xref: /netbsd-src/sys/arch/powerpc/oea/pmap.c (revision a30f264f2a5f410ffefcc55600a9238b3a0c935c)
1 /*	$NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $	*/
2 /*-
3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *        This product includes software developed by the NetBSD
20  *        Foundation, Inc. and its contributors.
21  * 4. Neither the name of The NetBSD Foundation nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40  * Copyright (C) 1995, 1996 TooLs GmbH.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by TooLs GmbH.
54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.35 2005/12/24 20:07:28 perry Exp $");
71 
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h>		/* for evcnt */
82 #include <sys/systm.h>
83 
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define	splvm()		splimp()
88 #endif
89 
90 #include <uvm/uvm.h>
91 
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97 
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define	STATIC
100 #else
101 #define	STATIC	static
102 #endif
103 
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107 
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
115 #endif
116 
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124 
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129 
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132 
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135  * This is a cache of referenced/modified bits.
136  * Bits herein are shifted by ATTRSHFT.
137  */
138 #define	ATTR_SHFT	4
139 struct pmap_physseg pmap_physseg;
140 #endif
141 
142 /*
143  * The following structure is exactly 32 bytes long (one cacheline).
144  */
145 struct pvo_entry {
146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
148 	struct pte pvo_pte;			/* Prebuilt PTE */
149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
150 	vaddr_t pvo_vaddr;			/* VA of entry */
151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
162 #define	PVO_REMOVE		6		/* PVO has been removed */
163 #define	PVO_WHERE_MASK		15
164 #define	PVO_WHERE_SHFT		8
165 };
166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define	PVO_PTEGIDX_CLR(pvo)	\
171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define	PVO_PTEGIDX_SET(pvo,i)	\
173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define	PVO_WHERE(pvo,w)	\
175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177 
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
182 
183 struct pool pmap_pool;		/* pool for pmap structures */
184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
186 
187 /*
188  * We keep a cache of unmanaged pages to be used for pvo entries for
189  * unmanaged pages.
190  */
191 struct pvo_page {
192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201 
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204 
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207 
208 static struct pool_allocator pmap_pool_mallocator = {
209 	pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211 
212 static struct pool_allocator pmap_pool_uallocator = {
213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215 
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219 
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226 
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define	PMAP_PVO_CHECK(pvo)	 		\
236 	do {					\
237 		if (pmapcheck)			\
238 			pmap_pvo_check(pvo);	\
239 	} while (0)
240 #else
241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 	vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
247 STATIC void pmap_pvo_free(struct pvo_entry *);
248 STATIC void pmap_pvo_free_list(struct pvo_head *);
249 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
250 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
251 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
252 STATIC void pvo_set_exec(struct pvo_entry *);
253 STATIC void pvo_clear_exec(struct pvo_entry *);
254 
255 STATIC void tlbia(void);
256 
257 STATIC void pmap_release(pmap_t);
258 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
259 
260 static uint32_t pmap_pvo_reclaim_nextidx;
261 #ifdef DEBUG
262 static int pmap_pvo_reclaim_debugctr;
263 #endif
264 
265 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
266 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
267 
268 static int pmap_initialized;
269 
270 #if defined(DEBUG) || defined(PMAPDEBUG)
271 #define	PMAPDEBUG_BOOT		0x0001
272 #define	PMAPDEBUG_PTE		0x0002
273 #define	PMAPDEBUG_EXEC		0x0008
274 #define	PMAPDEBUG_PVOENTER	0x0010
275 #define	PMAPDEBUG_PVOREMOVE	0x0020
276 #define	PMAPDEBUG_ACTIVATE	0x0100
277 #define	PMAPDEBUG_CREATE	0x0200
278 #define	PMAPDEBUG_ENTER		0x1000
279 #define	PMAPDEBUG_KENTER	0x2000
280 #define	PMAPDEBUG_KREMOVE	0x4000
281 #define	PMAPDEBUG_REMOVE	0x8000
282 unsigned int pmapdebug = 0;
283 # define DPRINTF(x)		printf x
284 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
285 #else
286 # define DPRINTF(x)
287 # define DPRINTFN(n, x)
288 #endif
289 
290 
291 #ifdef PMAPCOUNTERS
292 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
293 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
294 
295 struct evcnt pmap_evcnt_mappings =
296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
297 	    "pmap", "pages mapped");
298 struct evcnt pmap_evcnt_unmappings =
299     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
300 	    "pmap", "pages unmapped");
301 
302 struct evcnt pmap_evcnt_kernel_mappings =
303     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
304 	    "pmap", "kernel pages mapped");
305 struct evcnt pmap_evcnt_kernel_unmappings =
306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
307 	    "pmap", "kernel pages unmapped");
308 
309 struct evcnt pmap_evcnt_mappings_replaced =
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
311 	    "pmap", "page mappings replaced");
312 
313 struct evcnt pmap_evcnt_exec_mappings =
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
315 	    "pmap", "exec pages mapped");
316 struct evcnt pmap_evcnt_exec_cached =
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
318 	    "pmap", "exec pages cached");
319 
320 struct evcnt pmap_evcnt_exec_synced =
321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
322 	    "pmap", "exec pages synced");
323 struct evcnt pmap_evcnt_exec_synced_clear_modify =
324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
325 	    "pmap", "exec pages synced (CM)");
326 
327 struct evcnt pmap_evcnt_exec_uncached_page_protect =
328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
329 	    "pmap", "exec pages uncached (PP)");
330 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
332 	    "pmap", "exec pages uncached (CM)");
333 struct evcnt pmap_evcnt_exec_uncached_zero_page =
334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
335 	    "pmap", "exec pages uncached (ZP)");
336 struct evcnt pmap_evcnt_exec_uncached_copy_page =
337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
338 	    "pmap", "exec pages uncached (CP)");
339 
340 struct evcnt pmap_evcnt_updates =
341     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
342 	    "pmap", "updates");
343 struct evcnt pmap_evcnt_collects =
344     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
345 	    "pmap", "collects");
346 struct evcnt pmap_evcnt_copies =
347     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
348 	    "pmap", "copies");
349 
350 struct evcnt pmap_evcnt_ptes_spilled =
351     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
352 	    "pmap", "ptes spilled from overflow");
353 struct evcnt pmap_evcnt_ptes_unspilled =
354     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
355 	    "pmap", "ptes not spilled");
356 struct evcnt pmap_evcnt_ptes_evicted =
357     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
358 	    "pmap", "ptes evicted");
359 
360 struct evcnt pmap_evcnt_ptes_primary[8] = {
361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 	    "pmap", "ptes added at primary[0]"),
363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 	    "pmap", "ptes added at primary[1]"),
365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 	    "pmap", "ptes added at primary[2]"),
367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
368 	    "pmap", "ptes added at primary[3]"),
369 
370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 	    "pmap", "ptes added at primary[4]"),
372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 	    "pmap", "ptes added at primary[5]"),
374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 	    "pmap", "ptes added at primary[6]"),
376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 	    "pmap", "ptes added at primary[7]"),
378 };
379 struct evcnt pmap_evcnt_ptes_secondary[8] = {
380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 	    "pmap", "ptes added at secondary[0]"),
382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 	    "pmap", "ptes added at secondary[1]"),
384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 	    "pmap", "ptes added at secondary[2]"),
386     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
387 	    "pmap", "ptes added at secondary[3]"),
388 
389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 	    "pmap", "ptes added at secondary[4]"),
391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 	    "pmap", "ptes added at secondary[5]"),
393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 	    "pmap", "ptes added at secondary[6]"),
395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 	    "pmap", "ptes added at secondary[7]"),
397 };
398 struct evcnt pmap_evcnt_ptes_removed =
399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
400 	    "pmap", "ptes removed");
401 struct evcnt pmap_evcnt_ptes_changed =
402     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
403 	    "pmap", "ptes changed");
404 struct evcnt pmap_evcnt_pvos_reclaimed =
405     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
406 	    "pmap", "pvos reclaimed");
407 struct evcnt pmap_evcnt_pvos_failed =
408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 	    "pmap", "pvo allocation failures");
410 
411 /*
412  * From pmap_subr.c
413  */
414 extern struct evcnt pmap_evcnt_zeroed_pages;
415 extern struct evcnt pmap_evcnt_copied_pages;
416 extern struct evcnt pmap_evcnt_idlezeroed_pages;
417 
418 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
419 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
420 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
421 
422 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
423 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
424 
425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
427 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
429 
430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
432 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
433 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
434 
435 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
436 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
437 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
438 
439 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
440 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
441 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
442 
443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
446 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
447 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
448 
449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
463 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
464 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
465 
466 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
467 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
468 #else
469 #define	PMAPCOUNT(ev)	((void) 0)
470 #define	PMAPCOUNT2(ev)	((void) 0)
471 #endif
472 
473 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
474 #define	TLBSYNC()	__asm volatile("tlbsync")
475 #define	SYNC()		__asm volatile("sync")
476 #define	EIEIO()		__asm volatile("eieio")
477 #define	MFMSR()		mfmsr()
478 #define	MTMSR(psl)	mtmsr(psl)
479 #define	MFPVR()		mfpvr()
480 #define	MFSRIN(va)	mfsrin(va)
481 #define	MFTB()		mfrtcltbl()
482 
483 #ifndef PPC_OEA64
484 static inline register_t
485 mfsrin(vaddr_t va)
486 {
487 	register_t sr;
488 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
489 	return sr;
490 }
491 #endif	/* PPC_OEA64 */
492 
493 static inline register_t
494 pmap_interrupts_off(void)
495 {
496 	register_t msr = MFMSR();
497 	if (msr & PSL_EE)
498 		MTMSR(msr & ~PSL_EE);
499 	return msr;
500 }
501 
502 static void
503 pmap_interrupts_restore(register_t msr)
504 {
505 	if (msr & PSL_EE)
506 		MTMSR(msr);
507 }
508 
509 static inline u_int32_t
510 mfrtcltbl(void)
511 {
512 
513 	if ((MFPVR() >> 16) == MPC601)
514 		return (mfrtcl() >> 7);
515 	else
516 		return (mftbl());
517 }
518 
519 /*
520  * These small routines may have to be replaced,
521  * if/when we support processors other that the 604.
522  */
523 
524 void
525 tlbia(void)
526 {
527 	caddr_t i;
528 
529 	SYNC();
530 	/*
531 	 * Why not use "tlbia"?  Because not all processors implement it.
532 	 *
533 	 * This needs to be a per-CPU callback to do the appropriate thing
534 	 * for the CPU. XXX
535 	 */
536 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
537 		TLBIE(i);
538 		EIEIO();
539 		SYNC();
540 	}
541 	TLBSYNC();
542 	SYNC();
543 }
544 
545 static inline register_t
546 va_to_vsid(const struct pmap *pm, vaddr_t addr)
547 {
548 #ifdef PPC_OEA64
549 #if 0
550 	const struct ste *ste;
551 	register_t hash;
552 	int i;
553 
554 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
555 
556 	/*
557 	 * Try the primary group first
558 	 */
559 	ste = pm->pm_stes[hash].stes;
560 	for (i = 0; i < 8; i++, ste++) {
561 		if (ste->ste_hi & STE_V) &&
562 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
563 			return ste;
564 	}
565 
566 	/*
567 	 * Then the secondary group.
568 	 */
569 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
570 	for (i = 0; i < 8; i++, ste++) {
571 		if (ste->ste_hi & STE_V) &&
572 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
573 			return addr;
574 	}
575 
576 	return NULL;
577 #else
578 	/*
579 	 * Rather than searching the STE groups for the VSID, we know
580 	 * how we generate that from the ESID and so do that.
