <<= ADDR_PIDX_SHFT;
665 
666 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
667 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
668 
669 #if defined(PMAP_OEA64)
670 	/* PPC63 Bits 0-35 */
671 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
672 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
673 	/* PPC Bits 0-3 */
674 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
675 #endif
676 
677 	return va;
678 }
679 #endif
680 
681 static inline struct pvo_head *
682 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
683 {
684 	struct vm_page *pg;
685 	struct vm_page_md *md;
686 
687 	pg = PHYS_TO_VM_PAGE(pa);
688 	if (pg_p != NULL)
689 		*pg_p = pg;
690 	if (pg == NULL)
691 		return &pmap_pvo_unmanaged;
692 	md = VM_PAGE_TO_MD(pg);
693 	return &md->mdpg_pvoh;
694 }
695 
696 static inline struct pvo_head *
697 vm_page_to_pvoh(struct vm_page *pg)
698 {
699 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
700 
701 	return &md->mdpg_pvoh;
702 }
703 
704 
705 static inline void
706 pmap_attr_clear(struct vm_page *pg, int ptebit)
707 {
708 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
709 
710 	md->mdpg_attrs &= ~ptebit;
711 }
712 
713 static inline int
714 pmap_attr_fetch(struct vm_page *pg)
715 {
716 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
717 
718 	return md->mdpg_attrs;
719 }
720 
721 static inline void
722 pmap_attr_save(struct vm_page *pg, int ptebit)
723 {
724 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
725 
726 	md->mdpg_attrs |= ptebit;
727 }
728 
729 static inline int
730 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
731 {
732 	if (pt->pte_hi == pvo_pt->pte_hi
733 #if 0
734 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
735 	        ~(PTE_REF|PTE_CHG)) == 0
736 #endif
737 	    )
738 		return 1;
739 	return 0;
740 }
741 
742 static inline void
743 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
744 {
745 	/*
746 	 * Construct the PTE.  Default to IMB initially.  Valid bit
747 	 * only gets set when the real pte is set in memory.
748 	 *
749 	 * Note: Don't set the valid bit for correct operation of tlb update.
750 	 */
751 #if defined(PMAP_OEA)
752 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
753 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
754 	pt->pte_lo = pte_lo;
755 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
756 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
757 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
758 	pt->pte_lo = (u_int64_t) pte_lo;
759 #endif /* PMAP_OEA */
760 }
761 
762 static inline void
763 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
764 {
765 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
766 }
767 
768 static inline void
769 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
770 {
771 	/*
772 	 * As shown in Section 7.6.3.2.3
773 	 */
774 	pt->pte_lo &= ~ptebit;
775 	TLBIE(va);
776 	SYNC();
777 	EIEIO();
778 	TLBSYNC();
779 	SYNC();
780 #ifdef MULTIPROCESSOR
781 	DCBST(pt);
782 #endif
783 }
784 
785 static inline void
786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
787 {
788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
789 	if (pvo_pt->pte_hi & PTE_VALID)
790 		panic("pte_set: setting an already valid pte %p", pvo_pt);
791 #endif
792 	pvo_pt->pte_hi |= PTE_VALID;
793 
794 	/*
795 	 * Update the PTE as defined in section 7.6.3.1
796 	 * Note that the REF/CHG bits are from pvo_pt and thus should
797 	 * have been saved so this routine can restore them (if desired).
798 	 */
799 	pt->pte_lo = pvo_pt->pte_lo;
800 	EIEIO();
801 	pt->pte_hi = pvo_pt->pte_hi;
802 	TLBSYNC();
803 	SYNC();
804 #ifdef MULTIPROCESSOR
805 	DCBST(pt);
806 #endif
807 	pmap_pte_valid++;
808 }
809 
810 static inline void
811 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
812 {
813 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
814 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
815 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
816 	if ((pt->pte_hi & PTE_VALID) == 0)
817 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
818 #endif
819 
820 	pvo_pt->pte_hi &= ~PTE_VALID;
821 	/*
822 	 * Force the ref & chg bits back into the PTEs.
823 	 */
824 	SYNC();
825 	/*
826 	 * Invalidate the pte ... (Section 7.6.3.3)
827 	 */
828 	pt->pte_hi &= ~PTE_VALID;
829 	SYNC();
830 	TLBIE(va);
831 	SYNC();
832 	EIEIO();
833 	TLBSYNC();
834 	SYNC();
835 	/*
836 	 * Save the ref & chg bits ...
837 	 */
838 	pmap_pte_synch(pt, pvo_pt);
839 	pmap_pte_valid--;
840 }
841 
842 static inline void
843 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
844 {
845 	/*
846 	 * Invalidate the PTE
847 	 */
848 	pmap_pte_unset(pt, pvo_pt, va);
849 	pmap_pte_set(pt, pvo_pt);
850 }
851 
852 /*
853  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
854  * (either primary or secondary location).
855  *
856  * Note: both the destination and source PTEs must not have PTE_VALID set.
857  */
858 
859 static int
860 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
861 {
862 	volatile struct pte *pt;
863 	int i;
864 
865 #if defined(DEBUG)
866 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
867 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
868 #endif
869 	/*
870 	 * First try primary hash.
871 	 */
872 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
873 		if ((pt->pte_hi & PTE_VALID) == 0) {
874 			pvo_pt->pte_hi &= ~PTE_HID;
875 			pmap_pte_set(pt, pvo_pt);
876 			return i;
877 		}
878 	}
879 
880 	/*
881 	 * Now try secondary hash.
882 	 */
883 	ptegidx ^= pmap_pteg_mask;
884 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
885 		if ((pt->pte_hi & PTE_VALID) == 0) {
886 			pvo_pt->pte_hi |= PTE_HID;
887 			pmap_pte_set(pt, pvo_pt);
888 			return i;
889 		}
890 	}
891 	return -1;
892 }
893 
894 /*
895  * Spill handler.
896  *
897  * Tries to spill a page table entry from the overflow area.
898  * This runs in either real mode (if dealing with a exception spill)
899  * or virtual mode when dealing with manually spilling one of the
900  * kernel's pte entries.  In either case, interrupts are already
901  * disabled.
902  */
903 
904 int
905 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
906 {
907 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
908 	struct pvo_entry *pvo;
909 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
910 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
911 	int ptegidx, i, j;
912 	volatile struct pteg *pteg;
913 	volatile struct pte *pt;
914 
915 	PMAP_LOCK();
916 
917 	ptegidx = va_to_pteg(pm, addr);
918 
919 	/*
920 	 * Have to substitute some entry. Use the primary hash for this.
921 	 * Use low bits of timebase as random generator.  Make sure we are
922 	 * not picking a kernel pte for replacement.
923 	 */
924 	pteg = &pmap_pteg_table[ptegidx];
925 	i = MFTB() & 7;
926 	for (j = 0; j < 8; j++) {
927 		pt = &pteg->pt[i];
928 		if ((pt->pte_hi & PTE_VALID) == 0)
929 			break;
930 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
931 				< PHYSMAP_VSIDBITS)
932 			break;
933 		i = (i + 1) & 7;
934 	}
935 	KASSERT(j < 8);
936 
937 	source_pvo = NULL;
938 	victim_pvo = NULL;
939 	pvoh = &pmap_pvo_table[ptegidx];
940 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
941 
942 		/*
943 		 * We need to find pvo entry for this address...
944 		 */
945 		PMAP_PVO_CHECK(pvo);		/* sanity check */
946 
947 		/*
948 		 * If we haven't found the source and we come to a PVO with
949 		 * a valid PTE, then we know we can't find it because all
950 		 * evicted PVOs always are first in the list.
951 		 */
952 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
953 			break;
954 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
955 		    addr == PVO_VADDR(pvo)) {
956 
957 			/*
958 			 * Now we have found the entry to be spilled into the
959 			 * pteg.  Attempt to insert it into the page table.
960 			 */
961 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
962 			if (j >= 0) {
963 				PVO_PTEGIDX_SET(pvo, j);
964 				PMAP_PVO_CHECK(pvo);	/* sanity check */
965 				PVO_WHERE(pvo, SPILL_INSERT);
966 				pvo->pvo_pmap->pm_evictions--;
967 				PMAPCOUNT(ptes_spilled);
968 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
969 				    ? pmap_evcnt_ptes_secondary
970 				    : pmap_evcnt_ptes_primary)[j]);
971 
972 				/*
973 				 * Since we keep the evicted entries at the
974 				 * from of the PVO list, we need move this
975 				 * (now resident) PVO after the evicted
976 				 * entries.
977 				 */
978 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
979 
980 				/*
981 				 * If we don't have to move (either we were the
982 				 * last entry or the next entry was valid),
983 				 * don't change our position.  Otherwise
984 				 * move ourselves to the tail of the queue.
985 				 */
986 				if (next_pvo != NULL &&
987 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
988 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
989 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
990 				}
991 				PMAP_UNLOCK();
992 				return 1;
993 			}
994 			source_pvo = pvo;
995 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
996 				PMAP_UNLOCK();
997 				return 0;
998 			}
999 			if (victim_pvo != NULL)
1000 				break;
1001 		}
1002 
1003 		/*
1004 		 * We also need the pvo entry of the victim we are replacing
1005 		 * so save the R & C bits of the PTE.
1006 		 */
1007 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1008 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
1009 			vpvoh = pvoh;			/* *1* */
1010 			victim_pvo = pvo;
1011 			if (source_pvo != NULL)
1012 				break;
1013 		}
1014 	}
1015 
1016 	if (source_pvo == NULL) {
1017 		PMAPCOUNT(ptes_unspilled);
1018 		PMAP_UNLOCK();
1019 		return 0;
1020 	}
1021 
1022 	if (victim_pvo == NULL) {
1023 		if ((pt->pte_hi & PTE_HID) == 0)
1024 			panic("pmap_pte_spill: victim p-pte (%p) has "
1025 			    "no pvo entry!", pt);
1026 
1027 		/*
1028 		 * If this is a secondary PTE, we need to search
1029 		 * its primary pvo bucket for the matching PVO.
1030 		 */
1031 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1032 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1033 			PMAP_PVO_CHECK(pvo);		/* sanity check */
1034 
1035 			/*
1036 			 * We also need the pvo entry of the victim we are
1037 			 * replacing so save the R & C bits of the PTE.
1038 			 */
1039 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1040 				victim_pvo = pvo;
1041 				break;
1042 			}
1043 		}
1044 		if (victim_pvo == NULL)
1045 			panic("pmap_pte_spill: victim s-pte (%p) has "
1046 			    "no pvo entry!", pt);
1047 	}
1048 
1049 	/*
1050 	 * The victim should be not be a kernel PVO/PTE entry.
1051 	 */
1052 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1053 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1054 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1055 
1056 	/*
1057 	 * We are invalidating the TLB entry for the EA for the
1058 	 * we are replacing even though its valid; If we don't
1059 	 * we lose any ref/chg bit changes contained in the TLB
1060 	 * entry.
