xref: /netbsd-src/sys/arch/powerpc/oea/pmap.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: pmap.c,v 1.49 2007/12/15 00:39:23 perry Exp $	*/
2 /*-
3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
8  *
9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl@kymasys.com>
10  * of Kyma Systems LLC.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *        This product includes software developed by the NetBSD
23  *        Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
43  * Copyright (C) 1995, 1996 TooLs GmbH.
44  * All rights reserved.
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. All advertising materials mentioning features or use of this software
55  *    must display the following acknowledgement:
56  *	This product includes software developed by TooLs GmbH.
57  * 4. The name of TooLs GmbH may not be used to endorse or promote products
58  *    derived from this software without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
61  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
64  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
65  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
66  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
67  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
68  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
69  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.49 2007/12/15 00:39:23 perry Exp $");
74 
75 #include "opt_ppcarch.h"
76 #include "opt_altivec.h"
77 #include "opt_pmap.h"
78 #include <sys/param.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/user.h>
82 #include <sys/pool.h>
83 #include <sys/queue.h>
84 #include <sys/device.h>		/* for evcnt */
85 #include <sys/systm.h>
86 
87 #if __NetBSD_Version__ < 105010000
88 #include <vm/vm.h>
89 #include <vm/vm_kern.h>
90 #define	splvm()		splimp()
91 #endif
92 
93 #include <uvm/uvm.h>
94 
95 #include <machine/pcb.h>
96 #include <machine/powerpc.h>
97 #include <powerpc/spr.h>
98 #include <powerpc/oea/sr_601.h>
99 #include <powerpc/bat.h>
100 #include <powerpc/stdarg.h>
101 
102 #if defined(DEBUG) || defined(PMAPCHECK)
103 #define	STATIC
104 #else
105 #define	STATIC	static
106 #endif
107 
108 #ifdef ALTIVEC
109 int pmap_use_altivec;
110 #endif
111 
112 volatile struct pteg *pmap_pteg_table;
113 unsigned int pmap_pteg_cnt;
114 unsigned int pmap_pteg_mask;
115 #ifdef PMAP_MEMLIMIT
116 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
117 #else
118 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
119 #endif
120 
121 struct pmap kernel_pmap_;
122 unsigned int pmap_pages_stolen;
123 u_long pmap_pte_valid;
124 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
125 u_long pmap_pvo_enter_depth;
126 u_long pmap_pvo_remove_depth;
127 #endif
128 
129 int physmem;
130 #ifndef MSGBUFADDR
131 extern paddr_t msgbuf_paddr;
132 #endif
133 
134 static struct mem_region *mem, *avail;
135 static u_int mem_cnt, avail_cnt;
136 
137 #ifdef __HAVE_PMAP_PHYSSEG
138 /*
139  * This is a cache of referenced/modified bits.
140  * Bits herein are shifted by ATTRSHFT.
141  */
142 #define	ATTR_SHFT	4
143 struct pmap_physseg pmap_physseg;
144 #endif
145 
146 /*
147  * The following structure is aligned to 32 bytes
148  */
149 struct pvo_entry {
150 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
151 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
152 	struct pte pvo_pte;			/* Prebuilt PTE */
153 	pmap_t pvo_pmap;			/* ptr to owning pmap */
154 	vaddr_t pvo_vaddr;			/* VA of entry */
155 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
156 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
157 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
158 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
159 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
160 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
161 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
162 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
163 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
164 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
165 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
166 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
167 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
168 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
169 #define	PVO_REMOVE		6		/* PVO has been removed */
170 #define	PVO_WHERE_MASK		15
171 #define	PVO_WHERE_SHFT		8
172 } __attribute__ ((aligned (32)));
173 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define	PVO_PTEGIDX_CLR(pvo)	\
177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define	PVO_PTEGIDX_SET(pvo,i)	\
179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 #define	PVO_WHERE(pvo,w)	\
181 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
182 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
183 
184 TAILQ_HEAD(pvo_tqhead, pvo_entry);
185 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
186 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
187 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
188 
189 struct pool pmap_pool;		/* pool for pmap structures */
190 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
191 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
192 
193 /*
194  * We keep a cache of unmanaged pages to be used for pvo entries for
195  * unmanaged pages.