581 	 */
582 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
583 #endif
584 #else
585 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 #endif
587 }
588 
589 static inline register_t
590 va_to_pteg(const struct pmap *pm, vaddr_t addr)
591 {
592 	register_t hash;
593 
594 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
595 	return hash & pmap_pteg_mask;
596 }
597 
598 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
599 /*
600  * Given a PTE in the page table, calculate the VADDR that hashes to it.
601  * The only bit of magic is that the top 4 bits of the address doesn't
602  * technically exist in the PTE.  But we know we reserved 4 bits of the
603  * VSID for it so that's how we get it.
604  */
605 static vaddr_t
606 pmap_pte_to_va(volatile const struct pte *pt)
607 {
608 	vaddr_t va;
609 	uintptr_t ptaddr = (uintptr_t) pt;
610 
611 	if (pt->pte_hi & PTE_HID)
612 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
613 
614 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
615 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
616 	va <<= ADDR_PIDX_SHFT;
617 
618 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
619 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
620 
621 #ifdef PPC_OEA64
622 	/* PPC63 Bits 0-35 */
623 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
624 #endif
625 #ifdef PPC_OEA
626 	/* PPC Bits 0-3 */
627 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
628 #endif
629 
630 	return va;
631 }
632 #endif
633 
634 static inline struct pvo_head *
635 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
636 {
637 #ifdef __HAVE_VM_PAGE_MD
638 	struct vm_page *pg;
639 
640 	pg = PHYS_TO_VM_PAGE(pa);
641 	if (pg_p != NULL)
642 		*pg_p = pg;
643 	if (pg == NULL)
644 		return &pmap_pvo_unmanaged;
645 	return &pg->mdpage.mdpg_pvoh;
646 #endif
647 #ifdef __HAVE_PMAP_PHYSSEG
648 	int bank, pg;
649 
650 	bank = vm_physseg_find(atop(pa), &pg);
651 	if (pg_p != NULL)
652 		*pg_p = pg;
653 	if (bank == -1)
654 		return &pmap_pvo_unmanaged;
655 	return &vm_physmem[bank].pmseg.pvoh[pg];
656 #endif
657 }
658 
659 static inline struct pvo_head *
660 vm_page_to_pvoh(struct vm_page *pg)
661 {
662 #ifdef __HAVE_VM_PAGE_MD
663 	return &pg->mdpage.mdpg_pvoh;
664 #endif
665 #ifdef __HAVE_PMAP_PHYSSEG
666 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
667 #endif
668 }
669 
670 
671 #ifdef __HAVE_PMAP_PHYSSEG
672 static inline char *
673 pa_to_attr(paddr_t pa)
674 {
675 	int bank, pg;
676 
677 	bank = vm_physseg_find(atop(pa), &pg);
678 	if (bank == -1)
679 		return NULL;
680 	return &vm_physmem[bank].pmseg.attrs[pg];
681 }
682 #endif
683 
684 static inline void
685 pmap_attr_clear(struct vm_page *pg, int ptebit)
686 {
687 #ifdef __HAVE_PMAP_PHYSSEG
688 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
689 #endif
690 #ifdef __HAVE_VM_PAGE_MD
691 	pg->mdpage.mdpg_attrs &= ~ptebit;
692 #endif
693 }
694 
695 static inline int
696 pmap_attr_fetch(struct vm_page *pg)
697 {
698 #ifdef __HAVE_PMAP_PHYSSEG
699 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
700 #endif
701 #ifdef __HAVE_VM_PAGE_MD
702 	return pg->mdpage.mdpg_attrs;
703 #endif
704 }
705 
706 static inline void
707 pmap_attr_save(struct vm_page *pg, int ptebit)
708 {
709 #ifdef __HAVE_PMAP_PHYSSEG
710 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
711 #endif
712 #ifdef __HAVE_VM_PAGE_MD
713 	pg->mdpage.mdpg_attrs |= ptebit;
714 #endif
715 }
716 
717 static inline int
718 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
719 {
720 	if (pt->pte_hi == pvo_pt->pte_hi
721 #if 0
722 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
723 	        ~(PTE_REF|PTE_CHG)) == 0
724 #endif
725 	    )
726 		return 1;
727 	return 0;
728 }
729 
730 static inline void
731 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
732 {
733 	/*
734 	 * Construct the PTE.  Default to IMB initially.  Valid bit
735 	 * only gets set when the real pte is set in memory.
736 	 *
737 	 * Note: Don't set the valid bit for correct operation of tlb update.
738 	 */
739 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
740 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
741 	pt->pte_lo = pte_lo;
742 }
743 
744 static inline void
745 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
746 {
747 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
748 }
749 
750 static inline void
751 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
752 {
753 	/*
754 	 * As shown in Section 7.6.3.2.3
755 	 */
756 	pt->pte_lo &= ~ptebit;
757 	TLBIE(va);
758 	SYNC();
759 	EIEIO();
760 	TLBSYNC();
761 	SYNC();
762 }
763 
764 static inline void
765 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
766 {
767 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
768 	if (pvo_pt->pte_hi & PTE_VALID)
769 		panic("pte_set: setting an already valid pte %p", pvo_pt);
770 #endif
771 	pvo_pt->pte_hi |= PTE_VALID;
772 	/*
773 	 * Update the PTE as defined in section 7.6.3.1
774 	 * Note that the REF/CHG bits are from pvo_pt and thus should
775 	 * have been saved so this routine can restore them (if desired).
776 	 */
777 	pt->pte_lo = pvo_pt->pte_lo;
778 	EIEIO();
779 	pt->pte_hi = pvo_pt->pte_hi;
780 	SYNC();
781 	pmap_pte_valid++;
782 }
783 
784 static inline void
785 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
786 {
787 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
788 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
789 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
790 	if ((pt->pte_hi & PTE_VALID) == 0)
791 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
792 #endif
793 
794 	pvo_pt->pte_hi &= ~PTE_VALID;
795 	/*
796 	 * Force the ref & chg bits back into the PTEs.
797 	 */
798 	SYNC();
799 	/*
800 	 * Invalidate the pte ... (Section 7.6.3.3)
801 	 */
802 	pt->pte_hi &= ~PTE_VALID;
803 	SYNC();
804 	TLBIE(va);
805 	SYNC();
806 	EIEIO();
807 	TLBSYNC();
808 	SYNC();
809 	/*
810 	 * Save the ref & chg bits ...
811 	 */
812 	pmap_pte_synch(pt, pvo_pt);
813 	pmap_pte_valid--;
814 }
815 
816 static inline void
817 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
818 {
819 	/*
820 	 * Invalidate the PTE
821 	 */
822 	pmap_pte_unset(pt, pvo_pt, va);
823 	pmap_pte_set(pt, pvo_pt);
824 }
825 
826 /*
827  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
828  * (either primary or secondary location).
829  *
830  * Note: both the destination and source PTEs must not have PTE_VALID set.
831  */
832 
833 STATIC int
834 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
835 {
836 	volatile struct pte *pt;
837 	int i;
838 
839 #if defined(DEBUG)
840 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
841 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
842 #endif
843 	/*
844 	 * First try primary hash.
845 	 */
846 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
847 		if ((pt->pte_hi & PTE_VALID) == 0) {
848 			pvo_pt->pte_hi &= ~PTE_HID;
849 			pmap_pte_set(pt, pvo_pt);
850 			return i;
851 		}
852 	}
853 
854 	/*
855 	 * Now try secondary hash.
856 	 */
857 	ptegidx ^= pmap_pteg_mask;
858 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
859 		if ((pt->pte_hi & PTE_VALID) == 0) {
860 			pvo_pt->pte_hi |= PTE_HID;
861 			pmap_pte_set(pt, pvo_pt);
862 			return i;
863 		}
864 	}
865 	return -1;
866 }
867 
868 /*
869  * Spill handler.
870  *
871  * Tries to spill a page table entry from the overflow area.
872  * This runs in either real mode (if dealing with a exception spill)
873  * or virtual mode when dealing with manually spilling one of the
874  * kernel's pte entries.  In either case, interrupts are already
875  * disabled.
876  */
877 
878 int
879 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
880 {
881 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
882 	struct pvo_entry *pvo;
883 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
884 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
885 	int ptegidx, i, j;
886 	volatile struct pteg *pteg;
887 	volatile struct pte *pt;
888 
889 	ptegidx = va_to_pteg(pm, addr);
890 
891 	/*
892 	 * Have to substitute some entry. Use the primary hash for this.
893 	 * Use low bits of timebase as random generator.  Make sure we are
894 	 * not picking a kernel pte for replacement.
895 	 */
896 	pteg = &pmap_pteg_table[ptegidx];
897 	i = MFTB() & 7;
898 	for (j = 0; j < 8; j++) {
899 		pt = &pteg->pt[i];
900 		if ((pt->pte_hi & PTE_VALID) == 0 ||
901 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
902 				!= KERNEL_VSIDBITS)
903 			break;
904 		i = (i + 1) & 7;
905 	}
906 	KASSERT(j < 8);
907 
908 	source_pvo = NULL;
909 	victim_pvo = NULL;
910 	pvoh = &pmap_pvo_table[ptegidx];
911 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
912 
913 		/*
914 		 * We need to find pvo entry for this address...
915 		 */
916 		PMAP_PVO_CHECK(pvo);		/* sanity check */
917 
918 		/*
919 		 * If we haven't found the source and we come to a PVO with
920 		 * a valid PTE, then we know we can't find it because all
921 		 * evicted PVOs always are first in the list.
922 		 */
923 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
924 			break;
925 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
926 		    addr == PVO_VADDR(pvo)) {
927 
928 			/*
929 			 * Now we have found the entry to be spilled into the
930 			 * pteg.  Attempt to insert it into the page table.
931 			 */
932 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
933 			if (j >= 0) {
934 				PVO_PTEGIDX_SET(pvo, j);
935 				PMAP_PVO_CHECK(pvo);	/* sanity check */
936 				PVO_WHERE(pvo, SPILL_INSERT);
937 				pvo->pvo_pmap->pm_evictions--;
938 				PMAPCOUNT(ptes_spilled);
939 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
940 				    ? pmap_evcnt_ptes_secondary
941 				    : pmap_evcnt_ptes_primary)[j]);
942 
943 				/*
944 				 * Since we keep the evicted entries at the
945 				 * from of the PVO list, we need move this
946 				 * (now resident) PVO after the evicted
947 				 * entries.
948 				 */
949 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
950 
951 				/*
952 				 * If we don't have to move (either we were the
953 				 * last entry or the next entry was valid),
954 				 * don't change our position.  Otherwise
955 				 * move ourselves to the tail of the queue.
956 				 */
957 				if (next_pvo != NULL &&
958 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
959 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
960 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
961 				}
962 				return 1;
963 			}
964 			source_pvo = pvo;
965 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
966 				return 0;
967 			}
968 			if (victim_pvo != NULL)
969 				break;
970 		}
971 
972 		/*
973 		 * We also need the pvo entry of the victim we are replacing
974 		 * so save the R & C bits of the PTE.
975 		 */
976 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
977 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
978 			vpvoh = pvoh;			/* *1* */
979 			victim_pvo = pvo;
980 			if (source_pvo != NULL)
981 				break;
982 		}
983 	}
984 
985 	if (source_pvo == NULL) {
986 		PMAPCOUNT(ptes_unspilled);
987 		return 0;
988 	}
989 
990 	if (victim_pvo == NULL) {
991 		if ((pt->pte_hi & PTE_HID) == 0)
992 			panic("pmap_pte_spill: victim p-pte (%p) has "
993 			    "no pvo entry!", pt);
994 
995 		/*
996 		 * If this is a secondary PTE, we need to search
997 		 * its primary pvo bucket for the matching PVO.