1061 	 */
1062 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1063 
1064 	/*
1065 	 * To enforce the PVO list ordering constraint that all
1066 	 * evicted entries should come before all valid entries,
1067 	 * move the source PVO to the tail of its list and the
1068 	 * victim PVO to the head of its list (which might not be
1069 	 * the same list, if the victim was using the secondary hash).
1070 	 */
1071 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1072 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1073 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1074 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1075 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1076 	pmap_pte_set(pt, &source_pvo->pvo_pte);
1077 	victim_pvo->pvo_pmap->pm_evictions++;
1078 	source_pvo->pvo_pmap->pm_evictions--;
1079 	PVO_WHERE(victim_pvo, SPILL_UNSET);
1080 	PVO_WHERE(source_pvo, SPILL_SET);
1081 
1082 	PVO_PTEGIDX_CLR(victim_pvo);
1083 	PVO_PTEGIDX_SET(source_pvo, i);
1084 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1085 	PMAPCOUNT(ptes_spilled);
1086 	PMAPCOUNT(ptes_evicted);
1087 	PMAPCOUNT(ptes_removed);
1088 
1089 	PMAP_PVO_CHECK(victim_pvo);
1090 	PMAP_PVO_CHECK(source_pvo);
1091 
1092 	PMAP_UNLOCK();
1093 	return 1;
1094 }
1095 
1096 /*
1097  * Restrict given range to physical memory
1098  */
1099 void
1100 pmap_real_memory(paddr_t *start, psize_t *size)
1101 {
1102 	struct mem_region *mp;
1103 
1104 	for (mp = mem; mp->size; mp++) {
1105 		if (*start + *size > mp->start
1106 		    && *start < mp->start + mp->size) {
1107 			if (*start < mp->start) {
1108 				*size -= mp->start - *start;
1109 				*start = mp->start;
1110 			}
1111 			if (*start + *size > mp->start + mp->size)
1112 				*size = mp->start + mp->size - *start;
1113 			return;
1114 		}
1115 	}
1116 	*size = 0;
1117 }
1118 
1119 /*
1120  * Initialize anything else for pmap handling.
1121  * Called during vm_init().
1122  */
1123 void
1124 pmap_init(void)
1125 {
1126 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1127 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1128 	    &pmap_pool_mallocator, IPL_NONE);
1129 
1130 	pool_setlowat(&pmap_mpvo_pool, 1008);
1131 
1132 	pmap_initialized = 1;
1133 
1134 }
1135 
1136 /*
1137  * How much virtual space does the kernel get?
1138  */
1139 void
1140 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1141 {
1142 	/*
1143 	 * For now, reserve one segment (minus some overhead) for kernel
1144 	 * virtual memory
1145 	 */
1146 	*start = VM_MIN_KERNEL_ADDRESS;
1147 	*end = VM_MAX_KERNEL_ADDRESS;
1148 }
1149 
1150 /*
1151  * Allocate, initialize, and return a new physical map.
1152  */
1153 pmap_t
1154 pmap_create(void)
1155 {
1156 	pmap_t pm;
1157 
1158 	pm = pool_get(&pmap_pool, PR_WAITOK);
1159 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1160 	memset((void *)pm, 0, sizeof *pm);
1161 	pmap_pinit(pm);
1162 
1163 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1164 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1165 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1166 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1167 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1168 	    pm,
1169 	    pm->pm_sr[0], pm->pm_sr[1],
1170 	    pm->pm_sr[2], pm->pm_sr[3],
1171 	    pm->pm_sr[4], pm->pm_sr[5],
1172 	    pm->pm_sr[6], pm->pm_sr[7],
1173 	    pm->pm_sr[8], pm->pm_sr[9],
1174 	    pm->pm_sr[10], pm->pm_sr[11],
1175 	    pm->pm_sr[12], pm->pm_sr[13],
1176 	    pm->pm_sr[14], pm->pm_sr[15]);
1177 	return pm;
1178 }
1179 
1180 /*
1181  * Initialize a preallocated and zeroed pmap structure.
1182  */
1183 void
1184 pmap_pinit(pmap_t pm)
1185 {
1186 	register_t entropy = MFTB();
1187 	register_t mask;
1188 	int i;
1189 
1190 	/*
1191 	 * Allocate some segment registers for this pmap.
1192 	 */
1193 	pm->pm_refs = 1;
1194 	PMAP_LOCK();
1195 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1196 		static register_t pmap_vsidcontext;
1197 		register_t hash;
1198 		unsigned int n;
1199 
1200 		/* Create a new value by multiplying by a prime adding in
1201 		 * entropy from the timebase register.  This is to make the
1202 		 * VSID more random so that the PT Hash function collides
1203 		 * less often. (note that the prime causes gcc to do shifts
1204 		 * instead of a multiply)
1205 		 */
1206 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1207 		hash = pmap_vsidcontext & (NPMAPS - 1);
1208 		if (hash == 0) {		/* 0 is special, avoid it */
1209 			entropy += 0xbadf00d;
1210 			continue;
1211 		}
1212 		n = hash >> 5;
1213 		mask = 1L << (hash & (VSID_NBPW-1));
1214 		hash = pmap_vsidcontext;
1215 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1216 			/* anything free in this bucket? */
1217 			if (~pmap_vsid_bitmap[n] == 0) {
1218 				entropy = hash ^ (hash >> 16);
1219 				continue;
1220 			}
1221 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
1222 			mask = 1L << i;
1223 			hash &= ~(VSID_NBPW-1);
1224 			hash |= i;
1225 		}
1226 		hash &= PTE_VSID >> PTE_VSID_SHFT;
1227 		pmap_vsid_bitmap[n] |= mask;
1228 		pm->pm_vsid = hash;
1229 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1230 		for (i = 0; i < 16; i++)
1231 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1232 			    SR_NOEXEC;
1233 #endif
1234 		PMAP_UNLOCK();
1235 		return;
1236 	}
1237 	PMAP_UNLOCK();
1238 	panic("pmap_pinit: out of segments");
1239 }
1240 
1241 /*
1242  * Add a reference to the given pmap.
1243  */
1244 void
1245 pmap_reference(pmap_t pm)
1246 {
1247 	atomic_inc_uint(&pm->pm_refs);
1248 }
1249 
1250 /*
1251  * Retire the given pmap from service.
1252  * Should only be called if the map contains no valid mappings.
1253  */
1254 void
1255 pmap_destroy(pmap_t pm)
1256 {
1257 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1258 		pmap_release(pm);
1259 		pool_put(&pmap_pool, pm);
1260 	}
1261 }
1262 
1263 /*
1264  * Release any resources held by the given physical map.
1265  * Called when a pmap initialized by pmap_pinit is being released.
1266  */
1267 void
1268 pmap_release(pmap_t pm)
1269 {
1270 	int idx, mask;
1271 
1272 	KASSERT(pm->pm_stats.resident_count == 0);
1273 	KASSERT(pm->pm_stats.wired_count == 0);
1274 
1275 	PMAP_LOCK();
1276 	if (pm->pm_sr[0] == 0)
1277 		panic("pmap_release");
1278 	idx = pm->pm_vsid & (NPMAPS-1);
1279 	mask = 1 << (idx % VSID_NBPW);
1280 	idx /= VSID_NBPW;
1281 
1282 	KASSERT(pmap_vsid_bitmap[idx] & mask);
1283 	pmap_vsid_bitmap[idx] &= ~mask;
1284 	PMAP_UNLOCK();
1285 }
1286 
1287 /*
1288  * Copy the range specified by src_addr/len
1289  * from the source map to the range dst_addr/len
1290  * in the destination map.
1291  *
1292  * This routine is only advisory and need not do anything.
1293  */
1294 void
1295 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1296 	vsize_t len, vaddr_t src_addr)
1297 {
1298 	PMAPCOUNT(copies);
1299 }
1300 
1301 /*
1302  * Require that all active physical maps contain no
1303  * incorrect entries NOW.
1304  */
1305 void
1306 pmap_update(struct pmap *pmap)
1307 {
1308 	PMAPCOUNT(updates);
1309 	TLBSYNC();
1310 }
1311 
1312 static inline int
1313 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1314 {
1315 	int pteidx;
1316 	/*
1317 	 * We can find the actual pte entry without searching by
1318 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1319 	 * and by noticing the HID bit.
1320 	 */
1321 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1322 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1323 		pteidx ^= pmap_pteg_mask * 8;
1324 	return pteidx;
1325 }
1326 
1327 volatile struct pte *
1328 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1329 {
1330 	volatile struct pte *pt;
1331 
1332 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1333 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1334 		return NULL;
1335 #endif
1336 
1337 	/*
1338 	 * If we haven't been supplied the ptegidx, calculate it.