196  */
197 struct pvo_page {
198 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
199 };
200 SIMPLEQ_HEAD(pvop_head, pvo_page);
201 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
202 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
203 u_long pmap_upvop_free;
204 u_long pmap_upvop_maxfree;
205 u_long pmap_mpvop_free;
206 u_long pmap_mpvop_maxfree;
207 
208 STATIC void *pmap_pool_ualloc(struct pool *, int);
209 STATIC void *pmap_pool_malloc(struct pool *, int);
210 
211 STATIC void pmap_pool_ufree(struct pool *, void *);
212 STATIC void pmap_pool_mfree(struct pool *, void *);
213 
214 static struct pool_allocator pmap_pool_mallocator = {
215 	.pa_alloc = pmap_pool_malloc,
216 	.pa_free = pmap_pool_mfree,
217 	.pa_pagesz = 0,
218 };
219 
220 static struct pool_allocator pmap_pool_uallocator = {
221 	.pa_alloc = pmap_pool_ualloc,
222 	.pa_free = pmap_pool_ufree,
223 	.pa_pagesz = 0,
224 };
225 
226 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
227 void pmap_pte_print(volatile struct pte *);
228 void pmap_pteg_check(void);
229 void pmap_pteg_dist(void);
230 void pmap_print_pte(pmap_t, vaddr_t);
231 void pmap_print_mmuregs(void);
232 #endif
233 
234 #if defined(DEBUG) || defined(PMAPCHECK)
235 #ifdef PMAPCHECK
236 int pmapcheck = 1;
237 #else
238 int pmapcheck = 0;
239 #endif
240 void pmap_pvo_verify(void);
241 STATIC void pmap_pvo_check(const struct pvo_entry *);
242 #define	PMAP_PVO_CHECK(pvo)	 		\
243 	do {					\
244 		if (pmapcheck)			\
245 			pmap_pvo_check(pvo);	\
246 	} while (0)
247 #else
248 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
249 #endif
250 STATIC int pmap_pte_insert(int, struct pte *);
251 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
252 	vaddr_t, paddr_t, register_t, int);
253 STATIC void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
254 STATIC void pmap_pvo_free(struct pvo_entry *);
255 STATIC void pmap_pvo_free_list(struct pvo_head *);
256 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
257 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
258 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
259 STATIC void pvo_set_exec(struct pvo_entry *);
260 STATIC void pvo_clear_exec(struct pvo_entry *);
261 
262 STATIC void tlbia(void);
263 
264 STATIC void pmap_release(pmap_t);
265 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
266 
267 static uint32_t pmap_pvo_reclaim_nextidx;
268 #ifdef DEBUG
269 static int pmap_pvo_reclaim_debugctr;
270 #endif
271 
272 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
273 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
274 
275 static int pmap_initialized;
276 
277 #if defined(DEBUG) || defined(PMAPDEBUG)
278 #define	PMAPDEBUG_BOOT		0x0001
279 #define	PMAPDEBUG_PTE		0x0002
280 #define	PMAPDEBUG_EXEC		0x0008
281 #define	PMAPDEBUG_PVOENTER	0x0010
282 #define	PMAPDEBUG_PVOREMOVE	0x0020
283 #define	PMAPDEBUG_ACTIVATE	0x0100
284 #define	PMAPDEBUG_CREATE	0x0200
285 #define	PMAPDEBUG_ENTER		0x1000
286 #define	PMAPDEBUG_KENTER	0x2000
287 #define	PMAPDEBUG_KREMOVE	0x4000
288 #define	PMAPDEBUG_REMOVE	0x8000
289 
290 unsigned int pmapdebug = 0;
291 
292 # define DPRINTF(x)		printf x
293 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
294 #else
295 # define DPRINTF(x)
296 # define DPRINTFN(n, x)
297 #endif
298 
299 
300 #ifdef PMAPCOUNTERS
301 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
302 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
303 
304 struct evcnt pmap_evcnt_mappings =
305     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
306 	    "pmap", "pages mapped");
307 struct evcnt pmap_evcnt_unmappings =
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
309 	    "pmap", "pages unmapped");
310 
311 struct evcnt pmap_evcnt_kernel_mappings =
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
313 	    "pmap", "kernel pages mapped");
314 struct evcnt pmap_evcnt_kernel_unmappings =
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
316 	    "pmap", "kernel pages unmapped");
317 
318 struct evcnt pmap_evcnt_mappings_replaced =
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
320 	    "pmap", "page mappings replaced");
321 
322 struct evcnt pmap_evcnt_exec_mappings =
323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
324 	    "pmap", "exec pages mapped");
325 struct evcnt pmap_evcnt_exec_cached =
326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
327 	    "pmap", "exec pages cached");
328 
329 struct evcnt pmap_evcnt_exec_synced =
330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
331 	    "pmap", "exec pages synced");
332 struct evcnt pmap_evcnt_exec_synced_clear_modify =
333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
334 	    "pmap", "exec pages synced (CM)");
335 struct evcnt pmap_evcnt_exec_synced_pvo_remove =
336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
337 	    "pmap", "exec pages synced (PR)");