998 		 */
999 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1000 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1001 			PMAP_PVO_CHECK(pvo);		/* sanity check */
1002 
1003 			/*
1004 			 * We also need the pvo entry of the victim we are
1005 			 * replacing so save the R & C bits of the PTE.
1006 			 */
1007 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1008 				victim_pvo = pvo;
1009 				break;
1010 			}
1011 		}
1012 		if (victim_pvo == NULL)
1013 			panic("pmap_pte_spill: victim s-pte (%p) has "
1014 			    "no pvo entry!", pt);
1015 	}
1016 
1017 	/*
1018 	 * The victim should be not be a kernel PVO/PTE entry.
1019 	 */
1020 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1021 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1022 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1023 
1024 	/*
1025 	 * We are invalidating the TLB entry for the EA for the
1026 	 * we are replacing even though its valid; If we don't
1027 	 * we lose any ref/chg bit changes contained in the TLB
1028 	 * entry.
1029 	 */
1030 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1031 
1032 	/*
1033 	 * To enforce the PVO list ordering constraint that all
1034 	 * evicted entries should come before all valid entries,
1035 	 * move the source PVO to the tail of its list and the
1036 	 * victim PVO to the head of its list (which might not be
1037 	 * the same list, if the victim was using the secondary hash).
1038 	 */
1039 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1040 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1041 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1042 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1043 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1044 	pmap_pte_set(pt, &source_pvo->pvo_pte);
1045 	victim_pvo->pvo_pmap->pm_evictions++;
1046 	source_pvo->pvo_pmap->pm_evictions--;
1047 	PVO_WHERE(victim_pvo, SPILL_UNSET);
1048 	PVO_WHERE(source_pvo, SPILL_SET);
1049 
1050 	PVO_PTEGIDX_CLR(victim_pvo);
1051 	PVO_PTEGIDX_SET(source_pvo, i);
1052 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1053 	PMAPCOUNT(ptes_spilled);
1054 	PMAPCOUNT(ptes_evicted);
1055 	PMAPCOUNT(ptes_removed);
1056 
1057 	PMAP_PVO_CHECK(victim_pvo);
1058 	PMAP_PVO_CHECK(source_pvo);
1059 	return 1;
1060 }
1061 
1062 /*
1063  * Restrict given range to physical memory
1064  */
1065 void
1066 pmap_real_memory(paddr_t *start, psize_t *size)
1067 {
1068 	struct mem_region *mp;
1069 
1070 	for (mp = mem; mp->size; mp++) {
1071 		if (*start + *size > mp->start
1072 		    && *start < mp->start + mp->size) {
1073 			if (*start < mp->start) {
1074 				*size -= mp->start - *start;
1075 				*start = mp->start;
1076 			}
1077 			if (*start + *size > mp->start + mp->size)
1078 				*size = mp->start + mp->size - *start;
1079 			return;
1080 		}
1081 	}
1082 	*size = 0;
1083 }
1084 
1085 /*
1086  * Initialize anything else for pmap handling.
1087  * Called during vm_init().
1088  */
1089 void
1090 pmap_init(void)
1091 {
1092 #ifdef __HAVE_PMAP_PHYSSEG
1093 	struct pvo_tqhead *pvoh;
1094 	int bank;
1095 	long sz;
1096 	char *attr;
1097 
1098 	pvoh = pmap_physseg.pvoh;
1099 	attr = pmap_physseg.attrs;
1100 	for (bank = 0; bank < vm_nphysseg; bank++) {
1101 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
1102 		vm_physmem[bank].pmseg.pvoh = pvoh;
1103 		vm_physmem[bank].pmseg.attrs = attr;
1104 		for (; sz > 0; sz--, pvoh++, attr++) {
1105 			TAILQ_INIT(pvoh);
1106 			*attr = 0;
1107 		}
1108 	}
1109 #endif
1110 
1111 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1112 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1113 	    &pmap_pool_mallocator);
1114 
1115 	pool_setlowat(&pmap_mpvo_pool, 1008);
1116 
1117 	pmap_initialized = 1;
1118 
1119 }
1120 
1121 /*
1122  * How much virtual space does the kernel get?
1123  */
1124 void
1125 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1126 {
1127 	/*
1128 	 * For now, reserve one segment (minus some overhead) for kernel
1129 	 * virtual memory
1130 	 */
1131 	*start = VM_MIN_KERNEL_ADDRESS;
1132 	*end = VM_MAX_KERNEL_ADDRESS;
1133 }
1134 
1135 /*
1136  * Allocate, initialize, and return a new physical map.
1137  */
1138 pmap_t
1139 pmap_create(void)
1140 {
1141 	pmap_t pm;
1142 
1143 	pm = pool_get(&pmap_pool, PR_WAITOK);
1144 	memset((caddr_t)pm, 0, sizeof *pm);
1145 	pmap_pinit(pm);
1146 
1147 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1148 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
1149 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
1150 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1151 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1152 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1153 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1154 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1155 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1156 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1157 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1158 	return pm;
1159 }
1160 
1161 /*
1162  * Initialize a preallocated and zeroed pmap structure.
1163  */
1164 void
1165 pmap_pinit(pmap_t pm)
1166 {
1167 	register_t entropy = MFTB();
1168 	register_t mask;
1169 	int i;
1170 
1171 	/*
1172 	 * Allocate some segment registers for this pmap.
1173 	 */
1174 	pm->pm_refs = 1;
1175 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1176 		static register_t pmap_vsidcontext;
1177 		register_t hash;
1178 		unsigned int n;
1179 
1180 		/* Create a new value by multiplying by a prime adding in
1181 		 * entropy from the timebase register.  This is to make the
1182 		 * VSID more random so that the PT Hash function collides
1183 		 * less often. (note that the prime causes gcc to do shifts
1184 		 * instead of a multiply)
1185 		 */
1186 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1187 		hash = pmap_vsidcontext & (NPMAPS - 1);
1188 		if (hash == 0) {		/* 0 is special, avoid it */
1189 			entropy += 0xbadf00d;
1190 			continue;
1191 		}
1192 		n = hash >> 5;
1193 		mask = 1L << (hash & (VSID_NBPW-1));
1194 		hash = pmap_vsidcontext;
1195 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1196 			/* anything free in this bucket? */
1197 			if (~pmap_vsid_bitmap[n] == 0) {
1198 				entropy = hash ^ (hash >> 16);
1199 				continue;
1200 			}
1201 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
1202 			mask = 1L << i;
1203 			hash &= ~(VSID_NBPW-1);
1204 			hash |= i;
1205 		}
1206 		hash &= PTE_VSID >> PTE_VSID_SHFT;
1207 		pmap_vsid_bitmap[n] |= mask;
1208 		pm->pm_vsid = hash;
1209 #ifndef PPC_OEA64
1210 		for (i = 0; i < 16; i++)
1211 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1212 			    SR_NOEXEC;
1213 #endif
1214 		return;
1215 	}
1216 	panic("pmap_pinit: out of segments");
1217 }
1218 
1219 /*
1220  * Add a reference to the given pmap.
1221  */
1222 void
1223 pmap_reference(pmap_t pm)
1224 {
1225 	pm->pm_refs++;
1226 }
1227 
1228 /*
1229  * Retire the given pmap from service.
1230  * Should only be called if the map contains no valid mappings.
1231  */
1232 void
1233 pmap_destroy(pmap_t pm)
1234 {
1235 	if (--pm->pm_refs == 0) {
1236 		pmap_release(pm);
1237 		pool_put(&pmap_pool, pm);
1238 	}
1239 }
1240 
1241 /*
1242  * Release any resources held by the given physical map.
1243  * Called when a pmap initialized by pmap_pinit is being released.
1244  */
1245 void
1246 pmap_release(pmap_t pm)
1247 {
1248 	int idx, mask;
1249 
1250 	if (pm->pm_sr[0] == 0)
1251 		panic("pmap_release");
1252 	idx = pm->pm_vsid & (NPMAPS-1);
1253 	mask = 1 << (idx % VSID_NBPW);
1254 	idx /= VSID_NBPW;
1255 
1256 	KASSERT(pmap_vsid_bitmap[idx] & mask);
1257 	pmap_vsid_bitmap[idx] &= ~mask;
1258 }
1259 
1260 /*
1261  * Copy the range specified by src_addr/len
1262  * from the source map to the range dst_addr/len
1263  * in the destination map.
1264  *
1265  * This routine is only advisory and need not do anything.
1266  */
1267 void
1268 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1269 	vsize_t len, vaddr_t src_addr)
1270 {
1271 	PMAPCOUNT(copies);
1272 }
1273 
1274 /*
1275  * Require that all active physical maps contain no
1276  * incorrect entries NOW.
1277  */
1278 void
1279 pmap_update(struct pmap *pmap)
1280 {
1281 	PMAPCOUNT(updates);
1282 	TLBSYNC();
1283 }
1284 
1285 /*
1286  * Garbage collects the physical map system for
1287  * pages which are no longer used.
1288  * Success need not be guaranteed -- that is, there
1289  * may well be pages which are not referenced, but
1290  * others may be collected.
1291  * Called by the pageout daemon when pages are scarce.
1292  */
1293 void
1294 pmap_collect(pmap_t pm)
1295 {
1296 	PMAPCOUNT(collects);
1297 }
1298 
1299 static inline int
1300 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1301 {
1302 	int pteidx;
1303 	/*
1304 	 * We can find the actual pte entry without searching by
1305 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1306 	 * and by noticing the HID bit.
1307 	 */
1308 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1309 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1310 		pteidx ^= pmap_pteg_mask * 8;
1311 	return pteidx;
1312 }
1313 
1314 volatile struct pte *
1315 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1316 {
1317 	volatile struct pte *pt;
1318 
1319 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1320 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1321 		return NULL;
1322 #endif
1323 
1324 	/*
1325 	 * If we haven't been supplied the ptegidx, calculate it.