1339 	 */
1340 	if (pteidx == -1) {
1341 		int ptegidx;
1342 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1343 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1344 	}
1345 
1346 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1347 
1348 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1349 	return pt;
1350 #else
1351 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1352 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1353 		    "pvo but no valid pte index", pvo);
1354 	}
1355 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1356 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1357 		    "pvo but no valid pte", pvo);
1358 	}
1359 
1360 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1361 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1362 #if defined(DEBUG) || defined(PMAPCHECK)
1363 			pmap_pte_print(pt);
1364 #endif
1365 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1366 			    "pmap_pteg_table %p but invalid in pvo",
1367 			    pvo, pt);
1368 		}
1369 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1370 #if defined(DEBUG) || defined(PMAPCHECK)
1371 			pmap_pte_print(pt);
1372 #endif
1373 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1374 			    "not match pte %p in pmap_pteg_table",
1375 			    pvo, pt);
1376 		}
1377 		return pt;
1378 	}
1379 
1380 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1381 #if defined(DEBUG) || defined(PMAPCHECK)
1382 		pmap_pte_print(pt);
1383 #endif
1384 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1385 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1386 	}
1387 	return NULL;
1388 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1389 }
1390 
1391 struct pvo_entry *
1392 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1393 {
1394 	struct pvo_entry *pvo;
1395 	int ptegidx;
1396 
1397 	va &= ~ADDR_POFF;
1398 	ptegidx = va_to_pteg(pm, va);
1399 
1400 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1401 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1402 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1403 			panic("pmap_pvo_find_va: invalid pvo %p on "
1404 			    "list %#x (%p)", pvo, ptegidx,
1405 			     &pmap_pvo_table[ptegidx]);
1406 #endif
1407 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1408 			if (pteidx_p)
1409 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1410 			return pvo;
1411 		}
1412 	}
1413 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1414 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1415 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1416 	return NULL;
1417 }
1418 
1419 #if defined(DEBUG) || defined(PMAPCHECK)
1420 void
1421 pmap_pvo_check(const struct pvo_entry *pvo)
1422 {
1423 	struct pvo_head *pvo_head;
1424 	struct pvo_entry *pvo0;
1425 	volatile struct pte *pt;
1426 	int failed = 0;
1427 
1428 	PMAP_LOCK();
1429 
1430 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1431 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1432 
1433 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1434 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1435 		    pvo, pvo->pvo_pmap);
1436 		failed = 1;
1437 	}
1438 
1439 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1440 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1441 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1442 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
1443 		failed = 1;
1444 	}
1445 
1446 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1447 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1448 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1449 		    pvo, LIST_NEXT(pvo, pvo_vlink));
1450 		failed = 1;
1451 	}
1452 
1453 	if (PVO_MANAGED_P(pvo)) {
1454 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1455 	} else {
1456 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1457 			printf("pmap_pvo_check: pvo %p: non kernel address "
1458 			    "on kernel unmanaged list\n", pvo);
1459 			failed = 1;
1460 		}
1461 		pvo_head = &pmap_pvo_kunmanaged;
1462 	}
1463 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1464 		if (pvo0 == pvo)
1465 			break;
1466 	}
1467 	if (pvo0 == NULL) {
1468 		printf("pmap_pvo_check: pvo %p: not present "
1469 		    "on its vlist head %p\n", pvo, pvo_head);
1470 		failed = 1;
1471 	}
1472 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1473 		printf("pmap_pvo_check: pvo %p: not present "
1474 		    "on its olist head\n", pvo);
1475 		failed = 1;
1476 	}
1477 	pt = pmap_pvo_to_pte(pvo, -1);
1478 	if (pt == NULL) {
1479 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1480 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1481 			    "no PTE\n", pvo);
1482 			failed = 1;
1483 		}
1484 	} else {
1485 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1486 		    (uintptr_t) pt >=
1487 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1488 			printf("pmap_pvo_check: pvo %p: pte %p not in "
1489 			    "pteg table\n", pvo, pt);
1490 			failed = 1;
1491 		}
1492 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1493 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1494 			    "no PTE\n", pvo);
1495 			failed = 1;
1496 		}
1497 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1498 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1499 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1500 			    pvo->pvo_pte.pte_hi,
1501 			    pt->pte_hi);
1502 			failed = 1;
1503 		}
1504 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1505 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1506 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1507 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1508 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1509 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1510 			failed = 1;
1511 		}
1512 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1513 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1514 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
1515 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1516 			failed = 1;
1517 		}
1518 		if (failed)
1519 			pmap_pte_print(pt);
1520 	}
1521 	if (failed)
1522 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1523 		    pvo->pvo_pmap);
1524 
1525 	PMAP_UNLOCK();
1526 }
1527 #endif /* DEBUG || PMAPCHECK */
1528 
1529 /*
1530  * Search the PVO table looking for a non-wired entry.
1531  * If we find one, remove it and return it.
1532  */
1533 
1534 struct pvo_entry *
1535 pmap_pvo_reclaim(struct pmap *pm)
1536 {
1537 	struct pvo_tqhead *pvoh;
1538 	struct pvo_entry *pvo;
1539 	uint32_t idx, endidx;
1540 
1541 	endidx = pmap_pvo_reclaim_nextidx;
1542 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1543 	     idx = (idx + 1) & pmap_pteg_mask) {
1544 		pvoh = &pmap_pvo_table[idx];
1545 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1546 			if (!PVO_WIRED_P(pvo)) {
1547 				pmap_pvo_remove(pvo, -1, NULL);
1548 				pmap_pvo_reclaim_nextidx = idx;
1549 				PMAPCOUNT(pvos_reclaimed);
1550 				return pvo;
1551 			}
1552 		}
1553 	}
1554 	return NULL;
1555 }
1556 
1557 static struct pool *
1558 pmap_pvo_pl(struct pvo_entry *pvo)
1559 {
1560 
1561 	return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
1562 }
1563 
1564 /*
1565  * This returns whether this is the first mapping of a page.
1566  */
1567 int
1568 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1569 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1570 {
1571 	struct pvo_entry *pvo;
1572 	struct pvo_tqhead *pvoh;
1573 	register_t msr;
1574 	int ptegidx;
1575 	int i;
1576 	int poolflags = PR_NOWAIT;
1577 
1578 	/*
1579 	 * Compute the PTE Group index.
1580 	 */
1581 	va &= ~ADDR_POFF;
1582 	ptegidx = va_to_pteg(pm, va);
1583 
1584 	msr = pmap_interrupts_off();
1585 
1586 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1587 	if (pmap_pvo_remove_depth > 0)
1588 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1589 	if (++pmap_pvo_enter_depth > 1)
1590 		panic("pmap_pvo_enter: called recursively!");
1591 #endif
1592 
1593 	/*
1594 	 * Remove any existing mapping for this page.  Reuse the
1595 	 * pvo entry if there a mapping.
1596 	 */
1597 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1598 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1599 #ifdef DEBUG
1600 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1601 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1602 			    ~(PTE_REF|PTE_CHG)) == 0 &&
1603 			   va < VM_MIN_KERNEL_ADDRESS) {
1604 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1605 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1606 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1607 				    pvo->pvo_pte.pte_hi,
1608 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
1609 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1610 #ifdef DDBX
1611 				Debugger();
1612 #endif
1613 			}
1614 #endif
1615 			PMAPCOUNT(mappings_replaced);
1616 			pmap_pvo_remove(pvo, -1, NULL);
1617 			break;
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * If we aren't overwriting an mapping, try to allocate
1623 	 */
1624 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1625 	--pmap_pvo_enter_depth;
1626 #endif
1627 	pmap_interrupts_restore(msr);
1628 	if (pvo) {
1629 		KASSERT(pmap_pvo_pl(pvo) == pl);
1630 	} else {
1631 		pvo = pool_get(pl, poolflags);
1632 	}
1633 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1634 
1635 #ifdef DEBUG
1636 	/*
1637 	 * Exercise pmap_pvo_reclaim() a little.
1638 	 */
1639 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1640 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1641 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1642 		pool_put(pl, pvo);
1643 		pvo = NULL;
1644 	}
1645 #endif
1646 
1647 	msr = pmap_interrupts_off();
1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1649 	++pmap_pvo_enter_depth;
1650 #endif
1651 	if (pvo == NULL) {
1652 		pvo = pmap_pvo_reclaim(pm);
1653 		if (pvo == NULL) {
1654 			if ((flags & PMAP_CANFAIL) == 0)
1655 				panic("pmap_pvo_enter: failed");
1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1657 			pmap_pvo_enter_depth--;
1658 #endif
1659 			PMAPCOUNT(pvos_failed);
1660 			pmap_interrupts_restore(msr);
1661 			return ENOMEM;
1662 		}
1663 	}
1664 
1665 	pvo->pvo_vaddr = va;
1666 	pvo->pvo_pmap = pm;
1667 	pvo->pvo_vaddr &= ~ADDR_POFF;
1668 	if (flags & VM_PROT_EXECUTE) {
1669 		PMAPCOUNT(exec_mappings);
1670 		pvo_set_exec(pvo);
1671 	}
1672 	if (flags & PMAP_WIRED)
1673 		pvo->pvo_vaddr |= PVO_WIRED;
1674 	if (pvo_head != &pmap_pvo_kunmanaged) {
1675 		pvo->pvo_vaddr |= PVO_MANAGED;
1676 		PMAPCOUNT(mappings);
1677 	} else {
1678 		PMAPCOUNT(kernel_mappings);
1679 	}
1680 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1681 
1682 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1683 	if (PVO_WIRED_P(pvo))
1684 		pvo->pvo_pmap->pm_stats.wired_count++;
1685 	pvo->pvo_pmap->pm_stats.resident_count++;
1686 #if defined(DEBUG)
1687 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1688 		DPRINTFN(PVOENTER,
1689 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1690 		    pvo, pm, va, pa);
1691 #endif
1692 
1693 	/*
1694 	 * We hope this succeeds but it isn't required.
1695 	 */
1696 	pvoh = &pmap_pvo_table[ptegidx];
1697 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1698 	if (i >= 0) {
1699 		PVO_PTEGIDX_SET(pvo, i);
1700 		PVO_WHERE(pvo, ENTER_INSERT);
1701 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1702 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1703 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1704 
1705 	} else {
1706 		/*
1707 		 * Since we didn't have room for this entry (which makes it
1708 		 * and evicted entry), place it at the head of the list.
1709 		 */
1710 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1711 		PMAPCOUNT(ptes_evicted);
1712 		pm->pm_evictions++;
1713 		/*
1714 		 * If this is a kernel page, make sure it's active.
1715 		 */
1716 		if (pm == pmap_kernel()) {
1717 			i = pmap_pte_spill(pm, va, false);
1718 			KASSERT(i);
1719 		}
1720 	}
1721 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1722 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1723 	pmap_pvo_enter_depth--;
1724 #endif
1725 	pmap_interrupts_restore(msr);
1726 	return 0;
1727 }
1728 
1729 static void
1730 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1731 {
1732 	volatile struct pte *pt;
1733 	int ptegidx;
1734 
1735 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1736 	if (++pmap_pvo_remove_depth > 1)
1737 		panic("pmap_pvo_remove: called recursively!");
1738 #endif
1739 
1740 	/*
1741 	 * If we haven't been supplied the ptegidx, calculate it.
1742 	 */
1743 	if (pteidx == -1) {
1744 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1745 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1746 	} else {
1747 		ptegidx = pteidx >> 3;
1748 		if (pvo->pvo_pte.pte_hi & PTE_HID)
1749 			ptegidx ^= pmap_pteg_mask;
1750 	}
1751 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1752 
1753 	/*
1754 	 * If there is an active pte entry, we need to deactivate it
1755 	 * (and save the ref & chg bits).
1756 	 */
1757 	pt = pmap_pvo_to_pte(pvo, pteidx);
1758 	if (pt != NULL) {
1759 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1760 		PVO_WHERE(pvo, REMOVE);
1761 		PVO_PTEGIDX_CLR(pvo);
1762 		PMAPCOUNT(ptes_removed);
1763 	} else {
1764 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1765 		pvo->pvo_pmap->pm_evictions--;
1766 	}
1767 
1768 	/*
1769 	 * Account for executable mappings.
1770 	 */
1771 	if (PVO_EXECUTABLE_P(pvo))
1772 		pvo_clear_exec(pvo);
1773 
1774 	/*
1775 	 * Update our statistics.
1776 	 */
1777 	pvo->pvo_pmap->pm_stats.resident_count--;
1778 	if (PVO_WIRED_P(pvo))
1779 		pvo->pvo_pmap->pm_stats.wired_count--;
1780 
1781 	/*
1782 	 * Save the REF/CHG bits into their cache if the page is managed.