338 
339 struct evcnt pmap_evcnt_exec_uncached_page_protect =
340     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
341 	    "pmap", "exec pages uncached (PP)");
342 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
344 	    "pmap", "exec pages uncached (CM)");
345 struct evcnt pmap_evcnt_exec_uncached_zero_page =
346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
347 	    "pmap", "exec pages uncached (ZP)");
348 struct evcnt pmap_evcnt_exec_uncached_copy_page =
349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
350 	    "pmap", "exec pages uncached (CP)");
351 struct evcnt pmap_evcnt_exec_uncached_pvo_remove =
352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
353 	    "pmap", "exec pages uncached (PR)");
354 
355 struct evcnt pmap_evcnt_updates =
356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
357 	    "pmap", "updates");
358 struct evcnt pmap_evcnt_collects =
359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 	    "pmap", "collects");
361 struct evcnt pmap_evcnt_copies =
362     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
363 	    "pmap", "copies");
364 
365 struct evcnt pmap_evcnt_ptes_spilled =
366     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
367 	    "pmap", "ptes spilled from overflow");
368 struct evcnt pmap_evcnt_ptes_unspilled =
369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
370 	    "pmap", "ptes not spilled");
371 struct evcnt pmap_evcnt_ptes_evicted =
372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 	    "pmap", "ptes evicted");
374 
375 struct evcnt pmap_evcnt_ptes_primary[8] = {
376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
377 	    "pmap", "ptes added at primary[0]"),
378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 	    "pmap", "ptes added at primary[1]"),
380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 	    "pmap", "ptes added at primary[2]"),
382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 	    "pmap", "ptes added at primary[3]"),
384 
385     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
386 	    "pmap", "ptes added at primary[4]"),
387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 	    "pmap", "ptes added at primary[5]"),
389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 	    "pmap", "ptes added at primary[6]"),
391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 	    "pmap", "ptes added at primary[7]"),
393 };
394 struct evcnt pmap_evcnt_ptes_secondary[8] = {
395     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
396 	    "pmap", "ptes added at secondary[0]"),
397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 	    "pmap", "ptes added at secondary[1]"),
399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
400 	    "pmap", "ptes added at secondary[2]"),
401     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
402 	    "pmap", "ptes added at secondary[3]"),
403 
404     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
405 	    "pmap", "ptes added at secondary[4]"),
406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
407 	    "pmap", "ptes added at secondary[5]"),
408     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
409 	    "pmap", "ptes added at secondary[6]"),
410     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
411 	    "pmap", "ptes added at secondary[7]"),
412 };
413 struct evcnt pmap_evcnt_ptes_removed =
414     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
415 	    "pmap", "ptes removed");
416 struct evcnt pmap_evcnt_ptes_changed =
417     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
418 	    "pmap", "ptes changed");
419 struct evcnt pmap_evcnt_pvos_reclaimed =
420     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
421 	    "pmap", "pvos reclaimed");
422 struct evcnt pmap_evcnt_pvos_failed =
423     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
424 	    "pmap", "pvo allocation failures");
425 
426 /*
427  * From pmap_subr.c
428  */
429 extern struct evcnt pmap_evcnt_zeroed_pages;
430 extern struct evcnt pmap_evcnt_copied_pages;
431 extern struct evcnt pmap_evcnt_idlezeroed_pages;
432 
433 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
434 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
436 
437 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
439 
440 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
441 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_pvo_remove);
445 
446 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
447 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
448 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
449 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
450 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_pvo_remove);
451 
452 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
453 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