1326 	 */
1327 	if (pteidx == -1) {
1328 		int ptegidx;
1329 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1330 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1331 	}
1332 
1333 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1334 
1335 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1336 	return pt;
1337 #else
1338 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1339 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1340 		    "pvo but no valid pte index", pvo);
1341 	}
1342 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1343 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1344 		    "pvo but no valid pte", pvo);
1345 	}
1346 
1347 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1348 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1349 #if defined(DEBUG) || defined(PMAPCHECK)
1350 			pmap_pte_print(pt);
1351 #endif
1352 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1353 			    "pmap_pteg_table %p but invalid in pvo",
1354 			    pvo, pt);
1355 		}
1356 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1357 #if defined(DEBUG) || defined(PMAPCHECK)
1358 			pmap_pte_print(pt);
1359 #endif
1360 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1361 			    "not match pte %p in pmap_pteg_table",
1362 			    pvo, pt);
1363 		}
1364 		return pt;
1365 	}
1366 
1367 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1368 #if defined(DEBUG) || defined(PMAPCHECK)
1369 		pmap_pte_print(pt);
1370 #endif
1371 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1372 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1373 	}
1374 	return NULL;
1375 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1376 }
1377 
1378 struct pvo_entry *
1379 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1380 {
1381 	struct pvo_entry *pvo;
1382 	int ptegidx;
1383 
1384 	va &= ~ADDR_POFF;
1385 	ptegidx = va_to_pteg(pm, va);
1386 
1387 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1388 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1389 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1390 			panic("pmap_pvo_find_va: invalid pvo %p on "
1391 			    "list %#x (%p)", pvo, ptegidx,
1392 			     &pmap_pvo_table[ptegidx]);
1393 #endif
1394 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1395 			if (pteidx_p)
1396 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1397 			return pvo;
1398 		}
1399 	}
1400 	return NULL;
1401 }
1402 
1403 #if defined(DEBUG) || defined(PMAPCHECK)
1404 void
1405 pmap_pvo_check(const struct pvo_entry *pvo)
1406 {
1407 	struct pvo_head *pvo_head;
1408 	struct pvo_entry *pvo0;
1409 	volatile struct pte *pt;
1410 	int failed = 0;
1411 
1412 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1413 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1414 
1415 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1416 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1417 		    pvo, pvo->pvo_pmap);
1418 		failed = 1;
1419 	}
1420 
1421 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1422 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1423 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1424 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
1425 		failed = 1;
1426 	}
1427 
1428 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1429 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1430 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1431 		    pvo, LIST_NEXT(pvo, pvo_vlink));
1432 		failed = 1;
1433 	}
1434 
1435 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1436 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1437 	} else {
1438 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1439 			printf("pmap_pvo_check: pvo %p: non kernel address "
1440 			    "on kernel unmanaged list\n", pvo);
1441 			failed = 1;
1442 		}
1443 		pvo_head = &pmap_pvo_kunmanaged;
1444 	}
1445 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1446 		if (pvo0 == pvo)
1447 			break;
1448 	}
1449 	if (pvo0 == NULL) {
1450 		printf("pmap_pvo_check: pvo %p: not present "
1451 		    "on its vlist head %p\n", pvo, pvo_head);
1452 		failed = 1;
1453 	}
1454 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1455 		printf("pmap_pvo_check: pvo %p: not present "
1456 		    "on its olist head\n", pvo);
1457 		failed = 1;
1458 	}
1459 	pt = pmap_pvo_to_pte(pvo, -1);
1460 	if (pt == NULL) {
1461 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1462 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1463 			    "no PTE\n", pvo);
1464 			failed = 1;
1465 		}
1466 	} else {
1467 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1468 		    (uintptr_t) pt >=
1469 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1470 			printf("pmap_pvo_check: pvo %p: pte %p not in "
1471 			    "pteg table\n", pvo, pt);
1472 			failed = 1;
1473 		}
1474 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1475 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1476 			    "no PTE\n", pvo);
1477 			failed = 1;
1478 		}
1479 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1480 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1481 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1482 			failed = 1;
1483 		}
1484 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1485 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1486 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1487 			    "%#x/%#x\n", pvo,
1488 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1489 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1490 			failed = 1;
1491 		}
1492 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1493 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1494 			    " doesn't not match PVO's VA %#lx\n",
1495 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1496 			failed = 1;
1497 		}
1498 		if (failed)
1499 			pmap_pte_print(pt);
1500 	}
1501 	if (failed)
1502 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1503 		    pvo->pvo_pmap);
1504 }
1505 #endif /* DEBUG || PMAPCHECK */
1506 
1507 /*
1508  * Search the PVO table looking for a non-wired entry.
1509  * If we find one, remove it and return it.
1510  */
1511 
1512 struct pvo_entry *
1513 pmap_pvo_reclaim(struct pmap *pm)
1514 {
1515 	struct pvo_tqhead *pvoh;
1516 	struct pvo_entry *pvo;
1517 	uint32_t idx, endidx;
1518 
1519 	endidx = pmap_pvo_reclaim_nextidx;
1520 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1521 	     idx = (idx + 1) & pmap_pteg_mask) {
1522 		pvoh = &pmap_pvo_table[idx];
1523 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1524 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1525 				pmap_pvo_remove(pvo, -1, NULL);
1526 				pmap_pvo_reclaim_nextidx = idx;
1527 				PMAPCOUNT(pvos_reclaimed);
1528 				return pvo;
1529 			}
1530 		}
1531 	}
1532 	return NULL;
1533 }
1534 
1535 /*
1536  * This returns whether this is the first mapping of a page.
1537  */
1538 int
1539 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1540 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1541 {
1542 	struct pvo_entry *pvo;
1543 	struct pvo_tqhead *pvoh;
1544 	register_t msr;
1545 	int ptegidx;
1546 	int i;
1547 	int poolflags = PR_NOWAIT;
1548 
1549 	/*
1550 	 * Compute the PTE Group index.
1551 	 */
1552 	va &= ~ADDR_POFF;
1553 	ptegidx = va_to_pteg(pm, va);
1554 
1555 	msr = pmap_interrupts_off();
1556 
1557 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1558 	if (pmap_pvo_remove_depth > 0)
1559 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1560 	if (++pmap_pvo_enter_depth > 1)
1561 		panic("pmap_pvo_enter: called recursively!");
1562 #endif
1563 
1564 	/*
1565 	 * Remove any existing mapping for this page.  Reuse the
1566 	 * pvo entry if there a mapping.
1567 	 */
1568 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1569 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1570 #ifdef DEBUG
1571 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1572 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1573 			    ~(PTE_REF|PTE_CHG)) == 0 &&
1574 			   va < VM_MIN_KERNEL_ADDRESS) {
1575 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1576 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1577 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1578 				    (unsigned int) pvo->pvo_pte.pte_hi,
1579 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1580 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1581 #ifdef DDBX
1582 				Debugger();
1583 #endif
1584 			}
1585 #endif
1586 			PMAPCOUNT(mappings_replaced);
1587 			pmap_pvo_remove(pvo, -1, NULL);
1588 			break;
1589 		}
1590 	}
1591 
1592 	/*
1593 	 * If we aren't overwriting an mapping, try to allocate
1594 	 */
1595 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1596 	--pmap_pvo_enter_depth;
1597 #endif
1598 	pmap_interrupts_restore(msr);
1599 	if (pvo) {
1600 		pmap_pvo_free(pvo);
1601 	}
1602 	pvo = pool_get(pl, poolflags);
1603 
1604 #ifdef DEBUG
1605 	/*
1606 	 * Exercise pmap_pvo_reclaim() a little.
1607 	 */
1608 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1609 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1610 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1611 		pool_put(pl, pvo);
1612 		pvo = NULL;
1613 	}
1614 #endif
1615 
1616 	msr = pmap_interrupts_off();
1617 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1618 	++pmap_pvo_enter_depth;
1619 #endif
1620 	if (pvo == NULL) {
1621 		pvo = pmap_pvo_reclaim(pm);
1622 		if (pvo == NULL) {
1623 			if ((flags & PMAP_CANFAIL) == 0)
1624 				panic("pmap_pvo_enter: failed");
1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1626 			pmap_pvo_enter_depth--;
1627 #endif
1628 			PMAPCOUNT(pvos_failed);
1629 			pmap_interrupts_restore(msr);
1630 			return ENOMEM;
1631 		}
1632 	}
1633 
1634 	pvo->pvo_vaddr = va;
1635 	pvo->pvo_pmap = pm;
1636 	pvo->pvo_vaddr &= ~ADDR_POFF;
1637 	if (flags & VM_PROT_EXECUTE) {
1638 		PMAPCOUNT(exec_mappings);
1639 		pvo_set_exec(pvo);
1640 	}
1641 	if (flags & PMAP_WIRED)
1642 		pvo->pvo_vaddr |= PVO_WIRED;
1643 	if (pvo_head != &pmap_pvo_kunmanaged) {
1644 		pvo->pvo_vaddr |= PVO_MANAGED;
1645 		PMAPCOUNT(mappings);
1646 	} else {
1647 		PMAPCOUNT(kernel_mappings);
1648 	}
1649 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1650 
1651 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1652 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1653 		pvo->pvo_pmap->pm_stats.wired_count++;
1654 	pvo->pvo_pmap->pm_stats.resident_count++;
1655 #if defined(DEBUG)
1656 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1657 		DPRINTFN(PVOENTER,
1658 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1659 		    pvo, pm, va, pa));
1660 #endif
1661 
1662 	/*
1663 	 * We hope this succeeds but it isn't required.
1664 	 */
1665 	pvoh = &pmap_pvo_table[ptegidx];
1666 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1667 	if (i >= 0) {
1668 		PVO_PTEGIDX_SET(pvo, i);
1669 		PVO_WHERE(pvo, ENTER_INSERT);
1670 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1671 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1672 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1673 	} else {
1674 		/*
1675 		 * Since we didn't have room for this entry (which makes it
1676 		 * and evicted entry), place it at the head of the list.
1677 		 */
1678 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1679 		PMAPCOUNT(ptes_evicted);
1680 		pm->pm_evictions++;
1681 		/*
1682 		 * If this is a kernel page, make sure it's active.
1683 		 */
1684 		if (pm == pmap_kernel()) {
1685 			i = pmap_pte_spill(pm, va, FALSE);
1686 			KASSERT(i);
1687 		}
1688 	}
1689 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1690 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1691 	pmap_pvo_enter_depth--;
1692 #endif
1693 	pmap_interrupts_restore(msr);
1694 	return 0;
1695 }
1696 
1697 void
1698 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1699 {
1700 	volatile struct pte *pt;
1701 	int ptegidx;
1702 
1703 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1704 	if (++pmap_pvo_remove_depth > 1)
1705 		panic("pmap_pvo_remove: called recursively!");
1706 #endif
1707 
1708 	/*
1709 	 * If we haven't been supplied the ptegidx, calculate it.
1710 	 */
1711 	if (pteidx == -1) {
1712 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1713 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1714 	} else {
1715 		ptegidx = pteidx >> 3;
1716 		if (pvo->pvo_pte.pte_hi & PTE_HID)
1717 			ptegidx ^= pmap_pteg_mask;
1718 	}
1719 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1720 
1721 	/*
1722 	 * If there is an active pte entry, we need to deactivate it
1723 	 * (and save the ref & chg bits).
1724 	 */
1725 	pt = pmap_pvo_to_pte(pvo, pteidx);
1726 	if (pt != NULL) {
1727 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1728 		PVO_WHERE(pvo, REMOVE);
1729 		PVO_PTEGIDX_CLR(pvo);
1730 		PMAPCOUNT(ptes_removed);
1731 	} else {
1732 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1733 		pvo->pvo_pmap->pm_evictions--;
1734 	}
1735 
1736 	/*
1737 	 * Account for executable mappings.
1738 	 */
1739 	if (PVO_ISEXECUTABLE(pvo))
1740 		pvo_clear_exec(pvo);
1741 
1742 	/*
1743 	 * Update our statistics.
1744 	 */
1745 	pvo->pvo_pmap->pm_stats.resident_count--;
1746 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1747 		pvo->pvo_pmap->pm_stats.wired_count--;
1748 
1749 	/*
1750 	 * Save the REF/CHG bits into their cache if the page is managed.
1751 	 */
1752 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1753 		register_t ptelo = pvo->pvo_pte.pte_lo;
1754 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1755 
1756 		if (pg != NULL) {
1757 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1758 		}
1759 		PMAPCOUNT(unmappings);
1760 	} else {
1761 		PMAPCOUNT(kernel_unmappings);
1762 	}
1763 
1764 	/*
1765 	 * Remove the PVO from its lists and return it to the pool.