1783 	 */
1784 	if (PVO_MANAGED_P(pvo)) {
1785 		register_t ptelo = pvo->pvo_pte.pte_lo;
1786 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1787 
1788 		if (pg != NULL) {
1789 			/*
1790 			 * If this page was changed and it is mapped exec,
1791 			 * invalidate it.
1792 			 */
1793 			if ((ptelo & PTE_CHG) &&
1794 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
1795 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1796 				if (LIST_EMPTY(pvoh)) {
1797 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
1798 					    "%#" _PRIxpa ": clear-exec]\n",
1799 					    VM_PAGE_TO_PHYS(pg));
1800 					pmap_attr_clear(pg, PTE_EXEC);
1801 					PMAPCOUNT(exec_uncached_pvo_remove);
1802 				} else {
1803 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
1804 					    "%#" _PRIxpa ": syncicache]\n",
1805 					    VM_PAGE_TO_PHYS(pg));
1806 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1807 					    PAGE_SIZE);
1808 					PMAPCOUNT(exec_synced_pvo_remove);
1809 				}
1810 			}
1811 
1812 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1813 		}
1814 		PMAPCOUNT(unmappings);
1815 	} else {
1816 		PMAPCOUNT(kernel_unmappings);
1817 	}
1818 
1819 	/*
1820 	 * Remove the PVO from its lists and return it to the pool.
1821 	 */
1822 	LIST_REMOVE(pvo, pvo_vlink);
1823 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1824 	if (pvol) {
1825 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1826 	}
1827 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1828 	pmap_pvo_remove_depth--;
1829 #endif
1830 }
1831 
1832 void
1833 pmap_pvo_free(struct pvo_entry *pvo)
1834 {
1835 
1836 	pool_put(pmap_pvo_pl(pvo), pvo);
1837 }
1838 
1839 void
1840 pmap_pvo_free_list(struct pvo_head *pvol)
1841 {
1842 	struct pvo_entry *pvo, *npvo;
1843 
1844 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1845 		npvo = LIST_NEXT(pvo, pvo_vlink);
1846 		LIST_REMOVE(pvo, pvo_vlink);
1847 		pmap_pvo_free(pvo);
1848 	}
1849 }
1850 
1851 /*
1852  * Mark a mapping as executable.
1853  * If this is the first executable mapping in the segment,
1854  * clear the noexec flag.
1855  */
1856 static void
1857 pvo_set_exec(struct pvo_entry *pvo)
1858 {
1859 	struct pmap *pm = pvo->pvo_pmap;
1860 
1861 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1862 		return;
1863 	}
1864 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
1865 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1866 	{
1867 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1868 		if (pm->pm_exec[sr]++ == 0) {
1869 			pm->pm_sr[sr] &= ~SR_NOEXEC;
1870 		}
1871 	}
1872 #endif
1873 }
1874 
1875 /*
1876  * Mark a mapping as non-executable.
1877  * If this was the last executable mapping in the segment,
1878  * set the noexec flag.
1879  */
1880 static void
1881 pvo_clear_exec(struct pvo_entry *pvo)
1882 {
1883 	struct pmap *pm = pvo->pvo_pmap;
1884 
1885 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1886 		return;
1887 	}
1888 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1889 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1890 	{
1891 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1892 		if (--pm->pm_exec[sr] == 0) {
1893 			pm->pm_sr[sr] |= SR_NOEXEC;
1894 		}
1895 	}
1896 #endif
1897 }
1898 
1899 /*
1900  * Insert physical page at pa into the given pmap at virtual address va.
1901  */
1902 int
1903 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1904 {
1905 	struct mem_region *mp;
1906 	struct pvo_head *pvo_head;
1907 	struct vm_page *pg;
1908 	struct pool *pl;
1909 	register_t pte_lo;
1910 	int error;
1911 	u_int was_exec = 0;
1912 
1913 	PMAP_LOCK();
1914 
1915 	if (__predict_false(!pmap_initialized)) {
1916 		pvo_head = &pmap_pvo_kunmanaged;
1917 		pl = &pmap_upvo_pool;
1918 		pg = NULL;
1919 		was_exec = PTE_EXEC;
1920 	} else {
1921 		pvo_head = pa_to_pvoh(pa, &pg);
1922 		pl = &pmap_mpvo_pool;
1923 	}
1924 
1925 	DPRINTFN(ENTER,
1926 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1927 	    pm, va, pa, prot, flags);
1928 
1929 	/*
1930 	 * If this is a managed page, and it's the first reference to the
1931 	 * page clear the execness of the page.  Otherwise fetch the execness.
1932 	 */
1933 	if (pg != NULL)
1934 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1935 
1936 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
1937 
1938 	/*
1939 	 * Assume the page is cache inhibited and access is guarded unless
1940 	 * it's in our available memory array.  If it is in the memory array,
1941 	 * asssume it's in memory coherent memory.
1942 	 */
1943 	if (flags & PMAP_MD_PREFETCHABLE) {
1944 		pte_lo = 0;
1945 	} else
1946 		pte_lo = PTE_G;
1947 
1948 	if ((flags & PMAP_NOCACHE) == 0) {
1949 		for (mp = mem; mp->size; mp++) {
1950 			if (pa >= mp->start && pa < mp->start + mp->size) {
1951 				pte_lo = PTE_M;
1952 				break;
1953 			}
1954 		}
1955 #ifdef MULTIPROCESSOR
1956 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1957 			pte_lo = PTE_M;
1958 #endif
1959 	} else {
1960 		pte_lo |= PTE_I;
1961 	}
1962 
1963 	if (prot & VM_PROT_WRITE)
1964 		pte_lo |= PTE_BW;
1965 	else
1966 		pte_lo |= PTE_BR;
1967 
1968 	/*
1969 	 * If this was in response to a fault, "pre-fault" the PTE's
1970 	 * changed/referenced bit appropriately.
1971 	 */
1972 	if (flags & VM_PROT_WRITE)
1973 		pte_lo |= PTE_CHG;
1974 	if (flags & VM_PROT_ALL)
1975 		pte_lo |= PTE_REF;
1976 
1977 	/*
1978 	 * We need to know if this page can be executable
1979 	 */
1980 	flags |= (prot & VM_PROT_EXECUTE);
1981 
1982 	/*
1983 	 * Record mapping for later back-translation and pte spilling.
1984 	 * This will overwrite any existing mapping.
1985 	 */
1986 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1987 
1988 	/*
1989 	 * Flush the real page from the instruction cache if this page is
1990 	 * mapped executable and cacheable and has not been flushed since
1991 	 * the last time it was modified.
1992 	 */
1993 	if (error == 0 &&
1994             (flags & VM_PROT_EXECUTE) &&
1995             (pte_lo & PTE_I) == 0 &&
1996 	    was_exec == 0) {
1997 		DPRINTFN(ENTER, " %s", "syncicache");
1998 		PMAPCOUNT(exec_synced);
1999 		pmap_syncicache(pa, PAGE_SIZE);
2000 		if (pg != NULL) {
2001 			pmap_attr_save(pg, PTE_EXEC);
2002 			PMAPCOUNT(exec_cached);
2003 #if defined(DEBUG) || defined(PMAPDEBUG)
2004 			if (pmapdebug & PMAPDEBUG_ENTER)
2005 				printf(" marked-as-exec");
2006 			else if (pmapdebug & PMAPDEBUG_EXEC)
2007 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2008 				    VM_PAGE_TO_PHYS(pg));
2009 
2010 #endif
2011 		}
2012 	}
2013 
2014 	DPRINTFN(ENTER, ": error=%d\n", error);
2015 
2016 	PMAP_UNLOCK();
2017 
2018 	return error;
2019 }
2020 
2021 void
2022 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2023 {
2024 	struct mem_region *mp;
2025 	register_t pte_lo;
2026 	int error;
2027 
2028 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2029 	if (va < VM_MIN_KERNEL_ADDRESS)
2030 		panic("pmap_kenter_pa: attempt to enter "
2031 		    "non-kernel address %#" _PRIxva "!", va);
2032 #endif
2033 
2034 	DPRINTFN(KENTER,
2035 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2036 
2037 	PMAP_LOCK();
2038 
2039 	/*
2040 	 * Assume the page is cache inhibited and access is guarded unless
2041 	 * it's in our available memory array.  If it is in the memory array,
2042 	 * asssume it's in memory coherent memory.
2043 	 */
2044 	pte_lo = PTE_IG;
2045 	if ((flags & PMAP_NOCACHE) == 0) {
2046 		for (mp = mem; mp->size; mp++) {
2047 			if (pa >= mp->start && pa < mp->start + mp->size) {
2048 				pte_lo = PTE_M;
2049 				break;
2050 			}
2051 		}
2052 #ifdef MULTIPROCESSOR
2053 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2054 			pte_lo = PTE_M;
2055 #endif
2056 	}
2057 
2058 	if (prot & VM_PROT_WRITE)
2059 		pte_lo |= PTE_BW;
2060 	else
2061 		pte_lo |= PTE_BR;
2062 
2063 	/*
2064 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
2065 	 */
2066 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2067 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2068 
2069 	if (error != 0)
2070 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2071 		      va, pa, error);
2072 
2073 	PMAP_UNLOCK();
2074 }
2075 
2076 void
2077 pmap_kremove(vaddr_t va, vsize_t len)
2078 {
2079 	if (va < VM_MIN_KERNEL_ADDRESS)
2080 		panic("pmap_kremove: attempt to remove "
2081 		    "non-kernel address %#" _PRIxva "!", va);
2082 
2083 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2084 	pmap_remove(pmap_kernel(), va, va + len);
2085 }
2086 
2087 /*
2088  * Remove the given range of mapping entries.
2089  */
2090 void
2091 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2092 {
2093 	struct pvo_head pvol;
2094 	struct pvo_entry *pvo;
2095 	register_t msr;
2096 	int pteidx;
2097 
2098 	PMAP_LOCK();
2099 	LIST_INIT(&pvol);
2100 	msr = pmap_interrupts_off();
2101 	for (; va < endva; va += PAGE_SIZE) {
2102 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2103 		if (pvo != NULL) {
2104 			pmap_pvo_remove(pvo, pteidx, &pvol);
2105 		}
2106 	}
2107 	pmap_interrupts_restore(msr);
2108 	pmap_pvo_free_list(&pvol);
2109 	PMAP_UNLOCK();
2110 }
2111 
2112 /*
2113  * Get the physical page address for the given pmap/virtual address.
2114  */
2115 bool
2116 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2117 {
2118 	struct pvo_entry *pvo;
2119 	register_t msr;
2120 
2121 	PMAP_LOCK();
2122 
2123 	/*
2124 	 * If this is a kernel pmap lookup, also check the battable
2125 	 * and if we get a hit, translate the VA to a PA using the
2126 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
2127 	 * that will wrap back to 0.