454 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
455 
456 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
457 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
458 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
459 
460 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
461 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
462 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
463 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
464 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
465 
466 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
467 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
468 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
469 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
470 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
471 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
472 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
473 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
474 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
475 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
476 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
477 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
478 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
479 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
480 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
481 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
482 
483 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
484 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
485 #else
486 #define	PMAPCOUNT(ev)	((void) 0)
487 #define	PMAPCOUNT2(ev)	((void) 0)
488 #endif
489 
490 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
491 
492 /* XXXSL: this needs to be moved to assembler */
493 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
494 
495 #define	TLBSYNC()	__asm volatile("tlbsync")
496 #define	SYNC()		__asm volatile("sync")
497 #define	EIEIO()		__asm volatile("eieio")
498 #define	MFMSR()		mfmsr()
499 #define	MTMSR(psl)	mtmsr(psl)
500 #define	MFPVR()		mfpvr()
501 #define	MFSRIN(va)	mfsrin(va)
502 #define	MFTB()		mfrtcltbl()
503 
504 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
505 static inline register_t
506 mfsrin(vaddr_t va)
507 {
508 	register_t sr;
509 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
510 	return sr;
511 }
512 #endif	/* PPC_OEA*/
513 
514 #if defined (PPC_OEA64_BRIDGE)
515 extern void mfmsr64 (register64_t *result);
516 #endif /* PPC_OEA64_BRIDGE */
517 
518 
519 static inline register_t
520 pmap_interrupts_off(void)
521 {
522 	register_t msr = MFMSR();
523 	if (msr & PSL_EE)
524 		MTMSR(msr & ~PSL_EE);
525 	return msr;
526 }
527 
528 static void
529 pmap_interrupts_restore(register_t msr)
530 {
531 	if (msr & PSL_EE)
532 		MTMSR(msr);
533 }
534 
535 static inline u_int32_t
536 mfrtcltbl(void)
537 {
538 
539 	if ((MFPVR() >> 16) == MPC601)
540 		return (mfrtcl() >> 7);
541 	else
542 		return (mftbl());
543 }
544 
545 /*
546  * These small routines may have to be replaced,
547  * if/when we support processors other that the 604.
548  */
549 
550 void
551 tlbia(void)
552 {
553 	char *i;
554 
555 	SYNC();
556 #if defined(PPC_OEA)
557 	/*
558 	 * Why not use "tlbia"?  Because not all processors implement it.
559 	 *
560 	 * This needs to be a per-CPU callback to do the appropriate thing
561 	 * for the CPU. XXX
562 	 */
563 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
564 		TLBIE(i);
565 		EIEIO();
566 		SYNC();
567 	}
568 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
569 	printf("Invalidating ALL TLB entries......\n");
570 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
571 	for (i = 0; i <= (void *)0xFF000; i += 0x00001000) {
572 		TLBIEL(i);
573 		EIEIO();
574 		SYNC();
575 	}
576 #endif
577 	TLBSYNC();
578 	SYNC();
579 }
580 
581 static inline register_t
582 va_to_vsid(const struct pmap *pm, vaddr_t addr)
583 {
584 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
585 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 #else /* PPC_OEA64 */
587 #if 0
588 	const struct ste *ste;
589 	register_t hash;
590 	int i;
591 
592 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
593 
594 	/*
595 	 * Try the primary group first
596 	 */
597 	ste = pm->pm_stes[hash].stes;
598 	for (i = 0; i < 8; i++, ste++) {
599 		if (ste->ste_hi & STE_V) &&
600 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
601 			return ste;
602 	}
603 
604 	/*
605 	 * Then the secondary group.
606 	 */
607 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
608 	for (i = 0; i < 8; i++, ste++) {
609 		if (ste->ste_hi & STE_V) &&
610 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
611 			return addr;
612 	}
613 
614 	return NULL;
615 #else
616 	/*
617 	 * Rather than searching the STE groups for the VSID, we know
618 	 * how we generate that from the ESID and so do that.