1766 	 */
1767 	LIST_REMOVE(pvo, pvo_vlink);
1768 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1769 	if (pvol) {
1770 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1771 	}
1772 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1773 	pmap_pvo_remove_depth--;
1774 #endif
1775 }
1776 
1777 void
1778 pmap_pvo_free(struct pvo_entry *pvo)
1779 {
1780 
1781 	pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1782 		 &pmap_upvo_pool, pvo);
1783 }
1784 
1785 void
1786 pmap_pvo_free_list(struct pvo_head *pvol)
1787 {
1788 	struct pvo_entry *pvo, *npvo;
1789 
1790 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1791 		npvo = LIST_NEXT(pvo, pvo_vlink);
1792 		LIST_REMOVE(pvo, pvo_vlink);
1793 		pmap_pvo_free(pvo);
1794 	}
1795 }
1796 
1797 /*
1798  * Mark a mapping as executable.
1799  * If this is the first executable mapping in the segment,
1800  * clear the noexec flag.
1801  */
1802 STATIC void
1803 pvo_set_exec(struct pvo_entry *pvo)
1804 {
1805 	struct pmap *pm = pvo->pvo_pmap;
1806 
1807 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1808 		return;
1809 	}
1810 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
1811 #ifdef PPC_OEA
1812 	{
1813 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1814 		if (pm->pm_exec[sr]++ == 0) {
1815 			pm->pm_sr[sr] &= ~SR_NOEXEC;
1816 		}
1817 	}
1818 #endif
1819 }
1820 
1821 /*
1822  * Mark a mapping as non-executable.
1823  * If this was the last executable mapping in the segment,
1824  * set the noexec flag.
1825  */
1826 STATIC void
1827 pvo_clear_exec(struct pvo_entry *pvo)
1828 {
1829 	struct pmap *pm = pvo->pvo_pmap;
1830 
1831 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1832 		return;
1833 	}
1834 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1835 #ifdef PPC_OEA
1836 	{
1837 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1838 		if (--pm->pm_exec[sr] == 0) {
1839 			pm->pm_sr[sr] |= SR_NOEXEC;
1840 		}
1841 	}
1842 #endif
1843 }
1844 
1845 /*
1846  * Insert physical page at pa into the given pmap at virtual address va.
1847  */
1848 int
1849 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1850 {
1851 	struct mem_region *mp;
1852 	struct pvo_head *pvo_head;
1853 	struct vm_page *pg;
1854 	struct pool *pl;
1855 	register_t pte_lo;
1856 	int error;
1857 	u_int pvo_flags;
1858 	u_int was_exec = 0;
1859 
1860 	if (__predict_false(!pmap_initialized)) {
1861 		pvo_head = &pmap_pvo_kunmanaged;
1862 		pl = &pmap_upvo_pool;
1863 		pvo_flags = 0;
1864 		pg = NULL;
1865 		was_exec = PTE_EXEC;
1866 	} else {
1867 		pvo_head = pa_to_pvoh(pa, &pg);
1868 		pl = &pmap_mpvo_pool;
1869 		pvo_flags = PVO_MANAGED;
1870 	}
1871 
1872 	DPRINTFN(ENTER,
1873 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1874 	    pm, va, pa, prot, flags));
1875 
1876 	/*
1877 	 * If this is a managed page, and it's the first reference to the
1878 	 * page clear the execness of the page.  Otherwise fetch the execness.
1879 	 */
1880 	if (pg != NULL)
1881 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1882 
1883 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1884 
1885 	/*
1886 	 * Assume the page is cache inhibited and access is guarded unless
1887 	 * it's in our available memory array.  If it is in the memory array,
1888 	 * asssume it's in memory coherent memory.
1889 	 */
1890 	pte_lo = PTE_IG;
1891 	if ((flags & PMAP_NC) == 0) {
1892 		for (mp = mem; mp->size; mp++) {
1893 			if (pa >= mp->start && pa < mp->start + mp->size) {
1894 				pte_lo = PTE_M;
1895 				break;
1896 			}
1897 		}
1898 	}
1899 
1900 	if (prot & VM_PROT_WRITE)
1901 		pte_lo |= PTE_BW;
1902 	else
1903 		pte_lo |= PTE_BR;
1904 
1905 	/*
1906 	 * If this was in response to a fault, "pre-fault" the PTE's
1907 	 * changed/referenced bit appropriately.
1908 	 */
1909 	if (flags & VM_PROT_WRITE)
1910 		pte_lo |= PTE_CHG;
1911 	if (flags & VM_PROT_ALL)
1912 		pte_lo |= PTE_REF;
1913 
1914 	/*
1915 	 * We need to know if this page can be executable
1916 	 */
1917 	flags |= (prot & VM_PROT_EXECUTE);
1918 
1919 	/*
1920 	 * Record mapping for later back-translation and pte spilling.
1921 	 * This will overwrite any existing mapping.
1922 	 */
1923 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1924 
1925 	/*
1926 	 * Flush the real page from the instruction cache if this page is
1927 	 * mapped executable and cacheable and has not been flushed since
1928 	 * the last time it was modified.
1929 	 */
1930 	if (error == 0 &&
1931             (flags & VM_PROT_EXECUTE) &&
1932             (pte_lo & PTE_I) == 0 &&
1933 	    was_exec == 0) {
1934 		DPRINTFN(ENTER, (" syncicache"));
1935 		PMAPCOUNT(exec_synced);
1936 		pmap_syncicache(pa, PAGE_SIZE);
1937 		if (pg != NULL) {
1938 			pmap_attr_save(pg, PTE_EXEC);
1939 			PMAPCOUNT(exec_cached);
1940 #if defined(DEBUG) || defined(PMAPDEBUG)
1941 			if (pmapdebug & PMAPDEBUG_ENTER)
1942 				printf(" marked-as-exec");
1943 			else if (pmapdebug & PMAPDEBUG_EXEC)
1944 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
1945 				    VM_PAGE_TO_PHYS(pg));
1946 
1947 #endif
1948 		}
1949 	}
1950 
1951 	DPRINTFN(ENTER, (": error=%d\n", error));
1952 
1953 	return error;
1954 }
1955 
1956 void
1957 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1958 {
1959 	struct mem_region *mp;
1960 	register_t pte_lo;
1961 	int error;
1962 
1963 	if (va < VM_MIN_KERNEL_ADDRESS)
1964 		panic("pmap_kenter_pa: attempt to enter "
1965 		    "non-kernel address %#lx!", va);
1966 
1967 	DPRINTFN(KENTER,
1968 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1969 
1970 	/*
1971 	 * Assume the page is cache inhibited and access is guarded unless
1972 	 * it's in our available memory array.  If it is in the memory array,
1973 	 * asssume it's in memory coherent memory.
1974 	 */
1975 	pte_lo = PTE_IG;
1976 	if ((prot & PMAP_NC) == 0) {
1977 		for (mp = mem; mp->size; mp++) {
1978 			if (pa >= mp->start && pa < mp->start + mp->size) {
1979 				pte_lo = PTE_M;
1980 				break;
1981 			}
1982 		}
1983 	}
1984 
1985 	if (prot & VM_PROT_WRITE)
1986 		pte_lo |= PTE_BW;
1987 	else
1988 		pte_lo |= PTE_BR;
1989 
1990 	/*
1991 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
1992 	 */
1993 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1994 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1995 
1996 	if (error != 0)
1997 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1998 		      va, pa, error);
1999 }
2000 
2001 void
2002 pmap_kremove(vaddr_t va, vsize_t len)
2003 {
2004 	if (va < VM_MIN_KERNEL_ADDRESS)
2005 		panic("pmap_kremove: attempt to remove "
2006 		    "non-kernel address %#lx!", va);
2007 
2008 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2009 	pmap_remove(pmap_kernel(), va, va + len);
2010 }
2011 
2012 /*
2013  * Remove the given range of mapping entries.
2014  */
2015 void
2016 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2017 {
2018 	struct pvo_head pvol;
2019 	struct pvo_entry *pvo;
2020 	register_t msr;
2021 	int pteidx;
2022 
2023 	LIST_INIT(&pvol);
2024 	msr = pmap_interrupts_off();
2025 	for (; va < endva; va += PAGE_SIZE) {
2026 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2027 		if (pvo != NULL) {
2028 			pmap_pvo_remove(pvo, pteidx, &pvol);
2029 		}
2030 	}
2031 	pmap_interrupts_restore(msr);
2032 	pmap_pvo_free_list(&pvol);
2033 }
2034 
2035 /*
2036  * Get the physical page address for the given pmap/virtual address.
2037  */
2038 boolean_t
2039 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2040 {
2041 	struct pvo_entry *pvo;
2042 	register_t msr;
2043 
2044 	/*
2045 	 * If this is a kernel pmap lookup, also check the battable
2046 	 * and if we get a hit, translate the VA to a PA using the
2047 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
2048 	 * that will wrap back to 0.
2049 	 */
2050 	if (pm == pmap_kernel() &&
2051 	    (va < VM_MIN_KERNEL_ADDRESS ||
2052 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2053 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2054 		if ((MFPVR() >> 16) != MPC601) {
2055 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2056 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2057 				register_t batl =
2058 				    battable[va >> ADDR_SR_SHFT].batl;
2059 				register_t mask =
2060 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2061 				if (pap)
2062 					*pap = (batl & mask) | (va & ~mask);
2063 				return TRUE;
2064 			}
2065 		} else {
2066 			register_t batu = battable[va >> 23].batu;
2067 			register_t batl = battable[va >> 23].batl;
2068 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2069 			if (BAT601_VALID_P(batl) &&
2070 			    BAT601_VA_MATCH_P(batu, batl, va)) {
2071 				register_t mask =
2072 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2073 				if (pap)
2074 					*pap = (batl & mask) | (va & ~mask);
2075 				return TRUE;
2076 			} else if (SR601_VALID_P(sr) &&
2077 				   SR601_PA_MATCH_P(sr, va)) {
2078 				if (pap)
2079 					*pap = va;
2080 				return TRUE;
2081 			}
2082 		}
2083 		return FALSE;
2084 	}
2085 
2086 	msr = pmap_interrupts_off();
2087 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2088 	if (pvo != NULL) {
2089 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2090 		if (pap)
2091 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2092 			    | (va & ADDR_POFF);
2093 	}
2094 	pmap_interrupts_restore(msr);
2095 	return pvo != NULL;
2096 }
2097 
2098 /*
2099  * Lower the protection on the specified range of this pmap.
2100  */
2101 void
2102 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2103 {
2104 	struct pvo_entry *pvo;
2105 	volatile struct pte *pt;
2106 	register_t msr;
2107 	int pteidx;
2108 
2109 	/*
2110 	 * Since this routine only downgrades protection, we should
2111 	 * always be called with at least one bit not set.
2112 	 */
2113 	KASSERT(prot != VM_PROT_ALL);
2114 
2115 	/*
2116 	 * If there is no protection, this is equivalent to
2117 	 * remove the pmap from the pmap.
2118 	 */
2119 	if ((prot & VM_PROT_READ) == 0) {
2120 		pmap_remove(pm, va, endva);
2121 		return;
2122 	}
2123 
2124 	msr = pmap_interrupts_off();
2125 	for (; va < endva; va += PAGE_SIZE) {
2126 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2127 		if (pvo == NULL)
2128 			continue;
2129 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2130 
2131 		/*
2132 		 * Revoke executable if asked to do so.
2133 		 */
2134 		if ((prot & VM_PROT_EXECUTE) == 0)
2135 			pvo_clear_exec(pvo);
2136 
2137 #if 0
2138 		/*
2139 		 * If the page is already read-only, no change
2140 		 * needs to be made.
2141 		 */
2142 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2143 			continue;
2144 #endif
2145 		/*
2146 		 * Grab the PTE pointer before we diddle with
2147 		 * the cached PTE copy.