2128 	 */
2129 	if (pm == pmap_kernel() &&
2130 	    (va < VM_MIN_KERNEL_ADDRESS ||
2131 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2132 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2133 #if defined (PMAP_OEA)
2134 #ifdef PPC_OEA601
2135 		if ((MFPVR() >> 16) == MPC601) {
2136 			register_t batu = battable[va >> 23].batu;
2137 			register_t batl = battable[va >> 23].batl;
2138 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2139 			if (BAT601_VALID_P(batl) &&
2140 			    BAT601_VA_MATCH_P(batu, batl, va)) {
2141 				register_t mask =
2142 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2143 				if (pap)
2144 					*pap = (batl & mask) | (va & ~mask);
2145 				PMAP_UNLOCK();
2146 				return true;
2147 			} else if (SR601_VALID_P(sr) &&
2148 				   SR601_PA_MATCH_P(sr, va)) {
2149 				if (pap)
2150 					*pap = va;
2151 				PMAP_UNLOCK();
2152 				return true;
2153 			}
2154 		} else
2155 #endif /* PPC_OEA601 */
2156 		{
2157 			register_t batu = battable[BAT_VA2IDX(va)].batu;
2158 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2159 				register_t batl = battable[BAT_VA2IDX(va)].batl;
2160 				register_t mask =
2161 				    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2162 				if (pap)
2163 					*pap = (batl & mask) | (va & ~mask);
2164 				PMAP_UNLOCK();
2165 				return true;
2166 			}
2167 		}
2168 		PMAP_UNLOCK();
2169 		return false;
2170 #elif defined (PMAP_OEA64_BRIDGE)
2171 	if (va >= SEGMENT_LENGTH)
2172 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2173 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2174 	else {
2175 		if (pap)
2176 			*pap = va;
2177 			PMAP_UNLOCK();
2178 			return true;
2179 	}
2180 #elif defined (PMAP_OEA64)
2181 #error PPC_OEA64 not supported
2182 #endif /* PPC_OEA */
2183 	}
2184 
2185 	msr = pmap_interrupts_off();
2186 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2187 	if (pvo != NULL) {
2188 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2189 		if (pap)
2190 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2191 			    | (va & ADDR_POFF);
2192 	}
2193 	pmap_interrupts_restore(msr);
2194 	PMAP_UNLOCK();
2195 	return pvo != NULL;
2196 }
2197 
2198 /*
2199  * Lower the protection on the specified range of this pmap.
2200  */
2201 void
2202 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2203 {
2204 	struct pvo_entry *pvo;
2205 	volatile struct pte *pt;
2206 	register_t msr;
2207 	int pteidx;
2208 
2209 	/*
2210 	 * Since this routine only downgrades protection, we should
2211 	 * always be called with at least one bit not set.
2212 	 */
2213 	KASSERT(prot != VM_PROT_ALL);
2214 
2215 	/*
2216 	 * If there is no protection, this is equivalent to
2217 	 * remove the pmap from the pmap.
2218 	 */
2219 	if ((prot & VM_PROT_READ) == 0) {
2220 		pmap_remove(pm, va, endva);
2221 		return;
2222 	}
2223 
2224 	PMAP_LOCK();
2225 
2226 	msr = pmap_interrupts_off();
2227 	for (; va < endva; va += PAGE_SIZE) {
2228 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2229 		if (pvo == NULL)
2230 			continue;
2231 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2232 
2233 		/*
2234 		 * Revoke executable if asked to do so.
2235 		 */
2236 		if ((prot & VM_PROT_EXECUTE) == 0)
2237 			pvo_clear_exec(pvo);
2238 
2239 #if 0
2240 		/*
2241 		 * If the page is already read-only, no change
2242 		 * needs to be made.
2243 		 */
2244 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2245 			continue;
2246 #endif
2247 		/*
2248 		 * Grab the PTE pointer before we diddle with
2249 		 * the cached PTE copy.
2250 		 */
2251 		pt = pmap_pvo_to_pte(pvo, pteidx);
2252 		/*
2253 		 * Change the protection of the page.
2254 		 */
2255 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2256 		pvo->pvo_pte.pte_lo |= PTE_BR;
2257 
2258 		/*
2259 		 * If the PVO is in the page table, update
2260 		 * that pte at well.
2261 		 */
2262 		if (pt != NULL) {
2263 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2264 			PVO_WHERE(pvo, PMAP_PROTECT);
2265 			PMAPCOUNT(ptes_changed);
2266 		}
2267 
2268 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2269 	}
2270 	pmap_interrupts_restore(msr);
2271 	PMAP_UNLOCK();
2272 }
2273 
2274 void
2275 pmap_unwire(pmap_t pm, vaddr_t va)
2276 {
2277 	struct pvo_entry *pvo;
2278 	register_t msr;
2279 
2280 	PMAP_LOCK();
2281 	msr = pmap_interrupts_off();
2282 	pvo = pmap_pvo_find_va(pm, va, NULL);
2283 	if (pvo != NULL) {
2284 		if (PVO_WIRED_P(pvo)) {
2285 			pvo->pvo_vaddr &= ~PVO_WIRED;
2286 			pm->pm_stats.wired_count--;
2287 		}
2288 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2289 	}
2290 	pmap_interrupts_restore(msr);
2291 	PMAP_UNLOCK();
2292 }
2293 
2294 /*
2295  * Lower the protection on the specified physical page.
2296  */
2297 void
2298 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2299 {
2300 	struct pvo_head *pvo_head, pvol;
2301 	struct pvo_entry *pvo, *next_pvo;
2302 	volatile struct pte *pt;
2303 	register_t msr;
2304 
2305 	PMAP_LOCK();
2306 
2307 	KASSERT(prot != VM_PROT_ALL);
2308 	LIST_INIT(&pvol);
2309 	msr = pmap_interrupts_off();
2310 
2311 	/*
2312 	 * When UVM reuses a page, it does a pmap_page_protect with
2313 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
2314 	 * since we know the page will have different contents.
2315 	 */
2316 	if ((prot & VM_PROT_READ) == 0) {
2317 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2318 		    VM_PAGE_TO_PHYS(pg));
2319 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
2320 			PMAPCOUNT(exec_uncached_page_protect);
2321 			pmap_attr_clear(pg, PTE_EXEC);
2322 		}
2323 	}
2324 
2325 	pvo_head = vm_page_to_pvoh(pg);
2326 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2327 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2328 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2329 
2330 		/*
2331 		 * Downgrading to no mapping at all, we just remove the entry.
2332 		 */
2333 		if ((prot & VM_PROT_READ) == 0) {
2334 			pmap_pvo_remove(pvo, -1, &pvol);
2335 			continue;
2336 		}
2337 
2338 		/*
2339 		 * If EXEC permission is being revoked, just clear the
2340 		 * flag in the PVO.
2341 		 */
2342 		if ((prot & VM_PROT_EXECUTE) == 0)
2343 			pvo_clear_exec(pvo);
2344 
2345 		/*
2346 		 * If this entry is already RO, don't diddle with the
2347 		 * page table.
2348 		 */
2349 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2350 			PMAP_PVO_CHECK(pvo);
2351 			continue;
2352 		}
2353 
2354 		/*
2355 		 * Grab the PTE before the we diddle the bits so
2356 		 * pvo_to_pte can verify the pte contents are as
2357 		 * expected.
2358 		 */
2359 		pt = pmap_pvo_to_pte(pvo, -1);
2360 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2361 		pvo->pvo_pte.pte_lo |= PTE_BR;
2362 		if (pt != NULL) {
2363 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2364 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2365 			PMAPCOUNT(ptes_changed);
2366 		}
2367 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2368 	}
2369 	pmap_interrupts_restore(msr);
2370 	pmap_pvo_free_list(&pvol);
2371 
2372 	PMAP_UNLOCK();
2373 }
2374 
2375 /*
2376  * Activate the address space for the specified process.  If the process
2377  * is the current process, load the new MMU context.
2378  */
2379 void
2380 pmap_activate(struct lwp *l)
2381 {
2382 	struct pcb *pcb = lwp_getpcb(l);
2383 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2384 
2385 	DPRINTFN(ACTIVATE,
2386 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2387 
2388 	/*
2389 	 * XXX Normally performed in cpu_lwp_fork().
2390 	 */
2391 	pcb->pcb_pm = pmap;
2392 
2393 	/*
2394 	* In theory, the SR registers need only be valid on return
2395 	* to user space wait to do them there.
2396 	*/
2397 	if (l == curlwp) {
2398 		/* Store pointer to new current pmap. */
2399 		curpm = pmap;
2400 	}
2401 }
2402 
2403 /*
2404  * Deactivate the specified process's address space.
2405  */
2406 void
2407 pmap_deactivate(struct lwp *l)
2408 {
2409 }
2410 
2411 bool
2412 pmap_query_bit(struct vm_page *pg, int ptebit)
2413 {
2414 	struct pvo_entry *pvo;
2415 	volatile struct pte *pt;
2416 	register_t msr;
2417 
2418 	PMAP_LOCK();
2419 
2420 	if (pmap_attr_fetch(pg) & ptebit) {
2421 		PMAP_UNLOCK();
2422 		return true;
2423 	}
2424 
2425 	msr = pmap_interrupts_off();
2426 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2427 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2428 		/*
2429 		 * See if we saved the bit off.  If so cache, it and return
2430 		 * success.
2431 		 */
2432 		if (pvo->pvo_pte.pte_lo & ptebit) {
2433 			pmap_attr_save(pg, ptebit);
2434 			PMAP_PVO_CHECK(pvo);		/* sanity check */
2435 			pmap_interrupts_restore(msr);
2436 			PMAP_UNLOCK();
2437 			return true;
2438 		}
2439 	}
2440 	/*
2441 	 * No luck, now go thru the hard part of looking at the ptes
2442 	 * themselves.  Sync so any pending REF/CHG bits are flushed
2443 	 * to the PTEs.
2444 	 */
2445 	SYNC();
2446 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2447 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2448 		/*
2449 		 * See if this pvo have a valid PTE.  If so, fetch the
2450 		 * REF/CHG bits from the valid PTE.  If the appropriate
2451 		 * ptebit is set, cache, it and return success.
2452 		 */
2453 		pt = pmap_pvo_to_pte(pvo, -1);
2454 		if (pt != NULL) {
2455 			pmap_pte_synch(pt, &pvo->pvo_pte);
2456 			if (pvo->pvo_pte.pte_lo & ptebit) {
2457 				pmap_attr_save(pg, ptebit);
2458 				PMAP_PVO_CHECK(pvo);		/* sanity check */
2459 				pmap_interrupts_restore(msr);
2460 				PMAP_UNLOCK();
2461 				return true;
2462 			}
2463 		}
2464 	}
2465 	pmap_interrupts_restore(msr);
2466 	PMAP_UNLOCK();
2467 	return false;
2468 }
2469 
2470 bool
2471 pmap_clear_bit(struct vm_page *pg, int ptebit)
2472 {
2473 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2474 	struct pvo_entry *pvo;
2475 	volatile struct pte *pt;
2476 	register_t msr;
2477 	int rv = 0;
2478 
2479 	PMAP_LOCK();
2480 	msr = pmap_interrupts_off();
2481 
2482 	/*
2483 	 * Fetch the cache value
2484 	 */
2485 	rv |= pmap_attr_fetch(pg);
2486 
2487 	/*
2488 	 * Clear the cached value.