619 	 */
620 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
621 #endif
622 #endif /* PPC_OEA */
623 }
624 
625 static inline register_t
626 va_to_pteg(const struct pmap *pm, vaddr_t addr)
627 {
628 	register_t hash;
629 
630 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
631 	return hash & pmap_pteg_mask;
632 }
633 
634 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
635 /*
636  * Given a PTE in the page table, calculate the VADDR that hashes to it.
637  * The only bit of magic is that the top 4 bits of the address doesn't
638  * technically exist in the PTE.  But we know we reserved 4 bits of the
639  * VSID for it so that's how we get it.
640  */
641 static vaddr_t
642 pmap_pte_to_va(volatile const struct pte *pt)
643 {
644 	vaddr_t va;
645 	uintptr_t ptaddr = (uintptr_t) pt;
646 
647 	if (pt->pte_hi & PTE_HID)
648 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
649 
650 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
651 #if defined(PPC_OEA)
652 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
653 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
654 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
655 #endif
656 	va <<= ADDR_PIDX_SHFT;
657 
658 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
659 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
660 
661 #if defined(PPC_OEA64)
662 	/* PPC63 Bits 0-35 */
663 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
664 #elif defined(PPC_OEA) || defined(PPC_OEA64_BRIDGE)
665 	/* PPC Bits 0-3 */
666 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
667 #endif
668 
669 	return va;
670 }
671 #endif
672 
673 static inline struct pvo_head *
674 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
675 {
676 #ifdef __HAVE_VM_PAGE_MD
677 	struct vm_page *pg;
678 
679 	pg = PHYS_TO_VM_PAGE(pa);
680 	if (pg_p != NULL)
681 		*pg_p = pg;
682 	if (pg == NULL)
683 		return &pmap_pvo_unmanaged;
684 	return &pg->mdpage.mdpg_pvoh;
685 #endif
686 #ifdef __HAVE_PMAP_PHYSSEG
687 	int bank, pg;
688 
689 	bank = vm_physseg_find(atop(pa), &pg);
690 	if (pg_p != NULL)
691 		*pg_p = pg;
692 	if (bank == -1)
693 		return &pmap_pvo_unmanaged;
694 	return &vm_physmem[bank].pmseg.pvoh[pg];
695 #endif
696 }
697 
698 static inline struct pvo_head *
699 vm_page_to_pvoh(struct vm_page *pg)
700 {
701 #ifdef __HAVE_VM_PAGE_MD
702 	return &pg->mdpage.mdpg_pvoh;
703 #endif
704 #ifdef __HAVE_PMAP_PHYSSEG
705 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
706 #endif
707 }
708 
709 
710 #ifdef __HAVE_PMAP_PHYSSEG
711 static inline char *
712 pa_to_attr(paddr_t pa)
713 {
714 	int bank, pg;
715 
716 	bank = vm_physseg_find(atop(pa), &pg);
717 	if (bank == -1)
718 		return NULL;
719 	return &vm_physmem[bank].pmseg.attrs[pg];
720 }
721 #endif
722 
723 static inline void
724 pmap_attr_clear(struct vm_page *pg, int ptebit)
725 {
726 #ifdef __HAVE_PMAP_PHYSSEG
727 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
728 #endif
729 #ifdef __HAVE_VM_PAGE_MD
730 	pg->mdpage.mdpg_attrs &= ~ptebit;
731 #endif
732 }
733 
734 static inline int
735 pmap_attr_fetch(struct vm_page *pg)
736 {
737 #ifdef __HAVE_PMAP_PHYSSEG
738 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
739 #endif
740 #ifdef __HAVE_VM_PAGE_MD
741 	return pg->mdpage.mdpg_attrs;
742 #endif
743 }
744 
745 static inline void
746 pmap_attr_save(struct vm_page *pg, int ptebit)
747 {
748 #ifdef __HAVE_PMAP_PHYSSEG
749 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
750 #endif
751 #ifdef __HAVE_VM_PAGE_MD
752 	pg->mdpage.mdpg_attrs |= ptebit;
753 #endif
754 }
755 
756 static inline int
757 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
758 {
759 	if (pt->pte_hi == pvo_pt->pte_hi
760 #if 0
761 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
762 	        ~(PTE_REF|PTE_CHG)) == 0
763 #endif
764 	    )
765 		return 1;
766 	return 0;
767 }
768 
769 static inline void
770 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
771 {
772 	/*
773 	 * Construct the PTE.  Default to IMB initially.  Valid bit
774 	 * only gets set when the real pte is set in memory.