2148 		 */
2149 		pt = pmap_pvo_to_pte(pvo, pteidx);
2150 		/*
2151 		 * Change the protection of the page.
2152 		 */
2153 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2154 		pvo->pvo_pte.pte_lo |= PTE_BR;
2155 
2156 		/*
2157 		 * If the PVO is in the page table, update
2158 		 * that pte at well.
2159 		 */
2160 		if (pt != NULL) {
2161 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2162 			PVO_WHERE(pvo, PMAP_PROTECT);
2163 			PMAPCOUNT(ptes_changed);
2164 		}
2165 
2166 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2167 	}
2168 	pmap_interrupts_restore(msr);
2169 }
2170 
2171 void
2172 pmap_unwire(pmap_t pm, vaddr_t va)
2173 {
2174 	struct pvo_entry *pvo;
2175 	register_t msr;
2176 
2177 	msr = pmap_interrupts_off();
2178 	pvo = pmap_pvo_find_va(pm, va, NULL);
2179 	if (pvo != NULL) {
2180 		if (pvo->pvo_vaddr & PVO_WIRED) {
2181 			pvo->pvo_vaddr &= ~PVO_WIRED;
2182 			pm->pm_stats.wired_count--;
2183 		}
2184 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2185 	}
2186 	pmap_interrupts_restore(msr);
2187 }
2188 
2189 /*
2190  * Lower the protection on the specified physical page.
2191  */
2192 void
2193 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2194 {
2195 	struct pvo_head *pvo_head, pvol;
2196 	struct pvo_entry *pvo, *next_pvo;
2197 	volatile struct pte *pt;
2198 	register_t msr;
2199 
2200 	KASSERT(prot != VM_PROT_ALL);
2201 	LIST_INIT(&pvol);
2202 	msr = pmap_interrupts_off();
2203 
2204 	/*
2205 	 * When UVM reuses a page, it does a pmap_page_protect with
2206 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
2207 	 * since we know the page will have different contents.
2208 	 */
2209 	if ((prot & VM_PROT_READ) == 0) {
2210 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2211 		    VM_PAGE_TO_PHYS(pg)));
2212 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
2213 			PMAPCOUNT(exec_uncached_page_protect);
2214 			pmap_attr_clear(pg, PTE_EXEC);
2215 		}
2216 	}
2217 
2218 	pvo_head = vm_page_to_pvoh(pg);
2219 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2220 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2221 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2222 
2223 		/*
2224 		 * Downgrading to no mapping at all, we just remove the entry.
2225 		 */
2226 		if ((prot & VM_PROT_READ) == 0) {
2227 			pmap_pvo_remove(pvo, -1, &pvol);
2228 			continue;
2229 		}
2230 
2231 		/*
2232 		 * If EXEC permission is being revoked, just clear the
2233 		 * flag in the PVO.
2234 		 */
2235 		if ((prot & VM_PROT_EXECUTE) == 0)
2236 			pvo_clear_exec(pvo);
2237 
2238 		/*
2239 		 * If this entry is already RO, don't diddle with the
2240 		 * page table.
2241 		 */
2242 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2243 			PMAP_PVO_CHECK(pvo);
2244 			continue;
2245 		}
2246 
2247 		/*
2248 		 * Grab the PTE before the we diddle the bits so
2249 		 * pvo_to_pte can verify the pte contents are as
2250 		 * expected.
2251 		 */
2252 		pt = pmap_pvo_to_pte(pvo, -1);
2253 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2254 		pvo->pvo_pte.pte_lo |= PTE_BR;
2255 		if (pt != NULL) {
2256 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2257 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2258 			PMAPCOUNT(ptes_changed);
2259 		}
2260 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2261 	}
2262 	pmap_interrupts_restore(msr);
2263 	pmap_pvo_free_list(&pvol);
2264 }
2265 
2266 /*
2267  * Activate the address space for the specified process.  If the process
2268  * is the current process, load the new MMU context.
2269  */
2270 void
2271 pmap_activate(struct lwp *l)
2272 {
2273 	struct pcb *pcb = &l->l_addr->u_pcb;
2274 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2275 
2276 	DPRINTFN(ACTIVATE,
2277 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2278 
2279 	/*
2280 	 * XXX Normally performed in cpu_fork().
2281 	 */
2282 	pcb->pcb_pm = pmap;
2283 
2284 	/*
2285 	* In theory, the SR registers need only be valid on return
2286 	* to user space wait to do them there.
2287 	*/
2288 	if (l == curlwp) {
2289 		/* Store pointer to new current pmap. */
2290 		curpm = pmap;
2291 	}
2292 }
2293 
2294 /*
2295  * Deactivate the specified process's address space.
2296  */
2297 void
2298 pmap_deactivate(struct lwp *l)
2299 {
2300 }
2301 
2302 boolean_t
2303 pmap_query_bit(struct vm_page *pg, int ptebit)
2304 {
2305 	struct pvo_entry *pvo;
2306 	volatile struct pte *pt;
2307 	register_t msr;
2308 
2309 	if (pmap_attr_fetch(pg) & ptebit)
2310 		return TRUE;
2311 
2312 	msr = pmap_interrupts_off();
2313 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2314 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2315 		/*
2316 		 * See if we saved the bit off.  If so cache, it and return
2317 		 * success.
2318 		 */
2319 		if (pvo->pvo_pte.pte_lo & ptebit) {
2320 			pmap_attr_save(pg, ptebit);
2321 			PMAP_PVO_CHECK(pvo);		/* sanity check */
2322 			pmap_interrupts_restore(msr);
2323 			return TRUE;
2324 		}
2325 	}
2326 	/*
2327 	 * No luck, now go thru the hard part of looking at the ptes
2328 	 * themselves.  Sync so any pending REF/CHG bits are flushed
2329 	 * to the PTEs.
2330 	 */
2331 	SYNC();
2332 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2333 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2334 		/*
2335 		 * See if this pvo have a valid PTE.  If so, fetch the
2336 		 * REF/CHG bits from the valid PTE.  If the appropriate
2337 		 * ptebit is set, cache, it and return success.
2338 		 */
2339 		pt = pmap_pvo_to_pte(pvo, -1);
2340 		if (pt != NULL) {
2341 			pmap_pte_synch(pt, &pvo->pvo_pte);
2342 			if (pvo->pvo_pte.pte_lo & ptebit) {
2343 				pmap_attr_save(pg, ptebit);
2344 				PMAP_PVO_CHECK(pvo);		/* sanity check */
2345 				pmap_interrupts_restore(msr);
2346 				return TRUE;
2347 			}
2348 		}
2349 	}
2350 	pmap_interrupts_restore(msr);
2351 	return FALSE;
2352 }
2353 
2354 boolean_t
2355 pmap_clear_bit(struct vm_page *pg, int ptebit)
2356 {
2357 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2358 	struct pvo_entry *pvo;
2359 	volatile struct pte *pt;
2360 	register_t msr;
2361 	int rv = 0;
2362 
2363 	msr = pmap_interrupts_off();
2364 
2365 	/*
2366 	 * Fetch the cache value
2367 	 */
2368 	rv |= pmap_attr_fetch(pg);
2369 
2370 	/*
2371 	 * Clear the cached value.
2372 	 */
2373 	pmap_attr_clear(pg, ptebit);
2374 
2375 	/*
2376 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2377 	 * can reset the right ones).  Note that since the pvo entries and
2378 	 * list heads are accessed via BAT0 and are never placed in the
2379 	 * page table, we don't have to worry about further accesses setting
2380 	 * the REF/CHG bits.
2381 	 */
2382 	SYNC();
2383 
2384 	/*
2385 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
2386 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
2387 	 */
2388 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2389 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2390 		pt = pmap_pvo_to_pte(pvo, -1);
2391 		if (pt != NULL) {
2392 			/*
2393 			 * Only sync the PTE if the bit we are looking
2394 			 * for is not already set.
2395 			 */
2396 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2397 				pmap_pte_synch(pt, &pvo->pvo_pte);
2398 			/*
2399 			 * If the bit we are looking for was already set,
2400 			 * clear that bit in the pte.
2401 			 */
2402 			if (pvo->pvo_pte.pte_lo & ptebit)
2403 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2404 		}
2405 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2406 		pvo->pvo_pte.pte_lo &= ~ptebit;
2407 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2408 	}
2409 	pmap_interrupts_restore(msr);
2410 
2411 	/*
2412 	 * If we are clearing the modify bit and this page was marked EXEC
2413 	 * and the user of the page thinks the page was modified, then we
2414 	 * need to clean it from the icache if it's mapped or clear the EXEC
2415 	 * bit if it's not mapped.  The page itself might not have the CHG
2416 	 * bit set if the modification was done via DMA to the page.