2489 	 */
2490 	pmap_attr_clear(pg, ptebit);
2491 
2492 	/*
2493 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2494 	 * can reset the right ones).  Note that since the pvo entries and
2495 	 * list heads are accessed via BAT0 and are never placed in the
2496 	 * page table, we don't have to worry about further accesses setting
2497 	 * the REF/CHG bits.
2498 	 */
2499 	SYNC();
2500 
2501 	/*
2502 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
2503 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
2504 	 */
2505 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2506 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2507 		pt = pmap_pvo_to_pte(pvo, -1);
2508 		if (pt != NULL) {
2509 			/*
2510 			 * Only sync the PTE if the bit we are looking
2511 			 * for is not already set.
2512 			 */
2513 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2514 				pmap_pte_synch(pt, &pvo->pvo_pte);
2515 			/*
2516 			 * If the bit we are looking for was already set,
2517 			 * clear that bit in the pte.
2518 			 */
2519 			if (pvo->pvo_pte.pte_lo & ptebit)
2520 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2521 		}
2522 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2523 		pvo->pvo_pte.pte_lo &= ~ptebit;
2524 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2525 	}
2526 	pmap_interrupts_restore(msr);
2527 
2528 	/*
2529 	 * If we are clearing the modify bit and this page was marked EXEC
2530 	 * and the user of the page thinks the page was modified, then we
2531 	 * need to clean it from the icache if it's mapped or clear the EXEC
2532 	 * bit if it's not mapped.  The page itself might not have the CHG
2533 	 * bit set if the modification was done via DMA to the page.
2534 	 */
2535 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2536 		if (LIST_EMPTY(pvoh)) {
2537 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2538 			    VM_PAGE_TO_PHYS(pg));
2539 			pmap_attr_clear(pg, PTE_EXEC);
2540 			PMAPCOUNT(exec_uncached_clear_modify);
2541 		} else {
2542 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2543 			    VM_PAGE_TO_PHYS(pg));
2544 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2545 			PMAPCOUNT(exec_synced_clear_modify);
2546 		}
2547 	}
2548 	PMAP_UNLOCK();
2549 	return (rv & ptebit) != 0;
2550 }
2551 
2552 void
2553 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2554 {
2555 	struct pvo_entry *pvo;
2556 	size_t offset = va & ADDR_POFF;
2557 	int s;
2558 
2559 	PMAP_LOCK();
2560 	s = splvm();
2561 	while (len > 0) {
2562 		size_t seglen = PAGE_SIZE - offset;
2563 		if (seglen > len)
2564 			seglen = len;
2565 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2566 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2567 			pmap_syncicache(
2568 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2569 			PMAP_PVO_CHECK(pvo);
2570 		}
2571 		va += seglen;
2572 		len -= seglen;
2573 		offset = 0;
2574 	}
2575 	splx(s);
2576 	PMAP_UNLOCK();
2577 }
2578 
2579 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2580 void
2581 pmap_pte_print(volatile struct pte *pt)
2582 {
2583 	printf("PTE %p: ", pt);
2584 
2585 #if defined(PMAP_OEA)
2586 	/* High word: */
2587 	printf("%#" _PRIxpte ": [", pt->pte_hi);
2588 #else
2589 	printf("%#" _PRIxpte ": [", pt->pte_hi);
2590 #endif /* PMAP_OEA */
2591 
2592 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2593 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2594 
2595 	printf("%#" _PRIxpte " %#" _PRIxpte "",
2596 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2597 	    pt->pte_hi & PTE_API);
2598 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2599 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2600 #else
2601 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2602 #endif /* PMAP_OEA */
2603 
2604 	/* Low word: */
2605 #if defined (PMAP_OEA)
2606 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
2607 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2608 #else
2609 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
2610 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2611 #endif
2612 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2613 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2614 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2615 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2616 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2617 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2618 	switch (pt->pte_lo & PTE_PP) {
2619 	case PTE_BR: printf("br]\n"); break;
2620 	case PTE_BW: printf("bw]\n"); break;
2621 	case PTE_SO: printf("so]\n"); break;
2622 	case PTE_SW: printf("sw]\n"); break;
2623 	}
2624 }
2625 #endif
2626 
2627 #if defined(DDB)
2628 void
2629 pmap_pteg_check(void)
2630 {
2631 	volatile struct pte *pt;
2632 	int i;
2633 	int ptegidx;
2634 	u_int p_valid = 0;
2635 	u_int s_valid = 0;
2636 	u_int invalid = 0;
2637 
2638 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2639 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2640 			if (pt->pte_hi & PTE_VALID) {
2641 				if (pt->pte_hi & PTE_HID)
2642 					s_valid++;
2643 				else
2644 				{
2645 					p_valid++;
2646 				}
2647 			} else
2648 				invalid++;
2649 		}
2650 	}
2651 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2652 		p_valid, p_valid, s_valid, s_valid,
2653 		invalid, invalid);
2654 }
2655 
2656 void
2657 pmap_print_mmuregs(void)
2658 {
2659 	int i;
2660 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2661 	u_int cpuvers;
2662 #endif
2663 #ifndef PMAP_OEA64
2664 	vaddr_t addr;
2665 	register_t soft_sr[16];
2666 #endif
2667 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2668 	struct bat soft_ibat[4];
2669 	struct bat soft_dbat[4];
2670 #endif
2671 	paddr_t sdr1;
2672 
2673 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2674 	cpuvers = MFPVR() >> 16;
2675 #endif
2676 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2677 #ifndef PMAP_OEA64
2678 	addr = 0;
2679 	for (i = 0; i < 16; i++) {
2680 		soft_sr[i] = MFSRIN(addr);
2681 		addr += (1 << ADDR_SR_SHFT);
2682 	}
2683 #endif
2684 
2685 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2686 	/* read iBAT (601: uBAT) registers */
2687 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2688 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2689 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2690 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2691 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2692 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2693 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2694 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2695 
2696 
2697 	if (cpuvers != MPC601) {
2698 		/* read dBAT registers */
2699 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2700 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2701 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2702 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2703 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2704 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2705 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2706 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2707 	}
2708 #endif
2709 
2710 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2711 #ifndef PMAP_OEA64
2712 	printf("SR[]:\t");
2713 	for (i = 0; i < 4; i++)
2714 		printf("0x%08lx,   ", soft_sr[i]);
2715 	printf("\n\t");
2716 	for ( ; i < 8; i++)
2717 		printf("0x%08lx,   ", soft_sr[i]);
2718 	printf("\n\t");
2719 	for ( ; i < 12; i++)
2720 		printf("0x%08lx,   ", soft_sr[i]);
2721 	printf("\n\t");
2722 	for ( ; i < 16; i++)
2723 		printf("0x%08lx,   ", soft_sr[i]);
2724 	printf("\n");
2725 #endif
2726 
2727 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2728 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2729 	for (i = 0; i < 4; i++) {
2730 		printf("0x%08lx 0x%08lx, ",
2731 			soft_ibat[i].batu, soft_ibat[i].batl);
2732 		if (i == 1)
2733 			printf("\n\t");
2734 	}
2735 	if (cpuvers != MPC601) {
2736 		printf("\ndBAT[]:\t");
2737 		for (i = 0; i < 4; i++) {
2738 			printf("0x%08lx 0x%08lx, ",
2739 				soft_dbat[i].batu, soft_dbat[i].batl);
2740 			if (i == 1)
2741 				printf("\n\t");
2742 		}
2743 	}
2744 	printf("\n");
2745 #endif /* PMAP_OEA... */
2746 }
2747 
2748 void
2749 pmap_print_pte(pmap_t pm, vaddr_t va)
2750 {
2751 	struct pvo_entry *pvo;
2752 	volatile struct pte *pt;
2753 	int pteidx;
2754 
2755 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
2756 	if (pvo != NULL) {
2757 		pt = pmap_pvo_to_pte(pvo, pteidx);
2758 		if (pt != NULL) {
2759 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2760 				va, pt,
2761 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2762 				pt->pte_hi, pt->pte_lo);
2763 		} else {
2764 			printf("No valid PTE found\n");
2765 		}
2766 	} else {
2767 		printf("Address not in pmap\n");
2768 	}
2769 }
2770 
2771 void
2772 pmap_pteg_dist(void)
2773 {
2774 	struct pvo_entry *pvo;
2775 	int ptegidx;
2776 	int depth;
2777 	int max_depth = 0;
2778 	unsigned int depths[64];
2779 
2780 	memset(depths, 0, sizeof(depths));
2781 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2782 		depth = 0;
2783 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2784 			depth++;
2785 		}
2786 		if (depth > max_depth)
2787 			max_depth = depth;
2788 		if (depth > 63)
2789 			depth = 63;
2790 		depths[depth]++;
2791 	}
2792 
2793 	for (depth = 0; depth < 64; depth++) {
2794 		printf("  [%2d]: %8u", depth, depths[depth]);
2795 		if ((depth & 3) == 3)
2796 			printf("\n");
2797 		if (depth == max_depth)
2798 			break;
2799 	}
2800 	if ((depth & 3) != 3)
2801 		printf("\n");
2802 	printf("Max depth found was %d\n", max_depth);
2803 }
2804 #endif /* DEBUG */
2805 
2806 #if defined(PMAPCHECK) || defined(DEBUG)
2807 void
2808 pmap_pvo_verify(void)
2809 {
2810 	int ptegidx;
2811 	int s;
2812 
2813 	s = splvm();
2814 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2815 		struct pvo_entry *pvo;
2816 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2817 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2818 				panic("pmap_pvo_verify: invalid pvo %p "
2819 				    "on list %#x", pvo, ptegidx);
2820 			pmap_pvo_check(pvo);
2821 		}
2822 	}
2823 	splx(s);
2824 }
2825 #endif /* PMAPCHECK */
2826 
2827 
2828 void *
2829 pmap_pool_ualloc(struct pool *pp, int flags)
2830 {
2831 	struct pvo_page *pvop;
2832 
2833 	if (uvm.page_init_done != true) {
2834 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2835 	}
2836 
2837 	PMAP_LOCK();
2838 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2839 	if (pvop != NULL) {
2840 		pmap_upvop_free--;
2841 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2842 		PMAP_UNLOCK();
2843 		return pvop;
2844 	}
2845 	PMAP_UNLOCK();
2846 	return pmap_pool_malloc(pp, flags);
2847 }
2848 
2849 void *
2850 pmap_pool_malloc(struct pool *pp, int flags)
2851 {
2852 	struct pvo_page *pvop;
2853 	struct vm_page *pg;
2854 
2855 	PMAP_LOCK();
2856 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2857 	if (pvop != NULL) {
2858 		pmap_mpvop_free--;
2859 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2860 		PMAP_UNLOCK();
2861 		return pvop;
2862 	}
2863 	PMAP_UNLOCK();
2864  again:
2865 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2866 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2867 	if (__predict_false(pg == NULL)) {
2868 		if (flags & PR_WAITOK) {
2869 			uvm_wait("plpg");
2870 			goto again;
2871 		} else {
2872 			return (0);
2873 		}
2874 	}
2875 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2876 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2877 }
2878 
2879 void
2880 pmap_pool_ufree(struct pool *pp, void *va)
2881 {
2882 	struct pvo_page *pvop;
2883 #if 0
2884 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2885 		pmap_pool_mfree(va, size, tag);
2886 		return;
2887 	}
2888 #endif
2889 	PMAP_LOCK();
2890 	pvop = va;
2891 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2892 	pmap_upvop_free++;
2893 	if (pmap_upvop_free > pmap_upvop_maxfree)
2894 		pmap_upvop_maxfree = pmap_upvop_free;
2895 	PMAP_UNLOCK();
2896 }
2897 
2898 void
2899 pmap_pool_mfree(struct pool *pp, void *va)
2900 {
2901 	struct pvo_page *pvop;
2902 
2903 	PMAP_LOCK();
2904 	pvop = va;
2905 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2906 	pmap_mpvop_free++;
2907 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
2908 		pmap_mpvop_maxfree = pmap_mpvop_free;
2909 	PMAP_UNLOCK();
2910 #if 0
2911 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2912 #endif
2913 }
2914 
2915 /*
2916  * This routine in bootstraping to steal to-be-managed memory (which will
2917  * then be unmanaged).  We use it to grab from the first 256MB for our
2918  * pmap needs and above 256MB for other stuff.