775 	 *
776 	 * Note: Don't set the valid bit for correct operation of tlb update.
777 	 */
778 #if defined(PPC_OEA)
779 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
780 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
781 	pt->pte_lo = pte_lo;
782 #elif defined (PPC_OEA64_BRIDGE)
783 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
784 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
785 	pt->pte_lo = (u_int64_t) pte_lo;
786 #elif defined (PPC_OEA64)
787 #error PPC_OEA64 not supported
788 #endif /* PPC_OEA */
789 }
790 
791 static inline void
792 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
793 {
794 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
795 }
796 
797 static inline void
798 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
799 {
800 	/*
801 	 * As shown in Section 7.6.3.2.3
802 	 */
803 	pt->pte_lo &= ~ptebit;
804 	TLBIE(va);
805 	SYNC();
806 	EIEIO();
807 	TLBSYNC();
808 	SYNC();
809 }
810 
811 static inline void
812 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
813 {
814 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
815 	if (pvo_pt->pte_hi & PTE_VALID)
816 		panic("pte_set: setting an already valid pte %p", pvo_pt);
817 #endif
818 	pvo_pt->pte_hi |= PTE_VALID;
819 
820 	/*
821 	 * Update the PTE as defined in section 7.6.3.1
822 	 * Note that the REF/CHG bits are from pvo_pt and thus should
823 	 * have been saved so this routine can restore them (if desired).
824 	 */
825 	pt->pte_lo = pvo_pt->pte_lo;
826 	EIEIO();
827 	pt->pte_hi = pvo_pt->pte_hi;
828 	TLBSYNC();
829 	SYNC();
830 	pmap_pte_valid++;
831 }
832 
833 static inline void
834 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
835 {
836 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
837 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
838 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
839 	if ((pt->pte_hi & PTE_VALID) == 0)
840 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
841 #endif
842 
843 	pvo_pt->pte_hi &= ~PTE_VALID;
844 	/*
845 	 * Force the ref & chg bits back into the PTEs.
846 	 */
847 	SYNC();
848 	/*
849 	 * Invalidate the pte ... (Section 7.6.3.3)
850 	 */
851 	pt->pte_hi &= ~PTE_VALID;
852 	SYNC();
853 	TLBIE(va);
854 	SYNC();
855 	EIEIO();
856 	TLBSYNC();
857 	SYNC();
858 	/*
859 	 * Save the ref & chg bits ...
860 	 */
861 	pmap_pte_synch(pt, pvo_pt);
862 	pmap_pte_valid--;
863 }
864 
865 static inline void
866 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
867 {
868 	/*
869 	 * Invalidate the PTE
870 	 */
871 	pmap_pte_unset(pt, pvo_pt, va);
872 	pmap_pte_set(pt, pvo_pt);
873 }
874 
875 /*
876  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
877  * (either primary or secondary location).
878  *
879  * Note: both the destination and source PTEs must not have PTE_VALID set.
880  */
881 
882 STATIC int
883 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
884 {
885 	volatile struct pte *pt;
886 	int i;
887 
888 #if defined(DEBUG)
889 #if defined (PPC_OEA)
890 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
891 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
892 #elif defined (PPC_OEA64_BRIDGE)
893 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%016llx 0x%016llx\n",
894 		ptegidx, (unsigned long long) pvo_pt->pte_hi,
895 		(unsigned long long) pvo_pt->pte_lo));
896 
897 #endif
898 #endif
899 	/*
900 	 * First try primary hash.