2417 	 */
2418 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2419 		if (LIST_EMPTY(pvoh)) {
2420 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2421 			    VM_PAGE_TO_PHYS(pg)));
2422 			pmap_attr_clear(pg, PTE_EXEC);
2423 			PMAPCOUNT(exec_uncached_clear_modify);
2424 		} else {
2425 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2426 			    VM_PAGE_TO_PHYS(pg)));
2427 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2428 			PMAPCOUNT(exec_synced_clear_modify);
2429 		}
2430 	}
2431 	return (rv & ptebit) != 0;
2432 }
2433 
2434 void
2435 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2436 {
2437 	struct pvo_entry *pvo;
2438 	size_t offset = va & ADDR_POFF;
2439 	int s;
2440 
2441 	s = splvm();
2442 	while (len > 0) {
2443 		size_t seglen = PAGE_SIZE - offset;
2444 		if (seglen > len)
2445 			seglen = len;
2446 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2447 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2448 			pmap_syncicache(
2449 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2450 			PMAP_PVO_CHECK(pvo);
2451 		}
2452 		va += seglen;
2453 		len -= seglen;
2454 		offset = 0;
2455 	}
2456 	splx(s);
2457 }
2458 
2459 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2460 void
2461 pmap_pte_print(volatile struct pte *pt)
2462 {
2463 	printf("PTE %p: ", pt);
2464 	/* High word: */
2465 	printf("0x%08lx: [", pt->pte_hi);
2466 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2467 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2468 	printf("0x%06lx 0x%02lx",
2469 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2470 	    pt->pte_hi & PTE_API);
2471 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2472 	/* Low word: */
2473 	printf(" 0x%08lx: [", pt->pte_lo);
2474 	printf("0x%05lx... ", pt->pte_lo >> 12);
2475 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2476 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2477 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2478 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2479 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2480 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2481 	switch (pt->pte_lo & PTE_PP) {
2482 	case PTE_BR: printf("br]\n"); break;
2483 	case PTE_BW: printf("bw]\n"); break;
2484 	case PTE_SO: printf("so]\n"); break;
2485 	case PTE_SW: printf("sw]\n"); break;
2486 	}
2487 }
2488 #endif
2489 
2490 #if defined(DDB)
2491 void
2492 pmap_pteg_check(void)
2493 {
2494 	volatile struct pte *pt;
2495 	int i;
2496 	int ptegidx;
2497 	u_int p_valid = 0;
2498 	u_int s_valid = 0;
2499 	u_int invalid = 0;
2500 
2501 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2502 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2503 			if (pt->pte_hi & PTE_VALID) {
2504 				if (pt->pte_hi & PTE_HID)
2505 					s_valid++;
2506 				else
2507 					p_valid++;
2508 			} else
2509 				invalid++;
2510 		}
2511 	}
2512 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2513 		p_valid, p_valid, s_valid, s_valid,
2514 		invalid, invalid);
2515 }
2516 
2517 void
2518 pmap_print_mmuregs(void)
2519 {
2520 	int i;
2521 	u_int cpuvers;
2522 #ifndef PPC_OEA64
2523 	vaddr_t addr;
2524 	register_t soft_sr[16];
2525 #endif
2526 	struct bat soft_ibat[4];
2527 	struct bat soft_dbat[4];
2528 	register_t sdr1;
2529 
2530 	cpuvers = MFPVR() >> 16;
2531 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2532 #ifndef PPC_OEA64
2533 	addr = 0;
2534 	for (i = 0; i < 16; i++) {
2535 		soft_sr[i] = MFSRIN(addr);
2536 		addr += (1 << ADDR_SR_SHFT);
2537 	}
2538 #endif
2539 
2540 	/* read iBAT (601: uBAT) registers */
2541 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2542 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2543 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2544 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2545 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2546 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2547 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2548 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2549 
2550 
2551 	if (cpuvers != MPC601) {
2552 		/* read dBAT registers */
2553 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2554 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2555 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2556 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2557 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2558 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2559 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2560 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2561 	}
2562 
2563 	printf("SDR1:\t0x%lx\n", (long) sdr1);
2564 #ifndef PPC_OEA64
2565 	printf("SR[]:\t");
2566 	for (i = 0; i < 4; i++)
2567 		printf("0x%08lx,   ", soft_sr[i]);
2568 	printf("\n\t");
2569 	for ( ; i < 8; i++)
2570 		printf("0x%08lx,   ", soft_sr[i]);
2571 	printf("\n\t");
2572 	for ( ; i < 12; i++)
2573 		printf("0x%08lx,   ", soft_sr[i]);
2574 	printf("\n\t");
2575 	for ( ; i < 16; i++)
2576 		printf("0x%08lx,   ", soft_sr[i]);
2577 	printf("\n");
2578 #endif
2579 
2580 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2581 	for (i = 0; i < 4; i++) {
2582 		printf("0x%08lx 0x%08lx, ",
2583 			soft_ibat[i].batu, soft_ibat[i].batl);
2584 		if (i == 1)
2585 			printf("\n\t");
2586 	}
2587 	if (cpuvers != MPC601) {
2588 		printf("\ndBAT[]:\t");
2589 		for (i = 0; i < 4; i++) {
2590 			printf("0x%08lx 0x%08lx, ",
2591 				soft_dbat[i].batu, soft_dbat[i].batl);
2592 			if (i == 1)
2593 				printf("\n\t");
2594 		}
2595 	}
2596 	printf("\n");
2597 }
2598 
2599 void
2600 pmap_print_pte(pmap_t pm, vaddr_t va)
2601 {
2602 	struct pvo_entry *pvo;
2603 	volatile struct pte *pt;
2604 	int pteidx;
2605 
2606 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
2607 	if (pvo != NULL) {
2608 		pt = pmap_pvo_to_pte(pvo, pteidx);
2609 		if (pt != NULL) {
2610 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2611 				va, pt,
2612 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2613 				pt->pte_hi, pt->pte_lo);
2614 		} else {
2615 			printf("No valid PTE found\n");
2616 		}
2617 	} else {
2618 		printf("Address not in pmap\n");
2619 	}
2620 }
2621 
2622 void
2623 pmap_pteg_dist(void)
2624 {
2625 	struct pvo_entry *pvo;
2626 	int ptegidx;
2627 	int depth;
2628 	int max_depth = 0;
2629 	unsigned int depths[64];
2630 
2631 	memset(depths, 0, sizeof(depths));
2632 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2633 		depth = 0;
2634 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2635 			depth++;
2636 		}
2637 		if (depth > max_depth)
2638 			max_depth = depth;
2639 		if (depth > 63)
2640 			depth = 63;
2641 		depths[depth]++;
2642 	}
2643 
2644 	for (depth = 0; depth < 64; depth++) {
2645 		printf("  [%2d]: %8u", depth, depths[depth]);
2646 		if ((depth & 3) == 3)
2647 			printf("\n");
2648 		if (depth == max_depth)
2649 			break;
2650 	}
2651 	if ((depth & 3) != 3)
2652 		printf("\n");
2653 	printf("Max depth found was %d\n", max_depth);
2654 }
2655 #endif /* DEBUG */
2656 
2657 #if defined(PMAPCHECK) || defined(DEBUG)
2658 void
2659 pmap_pvo_verify(void)
2660 {
2661 	int ptegidx;
2662 	int s;
2663 
2664 	s = splvm();
2665 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2666 		struct pvo_entry *pvo;
2667 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2668 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2669 				panic("pmap_pvo_verify: invalid pvo %p "
2670 				    "on list %#x", pvo, ptegidx);
2671 			pmap_pvo_check(pvo);
2672 		}
2673 	}
2674 	splx(s);
2675 }
2676 #endif /* PMAPCHECK */
2677 
2678 
2679 void *
2680 pmap_pool_ualloc(struct pool *pp, int flags)
2681 {
2682 	struct pvo_page *pvop;
2683 
2684 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2685 	if (pvop != NULL) {
2686 		pmap_upvop_free--;
2687 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2688 		return pvop;
2689 	}
2690 	if (uvm.page_init_done != TRUE) {
2691 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2692 	}
2693 	return pmap_pool_malloc(pp, flags);
2694 }
2695 
2696 void *
2697 pmap_pool_malloc(struct pool *pp, int flags)
2698 {
2699 	struct pvo_page *pvop;
2700 	struct vm_page *pg;
2701 
2702 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2703 	if (pvop != NULL) {
2704 		pmap_mpvop_free--;
2705 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2706 		return pvop;
2707 	}
2708  again:
2709 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2710 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2711 	if (__predict_false(pg == NULL)) {
2712 		if (flags & PR_WAITOK) {
2713 			uvm_wait("plpg");
2714 			goto again;
2715 		} else {
2716 			return (0);
2717 		}
2718 	}
2719 	return (void *) VM_PAGE_TO_PHYS(pg);
2720 }
2721 
2722 void
2723 pmap_pool_ufree(struct pool *pp, void *va)
2724 {
2725 	struct pvo_page *pvop;
2726 #if 0
2727 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2728 		pmap_pool_mfree(va, size, tag);
2729 		return;
2730 	}
2731 #endif
2732 	pvop = va;
2733 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2734 	pmap_upvop_free++;
2735 	if (pmap_upvop_free > pmap_upvop_maxfree)
2736 		pmap_upvop_maxfree = pmap_upvop_free;
2737 }
2738 
2739 void
2740 pmap_pool_mfree(struct pool *pp, void *va)
2741 {
2742 	struct pvo_page *pvop;
2743 
2744 	pvop = va;
2745 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2746 	pmap_mpvop_free++;
2747 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
2748 		pmap_mpvop_maxfree = pmap_mpvop_free;
2749 #if 0
2750 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2751 #endif
2752 }
2753 
2754 /*
2755  * This routine in bootstraping to steal to-be-managed memory (which will
2756  * then be unmanaged).  We use it to grab from the first 256MB for our
2757  * pmap needs and above 256MB for other stuff.
2758  */
2759 vaddr_t
2760 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2761 {
2762 	vsize_t size;
2763 	vaddr_t va;
2764 	paddr_t pa = 0;
2765 	int npgs, bank;
2766 	struct vm_physseg *ps;
2767 
2768 	if (uvm.page_init_done == TRUE)
2769 		panic("pmap_steal_memory: called _after_ bootstrap");
2770 
2771 	*vstartp = VM_MIN_KERNEL_ADDRESS;
2772 	*vendp = VM_MAX_KERNEL_ADDRESS;
2773 
2774 	size = round_page(vsize);
2775 	npgs = atop(size);
2776 
2777 	/*
2778 	 * PA 0 will never be among those given to UVM so we can use it
2779 	 * to indicate we couldn't steal any memory.
2780 	 */
2781 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2782 		if (ps->free_list == VM_FREELIST_FIRST256 &&
2783 		    ps->avail_end - ps->avail_start >= npgs) {
2784 			pa = ptoa(ps->avail_start);
2785 			break;
2786 		}
2787 	}
2788 
2789 	if (pa == 0)
2790 		panic("pmap_steal_memory: no approriate memory to steal!");
2791 
2792 	ps->avail_start += npgs;
2793 	ps->start += npgs;
2794 
2795 	/*
2796 	 * If we've used up all the pages in the segment, remove it and
2797 	 * compact the list.
2798 	 */
2799 	if (ps->avail_start == ps->end) {
2800 		/*
2801 		 * If this was the last one, then a very bad thing has occurred
2802 		 */
2803 		if (--vm_nphysseg == 0)
2804 			panic("pmap_steal_memory: out of memory!");
2805 
2806 		printf("pmap_steal_memory: consumed bank %d\n", bank);
2807 		for (; bank < vm_nphysseg; bank++, ps++) {
2808 			ps[0] = ps[1];
2809 		}
2810 	}
2811 
2812 	va = (vaddr_t) pa;
2813 	memset((caddr_t) va, 0, size);
2814 	pmap_pages_stolen += npgs;
2815 #ifdef DEBUG
2816 	if (pmapdebug && npgs > 1) {
2817 		u_int cnt = 0;
2818 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2819 			cnt += ps->avail_end - ps->avail_start;
2820 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2821 		    npgs, pmap_pages_stolen, cnt);
2822 	}
2823 #endif
2824 
2825 	return va;
2826 }
2827 
2828 /*
2829  * Find a chuck of memory with right size and alignment.
2830  */
2831 void *
2832 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2833 {
2834 	struct mem_region *mp;
2835 	paddr_t s, e;
2836 	int i, j;
2837 
2838 	size = round_page(size);
2839 
2840 	DPRINTFN(BOOT,
2841 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2842 	    size, alignment, at_end));
2843 
2844 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2845 		panic("pmap_boot_find_memory: invalid alignment %lx",
2846 		    alignment);
2847 
2848 	if (at_end) {
2849 		if (alignment != PAGE_SIZE)
2850 			panic("pmap_boot_find_memory: invalid ending "
2851 			    "alignment %lx", alignment);
2852 
2853 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2854 			s = mp->start + mp->size - size;
2855 			if (s >= mp->start && mp->size >= size) {
2856 				DPRINTFN(BOOT,(": %lx\n", s));
2857 				DPRINTFN(BOOT,
2858 				    ("pmap_boot_find_memory: b-avail[%d] start "
2859 				     "0x%lx size 0x%lx\n", mp - avail,
2860 				     mp->start, mp->size));
2861 				mp->size -= size;
2862 				DPRINTFN(BOOT,
2863 				    ("pmap_boot_find_memory: a-avail[%d] start "
2864 				     "0x%lx size 0x%lx\n", mp - avail,
2865 				     mp->start, mp->size));
2866 				return (void *) s;
2867 			}
2868 		}
2869 		panic("pmap_boot_find_memory: no available memory");
2870 	}
2871 
2872 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2873 		s = (mp->start + alignment - 1) & ~(alignment-1);
2874 		e = s + size;
2875 
2876 		/*
2877 		 * Is the calculated region entirely within the region?
2878 		 */
2879 		if (s < mp->start || e > mp->start + mp->size)
2880 			continue;
2881 
2882 		DPRINTFN(BOOT,(": %lx\n", s));
2883 		if (s == mp->start) {
2884 			/*
2885 			 * If the block starts at the beginning of region,
2886 			 * adjust the size & start. (the region may now be
2887 			 * zero in length)
2888 			 */
2889 			DPRINTFN(BOOT,
2890 			    ("pmap_boot_find_memory: b-avail[%d] start "
2891 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2892 			mp->start += size;
2893 			mp->size -= size;
2894 			DPRINTFN(BOOT,
2895 			    ("pmap_boot_find_memory: a-avail[%d] start "
2896 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2897 		} else if (e == mp->start + mp->size) {
2898 			/*
2899 			 * If the block starts at the beginning of region,
2900 			 * adjust only the size.