2919  */
2920 vaddr_t
2921 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2922 {
2923 	vsize_t size;
2924 	vaddr_t va;
2925 	paddr_t start, end, pa = 0;
2926 	int npgs, freelist;
2927 	uvm_physseg_t bank;
2928 
2929 	if (uvm.page_init_done == true)
2930 		panic("pmap_steal_memory: called _after_ bootstrap");
2931 
2932 	*vstartp = VM_MIN_KERNEL_ADDRESS;
2933 	*vendp = VM_MAX_KERNEL_ADDRESS;
2934 
2935 	size = round_page(vsize);
2936 	npgs = atop(size);
2937 
2938 	/*
2939 	 * PA 0 will never be among those given to UVM so we can use it
2940 	 * to indicate we couldn't steal any memory.
2941 	 */
2942 
2943 	for (bank = uvm_physseg_get_first();
2944 	     uvm_physseg_valid_p(bank);
2945 	     bank = uvm_physseg_get_next(bank)) {
2946 
2947 		freelist = uvm_physseg_get_free_list(bank);
2948 		start = uvm_physseg_get_start(bank);
2949 		end = uvm_physseg_get_end(bank);
2950 
2951 		if (freelist == VM_FREELIST_FIRST256 &&
2952 		    (end - start) >= npgs) {
2953 			pa = ptoa(start);
2954 			break;
2955 		}
2956 	}
2957 
2958 	if (pa == 0)
2959 		panic("pmap_steal_memory: no approriate memory to steal!");
2960 
2961 	uvm_physseg_unplug(start, npgs);
2962 
2963 	va = (vaddr_t) pa;
2964 	memset((void *) va, 0, size);
2965 	pmap_pages_stolen += npgs;
2966 #ifdef DEBUG
2967 	if (pmapdebug && npgs > 1) {
2968 		u_int cnt = 0;
2969 	for (bank = uvm_physseg_get_first();
2970 	     uvm_physseg_valid_p(bank);
2971 	     bank = uvm_physseg_get_next(bank)) {
2972 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2973 		}
2974 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2975 		    npgs, pmap_pages_stolen, cnt);
2976 	}
2977 #endif
2978 
2979 	return va;
2980 }
2981 
2982 /*
2983  * Find a chuck of memory with right size and alignment.
2984  */
2985 paddr_t
2986 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2987 {
2988 	struct mem_region *mp;
2989 	paddr_t s, e;
2990 	int i, j;
2991 
2992 	size = round_page(size);
2993 
2994 	DPRINTFN(BOOT,
2995 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2996 	    size, alignment, at_end);
2997 
2998 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2999 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
3000 		    alignment);
3001 
3002 	if (at_end) {
3003 		if (alignment != PAGE_SIZE)
3004 			panic("pmap_boot_find_memory: invalid ending "
3005 			    "alignment %#" _PRIxpa, alignment);
3006 
3007 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3008 			s = mp->start + mp->size - size;
3009 			if (s >= mp->start && mp->size >= size) {
3010 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3011 				DPRINTFN(BOOT,
3012 				    "pmap_boot_find_memory: b-avail[%d] start "
3013 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3014 				     mp->start, mp->size);
3015 				mp->size -= size;
3016 				DPRINTFN(BOOT,
3017 				    "pmap_boot_find_memory: a-avail[%d] start "
3018 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3019 				     mp->start, mp->size);
3020 				return s;
3021 			}
3022 		}
3023 		panic("pmap_boot_find_memory: no available memory");
3024 	}
3025 
3026 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3027 		s = (mp->start + alignment - 1) & ~(alignment-1);
3028 		e = s + size;
3029 
3030 		/*
3031 		 * Is the calculated region entirely within the region?
3032 		 */
3033 		if (s < mp->start || e > mp->start + mp->size)
3034 			continue;
3035 
3036 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3037 		if (s == mp->start) {
3038 			/*
3039 			 * If the block starts at the beginning of region,
3040 			 * adjust the size & start. (the region may now be
3041 			 * zero in length)
3042 			 */
3043 			DPRINTFN(BOOT,
3044 			    "pmap_boot_find_memory: b-avail[%d] start "
3045 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3046 			mp->start += size;
3047 			mp->size -= size;
3048 			DPRINTFN(BOOT,
3049 			    "pmap_boot_find_memory: a-avail[%d] start "
3050 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3051 		} else if (e == mp->start + mp->size) {
3052 			/*
3053 			 * If the block starts at the beginning of region,
3054 			 * adjust only the size.
3055 			 */
3056 			DPRINTFN(BOOT,
3057 			    "pmap_boot_find_memory: b-avail[%d] start "
3058 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3059 			mp->size -= size;
3060 			DPRINTFN(BOOT,
3061 			    "pmap_boot_find_memory: a-avail[%d] start "
3062 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3063 		} else {
3064 			/*
3065 			 * Block is in the middle of the region, so we
3066 			 * have to split it in two.
3067 			 */
3068 			for (j = avail_cnt; j > i + 1; j--) {
3069 				avail[j] = avail[j-1];
3070 			}
3071 			DPRINTFN(BOOT,
3072 			    "pmap_boot_find_memory: b-avail[%d] start "
3073 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3074 			mp[1].start = e;
3075 			mp[1].size = mp[0].start + mp[0].size - e;
3076 			mp[0].size = s - mp[0].start;
3077 			avail_cnt++;
3078 			for (; i < avail_cnt; i++) {
3079 				DPRINTFN(BOOT,
3080 				    "pmap_boot_find_memory: a-avail[%d] "
3081 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3082 				     avail[i].start, avail[i].size);
3083 			}
3084 		}
3085 		KASSERT(s == (uintptr_t) s);
3086 		return s;
3087 	}
3088 	panic("pmap_boot_find_memory: not enough memory for "
3089 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3090 }
3091 
3092 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3093 #if defined (PMAP_OEA64_BRIDGE)
3094 int
3095 pmap_setup_segment0_map(int use_large_pages, ...)
3096 {
3097     vaddr_t va, va_end;
3098 
3099     register_t pte_lo = 0x0;
3100     int ptegidx = 0;
3101     struct pte pte;
3102     va_list ap;
3103 
3104     /* Coherent + Supervisor RW, no user access */
3105     pte_lo = PTE_M;
3106 
3107     /* XXXSL
3108      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3109      * these have to take priority.
3110      */
3111     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3112         ptegidx = va_to_pteg(pmap_kernel(), va);
3113         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3114         (void)pmap_pte_insert(ptegidx, &pte);
3115     }
3116 
3117     va_start(ap, use_large_pages);
3118     while (1) {
3119         paddr_t pa;
3120         size_t size;
3121 
3122         va = va_arg(ap, vaddr_t);
3123 
3124         if (va == 0)
3125             break;
3126 
3127         pa = va_arg(ap, paddr_t);
3128         size = va_arg(ap, size_t);
3129 
3130         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3131 #if 0
3132 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
3133 #endif
3134             ptegidx = va_to_pteg(pmap_kernel(), va);
3135             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3136             (void)pmap_pte_insert(ptegidx, &pte);
3137         }
3138     }
3139     va_end(ap);
3140 
3141     TLBSYNC();
3142     SYNC();
3143     return (0);
3144 }
3145 #endif /* PMAP_OEA64_BRIDGE */
3146 
3147 /*
3148  * This is not part of the defined PMAP interface and is specific to the
3149  * PowerPC architecture.  This is called during initppc, before the system
3150  * is really initialized.
3151  */
3152 void
3153 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3154 {
3155 	struct mem_region *mp, tmp;
3156 	paddr_t s, e;
3157 	psize_t size;
3158 	int i, j;
3159 
3160 	/*
3161 	 * Get memory.
3162 	 */
3163 	mem_regions(&mem, &avail);
3164 #if defined(DEBUG)
3165 	if (pmapdebug & PMAPDEBUG_BOOT) {
3166 		printf("pmap_bootstrap: memory configuration:\n");
3167 		for (mp = mem; mp->size; mp++) {
3168 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3169 				mp->start, mp->size);
3170 		}
3171 		for (mp = avail; mp->size; mp++) {
3172 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3173 				mp->start, mp->size);
3174 		}
3175 	}
3176 #endif
3177 
3178 	/*
3179 	 * Find out how much physical memory we have and in how many chunks.
3180 	 */
3181 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3182 		if (mp->start >= pmap_memlimit)
3183 			continue;
3184 		if (mp->start + mp->size > pmap_memlimit) {
3185 			size = pmap_memlimit - mp->start;
3186 			physmem += btoc(size);
3187 		} else {
3188 			physmem += btoc(mp->size);
3189 		}
3190 		mem_cnt++;
3191 	}
3192 
3193 	/*
3194 	 * Count the number of available entries.
3195 	 */
3196 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
3197 		avail_cnt++;
3198 
3199 	/*
3200 	 * Page align all regions.