901 	 */
902 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
903 		if ((pt->pte_hi & PTE_VALID) == 0) {
904 			pvo_pt->pte_hi &= ~PTE_HID;
905 			pmap_pte_set(pt, pvo_pt);
906 			return i;
907 		}
908 	}
909 
910 	/*
911 	 * Now try secondary hash.
912 	 */
913 	ptegidx ^= pmap_pteg_mask;
914 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
915 		if ((pt->pte_hi & PTE_VALID) == 0) {
916 			pvo_pt->pte_hi |= PTE_HID;
917 			pmap_pte_set(pt, pvo_pt);
918 			return i;
919 		}
920 	}
921 	return -1;
922 }
923 
924 /*
925  * Spill handler.
926  *
927  * Tries to spill a page table entry from the overflow area.
928  * This runs in either real mode (if dealing with a exception spill)
929  * or virtual mode when dealing with manually spilling one of the
930  * kernel's pte entries.  In either case, interrupts are already
931  * disabled.
932  */
933 
934 int
935 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
936 {
937 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
938 	struct pvo_entry *pvo;
939 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
940 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
941 	int ptegidx, i, j;
942 	volatile struct pteg *pteg;
943 	volatile struct pte *pt;
944 
945 	ptegidx = va_to_pteg(pm, addr);
946 
947 	/*
948 	 * Have to substitute some entry. Use the primary hash for this.
949 	 * Use low bits of timebase as random generator.  Make sure we are
950 	 * not picking a kernel pte for replacement.
951 	 */
952 	pteg = &pmap_pteg_table[ptegidx];
953 	i = MFTB() & 7;
954 	for (j = 0; j < 8; j++) {
955 		pt = &pteg->pt[i];
956 		if ((pt->pte_hi & PTE_VALID) == 0 ||
957 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
958 				!= KERNEL_VSIDBITS)
959 			break;
960 		i = (i + 1) & 7;
961 	}
962 	KASSERT(j < 8);
963 
964 	source_pvo = NULL;
965 	victim_pvo = NULL;
966 	pvoh = &pmap_pvo_table[ptegidx];
967 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
968 
969 		/*
970 		 * We need to find pvo entry for this address...
971 		 */
972 		PMAP_PVO_CHECK(pvo);		/* sanity check */
973 
974 		/*
975 		 * If we haven't found the source and we come to a PVO with
976 		 * a valid PTE, then we know we can't find it because all
977 		 * evicted PVOs always are first in the list.
978 		 */
979 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
980 			break;
981 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
982 		    addr == PVO_VADDR(pvo)) {
983 
984 			/*
985 			 * Now we have found the entry to be spilled into the
986 			 * pteg.  Attempt to insert it into the page table.
987 			 */
988 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
989 			if (j >= 0) {
990 				PVO_PTEGIDX_SET(pvo, j);
991 				PMAP_PVO_CHECK(pvo);	/* sanity check */
992 				PVO_WHERE(pvo, SPILL_INSERT);
993 				pvo->pvo_pmap->pm_evictions--;
994 				PMAPCOUNT(ptes_spilled);
995 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
996 				    ? pmap_evcnt_ptes_secondary
997 				    : pmap_evcnt_ptes_primary)[j]);
998 
999 				/*
1000 				 * Since we keep the evicted entries at the
1001 				 * from of the PVO list, we need move this
1002 				 * (now resident) PVO after the evicted
1003 				 * entries.
1004 				 */
1005 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
1006 
1007 				/*
1008 				 * If we don't have to move (either we were the
1009 				 * last entry or the next entry was valid),
1010 				 * don't change our position.  Otherwise
1011 				 * move ourselves to the tail of the queue.
1012 				 */
1013 				if (next_pvo != NULL &&
1014 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1015 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1016 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1017 				}
1018 				return 1;
1019 			}
1020 			source_pvo = pvo;
1021 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1022 				return 0;
1023 			}
1024 			if (victim_pvo != NULL)
1025 				break;
1026 		}
1027 
1028 		/*
1029 		 * We also need the pvo entry of the victim we are replacing
1030 		 * so save the R & C bits of the PTE.