2901 			 */
2902 			DPRINTFN(BOOT,
2903 			    ("pmap_boot_find_memory: b-avail[%d] start "
2904 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2905 			mp->size -= size;
2906 			DPRINTFN(BOOT,
2907 			    ("pmap_boot_find_memory: a-avail[%d] start "
2908 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2909 		} else {
2910 			/*
2911 			 * Block is in the middle of the region, so we
2912 			 * have to split it in two.
2913 			 */
2914 			for (j = avail_cnt; j > i + 1; j--) {
2915 				avail[j] = avail[j-1];
2916 			}
2917 			DPRINTFN(BOOT,
2918 			    ("pmap_boot_find_memory: b-avail[%d] start "
2919 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2920 			mp[1].start = e;
2921 			mp[1].size = mp[0].start + mp[0].size - e;
2922 			mp[0].size = s - mp[0].start;
2923 			avail_cnt++;
2924 			for (; i < avail_cnt; i++) {
2925 				DPRINTFN(BOOT,
2926 				    ("pmap_boot_find_memory: a-avail[%d] "
2927 				     "start 0x%lx size 0x%lx\n", i,
2928 				     avail[i].start, avail[i].size));
2929 			}
2930 		}
2931 		return (void *) s;
2932 	}
2933 	panic("pmap_boot_find_memory: not enough memory for "
2934 	    "%lx/%lx allocation?", size, alignment);
2935 }
2936 
2937 /*
2938  * This is not part of the defined PMAP interface and is specific to the
2939  * PowerPC architecture.  This is called during initppc, before the system
2940  * is really initialized.
2941  */
2942 void
2943 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2944 {
2945 	struct mem_region *mp, tmp;
2946 	paddr_t s, e;
2947 	psize_t size;
2948 	int i, j;
2949 
2950 	/*
2951 	 * Get memory.
2952 	 */
2953 	mem_regions(&mem, &avail);
2954 #if defined(DEBUG)
2955 	if (pmapdebug & PMAPDEBUG_BOOT) {
2956 		printf("pmap_bootstrap: memory configuration:\n");
2957 		for (mp = mem; mp->size; mp++) {
2958 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2959 				mp->start, mp->size);
2960 		}
2961 		for (mp = avail; mp->size; mp++) {
2962 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2963 				mp->start, mp->size);
2964 		}
2965 	}
2966 #endif
2967 
2968 	/*
2969 	 * Find out how much physical memory we have and in how many chunks.
2970 	 */
2971 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2972 		if (mp->start >= pmap_memlimit)
2973 			continue;
2974 		if (mp->start + mp->size > pmap_memlimit) {
2975 			size = pmap_memlimit - mp->start;
2976 			physmem += btoc(size);
2977 		} else {
2978 			physmem += btoc(mp->size);
2979 		}
2980 		mem_cnt++;
2981 	}
2982 
2983 	/*
2984 	 * Count the number of available entries.
2985 	 */
2986 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
2987 		avail_cnt++;
2988 
2989 	/*
2990 	 * Page align all regions.
2991 	 */
2992 	kernelstart = trunc_page(kernelstart);
2993 	kernelend = round_page(kernelend);
2994 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2995 		s = round_page(mp->start);
2996 		mp->size -= (s - mp->start);
2997 		mp->size = trunc_page(mp->size);
2998 		mp->start = s;
2999 		e = mp->start + mp->size;
3000 
3001 		DPRINTFN(BOOT,
3002 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3003 		    i, mp->start, mp->size));
3004 
3005 		/*
3006 		 * Don't allow the end to run beyond our artificial limit
3007 		 */
3008 		if (e > pmap_memlimit)
3009 			e = pmap_memlimit;
3010 
3011 		/*
3012 		 * Is this region empty or strange?  skip it.
3013 		 */
3014 		if (e <= s) {
3015 			mp->start = 0;
3016 			mp->size = 0;
3017 			continue;
3018 		}
3019 
3020 		/*
3021 		 * Does this overlap the beginning of kernel?
3022 		 *   Does extend past the end of the kernel?
3023 		 */
3024 		else if (s < kernelstart && e > kernelstart) {
3025 			if (e > kernelend) {
3026 				avail[avail_cnt].start = kernelend;
3027 				avail[avail_cnt].size = e - kernelend;
3028 				avail_cnt++;
3029 			}
3030 			mp->size = kernelstart - s;
3031 		}
3032 		/*
3033 		 * Check whether this region overlaps the end of the kernel.
3034 		 */
3035 		else if (s < kernelend && e > kernelend) {
3036 			mp->start = kernelend;
3037 			mp->size = e - kernelend;
3038 		}
3039 		/*
3040 		 * Look whether this regions is completely inside the kernel.
3041 		 * Nuke it if it does.
3042 		 */
3043 		else if (s >= kernelstart && e <= kernelend) {
3044 			mp->start = 0;
3045 			mp->size = 0;
3046 		}
3047 		/*
3048 		 * If the user imposed a memory limit, enforce it.
3049 		 */
3050 		else if (s >= pmap_memlimit) {
3051 			mp->start = -PAGE_SIZE;	/* let's know why */
3052 			mp->size = 0;
3053 		}
3054 		else {
3055 			mp->start = s;
3056 			mp->size = e - s;
3057 		}
3058 		DPRINTFN(BOOT,
3059 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3060 		    i, mp->start, mp->size));
3061 	}
3062 
3063 	/*
3064 	 * Move (and uncount) all the null return to the end.
3065 	 */
3066 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3067 		if (mp->size == 0) {
3068 			tmp = avail[i];
3069 			avail[i] = avail[--avail_cnt];
3070 			avail[avail_cnt] = avail[i];
3071 		}
3072 	}
3073 
3074 	/*
3075 	 * (Bubble)sort them into asecnding order.
3076 	 */
3077 	for (i = 0; i < avail_cnt; i++) {
3078 		for (j = i + 1; j < avail_cnt; j++) {
3079 			if (avail[i].start > avail[j].start) {
3080 				tmp = avail[i];
3081 				avail[i] = avail[j];
3082 				avail[j] = tmp;
3083 			}
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * Make sure they don't overlap.
3089 	 */
3090 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3091 		if (mp[0].start + mp[0].size > mp[1].start) {
3092 			mp[0].size = mp[1].start - mp[0].start;
3093 		}
3094 		DPRINTFN(BOOT,
3095 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3096 		    i, mp->start, mp->size));
3097 	}
3098 	DPRINTFN(BOOT,
3099 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3100 	    i, mp->start, mp->size));
3101 
3102 #ifdef	PTEGCOUNT
3103 	pmap_pteg_cnt = PTEGCOUNT;
3104 #else /* PTEGCOUNT */
3105 	pmap_pteg_cnt = 0x1000;
3106 
3107 	while (pmap_pteg_cnt < physmem)
3108 		pmap_pteg_cnt <<= 1;
3109 
3110 	pmap_pteg_cnt >>= 1;
3111 #endif /* PTEGCOUNT */
3112 
3113 	/*
3114 	 * Find suitably aligned memory for PTEG hash table.
3115 	 */
3116 	size = pmap_pteg_cnt * sizeof(struct pteg);
3117 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3118 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3119 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3120 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3121 		    pmap_pteg_table, size);
3122 #endif
3123 
3124 	memset(__UNVOLATILE(pmap_pteg_table), 0,
3125 		pmap_pteg_cnt * sizeof(struct pteg));
3126 	pmap_pteg_mask = pmap_pteg_cnt - 1;
3127 
3128 	/*
3129 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3130 	 * with pages.  So we just steal them before giving them to UVM.
3131 	 */
3132 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3133 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3134 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3135 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3136 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3137 		    pmap_pvo_table, size);
3138 #endif
3139 
3140 	for (i = 0; i < pmap_pteg_cnt; i++)
3141 		TAILQ_INIT(&pmap_pvo_table[i]);
3142 
3143 #ifndef MSGBUFADDR
3144 	/*
3145 	 * Allocate msgbuf in high memory.
3146 	 */
3147 	msgbuf_paddr =
3148 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3149 #endif
3150 
3151 #ifdef __HAVE_PMAP_PHYSSEG
3152 	{
3153 		u_int npgs = 0;
3154 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3155 			npgs += btoc(mp->size);
3156 		size = (sizeof(struct pvo_head) + 1) * npgs;
3157 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3158 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3159 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3160 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3161 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3162 			    pmap_physseg.pvoh, size);
3163 #endif
3164 	}
3165 #endif
3166 
3167 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3168 		paddr_t pfstart = atop(mp->start);
3169 		paddr_t pfend = atop(mp->start + mp->size);
3170 		if (mp->size == 0)
3171 			continue;
3172 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
3173 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3174 				VM_FREELIST_FIRST256);
3175 		} else if (mp->start >= SEGMENT_LENGTH) {
3176 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3177 				VM_FREELIST_DEFAULT);
3178 		} else {
3179 			pfend = atop(SEGMENT_LENGTH);
3180 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3181 				VM_FREELIST_FIRST256);
3182 			pfstart = atop(SEGMENT_LENGTH);
3183 			pfend = atop(mp->start + mp->size);
3184 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3185 				VM_FREELIST_DEFAULT);
3186 		}
3187 	}
3188 
3189 	/*
3190 	 * Make sure kernel vsid is allocated as well as VSID 0.
3191 	 */
3192 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3193 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3194 	pmap_vsid_bitmap[0] |= 1;
3195 
3196 	/*
3197 	 * Initialize kernel pmap and hardware.
3198 	 */
3199 #ifndef PPC_OEA64
3200 	for (i = 0; i < 16; i++) {
3201 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3202 		__asm volatile ("mtsrin %0,%1"
3203 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3204 	}
3205 
3206 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3207 	__asm volatile ("mtsr %0,%1"
3208 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3209 #ifdef KERNEL2_SR
3210 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3211 	__asm volatile ("mtsr %0,%1"
3212 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3213 #endif
3214 	for (i = 0; i < 16; i++) {
3215 		if (iosrtable[i] & SR601_T) {
3216 			pmap_kernel()->pm_sr[i] = iosrtable[i];
3217 			__asm volatile ("mtsrin %0,%1"
3218 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3219 		}
3220 	}
3221 #endif /* !PPC_OEA64 */
3222 
3223 	__asm volatile ("sync; mtsdr1 %0; isync"
3224 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3225 	tlbia();
3226 
3227 #ifdef ALTIVEC
3228 	pmap_use_altivec = cpu_altivec;
3229 #endif
3230 
3231 #ifdef DEBUG
3232 	if (pmapdebug & PMAPDEBUG_BOOT) {
3233 		u_int cnt;
3234 		int bank;
3235 		char pbuf[9];
3236 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3237 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3238 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3239 			    bank,
3240 			    ptoa(vm_physmem[bank].avail_start),
3241 			    ptoa(vm_physmem[bank].avail_end),
3242 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3243 		}
3244 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3245 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3246 		    pbuf, cnt);
3247 	}
3248 #endif
3249 
3250 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3251 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3252 	    &pmap_pool_uallocator);
3253 
3254 	pool_setlowat(&pmap_upvo_pool, 252);
3255 
3256 	pool_init(&pmap_pool, sizeof(struct pmap),
3257 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3258 }
3259