3201 	 */
3202 	kernelstart = trunc_page(kernelstart);
3203 	kernelend = round_page(kernelend);
3204 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3205 		s = round_page(mp->start);
3206 		mp->size -= (s - mp->start);
3207 		mp->size = trunc_page(mp->size);
3208 		mp->start = s;
3209 		e = mp->start + mp->size;
3210 
3211 		DPRINTFN(BOOT,
3212 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3213 		    i, mp->start, mp->size);
3214 
3215 		/*
3216 		 * Don't allow the end to run beyond our artificial limit
3217 		 */
3218 		if (e > pmap_memlimit)
3219 			e = pmap_memlimit;
3220 
3221 		/*
3222 		 * Is this region empty or strange?  skip it.
3223 		 */
3224 		if (e <= s) {
3225 			mp->start = 0;
3226 			mp->size = 0;
3227 			continue;
3228 		}
3229 
3230 		/*
3231 		 * Does this overlap the beginning of kernel?
3232 		 *   Does extend past the end of the kernel?
3233 		 */
3234 		else if (s < kernelstart && e > kernelstart) {
3235 			if (e > kernelend) {
3236 				avail[avail_cnt].start = kernelend;
3237 				avail[avail_cnt].size = e - kernelend;
3238 				avail_cnt++;
3239 			}
3240 			mp->size = kernelstart - s;
3241 		}
3242 		/*
3243 		 * Check whether this region overlaps the end of the kernel.
3244 		 */
3245 		else if (s < kernelend && e > kernelend) {
3246 			mp->start = kernelend;
3247 			mp->size = e - kernelend;
3248 		}
3249 		/*
3250 		 * Look whether this regions is completely inside the kernel.
3251 		 * Nuke it if it does.
3252 		 */
3253 		else if (s >= kernelstart && e <= kernelend) {
3254 			mp->start = 0;
3255 			mp->size = 0;
3256 		}
3257 		/*
3258 		 * If the user imposed a memory limit, enforce it.
3259 		 */
3260 		else if (s >= pmap_memlimit) {
3261 			mp->start = -PAGE_SIZE;	/* let's know why */
3262 			mp->size = 0;
3263 		}
3264 		else {
3265 			mp->start = s;
3266 			mp->size = e - s;
3267 		}
3268 		DPRINTFN(BOOT,
3269 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3270 		    i, mp->start, mp->size);
3271 	}
3272 
3273 	/*
3274 	 * Move (and uncount) all the null return to the end.
3275 	 */
3276 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3277 		if (mp->size == 0) {
3278 			tmp = avail[i];
3279 			avail[i] = avail[--avail_cnt];
3280 			avail[avail_cnt] = avail[i];
3281 		}
3282 	}
3283 
3284 	/*
3285 	 * (Bubble)sort them into ascending order.
3286 	 */
3287 	for (i = 0; i < avail_cnt; i++) {
3288 		for (j = i + 1; j < avail_cnt; j++) {
3289 			if (avail[i].start > avail[j].start) {
3290 				tmp = avail[i];
3291 				avail[i] = avail[j];
3292 				avail[j] = tmp;
3293 			}
3294 		}
3295 	}
3296 
3297 	/*
3298 	 * Make sure they don't overlap.
3299 	 */
3300 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3301 		if (mp[0].start + mp[0].size > mp[1].start) {
3302 			mp[0].size = mp[1].start - mp[0].start;
3303 		}
3304 		DPRINTFN(BOOT,
3305 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3306 		    i, mp->start, mp->size);
3307 	}
3308 	DPRINTFN(BOOT,
3309 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3310 	    i, mp->start, mp->size);
3311 
3312 #ifdef	PTEGCOUNT
3313 	pmap_pteg_cnt = PTEGCOUNT;
3314 #else /* PTEGCOUNT */
3315 
3316 	pmap_pteg_cnt = 0x1000;
3317 
3318 	while (pmap_pteg_cnt < physmem)
3319 		pmap_pteg_cnt <<= 1;
3320 
3321 	pmap_pteg_cnt >>= 1;
3322 #endif /* PTEGCOUNT */
3323 
3324 #ifdef DEBUG
3325 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3326 #endif
3327 
3328 	/*
3329 	 * Find suitably aligned memory for PTEG hash table.
3330 	 */
3331 	size = pmap_pteg_cnt * sizeof(struct pteg);
3332 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3333 
3334 #ifdef DEBUG
3335 	DPRINTFN(BOOT,
3336 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3337 #endif
3338 
3339 
3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3341 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3342 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3343 		    pmap_pteg_table, size);
3344 #endif
3345 
3346 	memset(__UNVOLATILE(pmap_pteg_table), 0,
3347 		pmap_pteg_cnt * sizeof(struct pteg));
3348 	pmap_pteg_mask = pmap_pteg_cnt - 1;
3349 
3350 	/*
3351 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3352 	 * with pages.  So we just steal them before giving them to UVM.
3353 	 */
3354 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3355 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3357 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3358 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3359 		    pmap_pvo_table, size);
3360 #endif
3361 
3362 	for (i = 0; i < pmap_pteg_cnt; i++)
3363 		TAILQ_INIT(&pmap_pvo_table[i]);
3364 
3365 #ifndef MSGBUFADDR
3366 	/*
3367 	 * Allocate msgbuf in high memory.
3368 	 */
3369 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3370 #endif
3371 
3372 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3373 		paddr_t pfstart = atop(mp->start);
3374 		paddr_t pfend = atop(mp->start + mp->size);
3375 		if (mp->size == 0)
3376 			continue;
3377 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 				VM_FREELIST_FIRST256);
3380 		} else if (mp->start >= SEGMENT_LENGTH) {
3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 				VM_FREELIST_DEFAULT);
3383 		} else {
3384 			pfend = atop(SEGMENT_LENGTH);
3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 				VM_FREELIST_FIRST256);
3387 			pfstart = atop(SEGMENT_LENGTH);
3388 			pfend = atop(mp->start + mp->size);
3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 				VM_FREELIST_DEFAULT);
3391 		}
3392 	}
3393 
3394 	/*
3395 	 * Make sure kernel vsid is allocated as well as VSID 0.
3396 	 */
3397 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3399 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3400 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3401 	pmap_vsid_bitmap[0] |= 1;
3402 
3403 	/*
3404 	 * Initialize kernel pmap and hardware.
3405 	 */
3406 
3407 /* PMAP_OEA64_BRIDGE does support these instructions */
3408 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3409 	for (i = 0; i < 16; i++) {
3410 #if defined(PPC_OEA601)
3411 	    /* XXX wedges for segment register 0xf , so set later */
3412 	    if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3413 		    continue;
3414 #endif
3415  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3416 		__asm volatile ("mtsrin %0,%1"
3417  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3418 	}
3419 
3420 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3421 	__asm volatile ("mtsr %0,%1"
3422 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3423 #ifdef KERNEL2_SR
3424 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3425 	__asm volatile ("mtsr %0,%1"
3426 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3427 #endif
3428 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3429 #if defined (PMAP_OEA)
3430 	for (i = 0; i < 16; i++) {
3431 		if (iosrtable[i] & SR601_T) {
3432 			pmap_kernel()->pm_sr[i] = iosrtable[i];
3433 			__asm volatile ("mtsrin %0,%1"
3434 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3435 		}
3436 	}
3437 	__asm volatile ("sync; mtsdr1 %0; isync"
3438 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3439 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3440  	__asm __volatile ("sync; mtsdr1 %0; isync"
3441  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3442 #endif
3443 	tlbia();
3444 
3445 #ifdef ALTIVEC
3446 	pmap_use_altivec = cpu_altivec;
3447 #endif
3448 
3449 #ifdef DEBUG
3450 	if (pmapdebug & PMAPDEBUG_BOOT) {
3451 		u_int cnt;
3452 		uvm_physseg_t bank;
3453 		char pbuf[9];
3454 		for (cnt = 0, bank = uvm_physseg_get_first();
3455 		     uvm_physseg_valid_p(bank);
3456 		     bank = uvm_physseg_get_next(bank)) {
3457 			cnt += uvm_physseg_get_avail_end(bank) -
3458 			    uvm_physseg_get_avail_start(bank);
3459 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3460 			    bank,
3461 			    ptoa(uvm_physseg_get_avail_start(bank)),
3462 			    ptoa(uvm_physseg_get_avail_end(bank)),
3463 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3464 		}
3465 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3466 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3467 		    pbuf, cnt);
3468 	}
3469 #endif
3470 
3471 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3472 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3473 	    &pmap_pool_uallocator, IPL_VM);
3474 
3475 	pool_setlowat(&pmap_upvo_pool, 252);
3476 
3477 	pool_init(&pmap_pool, sizeof(struct pmap),
3478 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3479 	    IPL_NONE);
3480 
3481 #if defined(PMAP_NEED_MAPKERNEL)
3482 	{
3483 		struct pmap *pm = pmap_kernel();
3484 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3485 		extern int etext[], kernel_text[];
3486 		vaddr_t va, va_etext = (paddr_t) etext;
3487 #endif
3488 		paddr_t pa, pa_end;
3489 		register_t sr;
3490 		struct pte pt;
3491 		unsigned int ptegidx;
3492 		int bank;
3493 
3494 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3495 		pm->pm_sr[0] = sr;
3496 
3497 		for (bank = 0; bank < vm_nphysseg; bank++) {
3498 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3499 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3500 			for (; pa < pa_end; pa += PAGE_SIZE) {
3501 				ptegidx = va_to_pteg(pm, pa);
3502 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3503 				pmap_pte_insert(ptegidx, &pt);
3504 			}
3505 		}
3506 
3507 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3508 		va = (vaddr_t) kernel_text;
3509 
3510 		for (pa = kernelstart; va < va_etext;
3511 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
3512 			ptegidx = va_to_pteg(pm, va);
3513 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3514 			pmap_pte_insert(ptegidx, &pt);
3515 		}
3516 
3517 		for (; pa < kernelend;
3518 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
3519 			ptegidx = va_to_pteg(pm, va);
3520 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3521 			pmap_pte_insert(ptegidx, &pt);
3522 		}
3523 
3524 		for (va = 0, pa = 0; va < kernelstart;
3525 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
3526 			ptegidx = va_to_pteg(pm, va);
3527 			if (va < 0x3000)
3528 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3529 			else
3530 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3531 			pmap_pte_insert(ptegidx, &pt);
3532 		}
3533 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3534 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
3535 			ptegidx = va_to_pteg(pm, va);
3536 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3537 			pmap_pte_insert(ptegidx, &pt);
3538 		}
3539 #endif
3540 
3541 		__asm volatile ("mtsrin %0,%1"
3542  			      :: "r"(sr), "r"(kernelstart));
3543 	}
3544 #endif
3545 
3546 #if defined(PMAPDEBUG)
3547 	if ( pmapdebug )
3548 	    pmap_print_mmuregs();
3549 #endif
3550 }
3551