1031 		 */
1032 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1033 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
1034 			vpvoh = pvoh;			/* *1* */
1035 			victim_pvo = pvo;
1036 			if (source_pvo != NULL)
1037 				break;
1038 		}
1039 	}
1040 
1041 	if (source_pvo == NULL) {
1042 		PMAPCOUNT(ptes_unspilled);
1043 		return 0;
1044 	}
1045 
1046 	if (victim_pvo == NULL) {
1047 		if ((pt->pte_hi & PTE_HID) == 0)
1048 			panic("pmap_pte_spill: victim p-pte (%p) has "
1049 			    "no pvo entry!", pt);
1050 
1051 		/*
1052 		 * If this is a secondary PTE, we need to search
1053 		 * its primary pvo bucket for the matching PVO.
1054 		 */
1055 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1056 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1057 			PMAP_PVO_CHECK(pvo);		/* sanity check */
1058 
1059 			/*
1060 			 * We also need the pvo entry of the victim we are
1061 			 * replacing so save the R & C bits of the PTE.
1062 			 */
1063 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1064 				victim_pvo = pvo;
1065 				break;
1066 			}
1067 		}
1068 		if (victim_pvo == NULL)
1069 			panic("pmap_pte_spill: victim s-pte (%p) has "
1070 			    "no pvo entry!", pt);
1071 	}
1072 
1073 	/*
1074 	 * The victim should be not be a kernel PVO/PTE entry.
1075 	 */
1076 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1077 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1078 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1079 
1080 	/*
1081 	 * We are invalidating the TLB entry for the EA for the
1082 	 * we are replacing even though its valid; If we don't
1083 	 * we lose any ref/chg bit changes contained in the TLB
1084 	 * entry.
1085 	 */
1086 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1087 
1088 	/*
1089 	 * To enforce the PVO list ordering constraint that all
1090 	 * evicted entries should come before all valid entries,
1091 	 * move the source PVO to the tail of its list and the
1092 	 * victim PVO to the head of its list (which might not be
1093 	 * the same list, if the victim was using the secondary hash).
1094 	 */
1095 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1096 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1097 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1098 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1099 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1100 	pmap_pte_set(pt, &source_pvo->pvo_pte);
1101 	victim_pvo->pvo_pmap->pm_evictions++;
1102 	source_pvo->pvo_pmap->pm_evictions--;
1103 	PVO_WHERE(victim_pvo, SPILL_UNSET);
1104 	PVO_WHERE(source_pvo, SPILL_SET);
1105 
1106 	PVO_PTEGIDX_CLR(victim_pvo);
1107 	PVO_PTEGIDX_SET(source_pvo, i);
1108 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1109 	PMAPCOUNT(ptes_spilled);
1110 	PMAPCOUNT(ptes_evicted);
1111 	PMAPCOUNT(ptes_removed);
1112 
1113 	PMAP_PVO_CHECK(victim_pvo);
1114 	PMAP_PVO_CHECK(source_pvo);
1115 	return 1;
1116 }
1117 
1118 /*
1119  * Restrict given range to physical memory
1120  */
1121 void
1122 pmap_real_memory(paddr_t *start, psize_t *size)
1123 {
1124 	struct mem_region *mp;
1125 
1126 	for (mp = mem; mp->size; mp++) {
1127 		if (*start + *size > mp->start
1128 		    && *start < mp->start + mp->size) {
1129 			if (*start < mp->start) {
1130 				*size -= mp->start - *start;
1131 				*start = mp->start;
1132 			}
1133 			if (*start + *size > mp->start + mp->size)
1134 				*size = mp->start + mp->size - *start;
1135 			return;
1136 		}
1137 	}
1138 	*size = 0;
1139 }
1140 
1141 /*
1142  * Initialize anything else for pmap handling.
1143  * Called during vm_init().
1144  */
1145 void
1146 pmap_init(void)
1147 {
1148 #ifdef __HAVE_PMAP_PHYSSEG
1149 	struct pvo_tqhead *pvoh;
1150 	int bank;
1151 	long sz;
1152 	char *attr;
1153 
1154 	pvoh = pmap_physseg.pvoh;
1155 	attr = pmap_physseg.attrs;
1156 	for (bank = 0; bank < vm_nphysseg; bank++) {
1157 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
1158 		vm_physmem[bank].pmseg.pvoh = pvoh;
1159 		vm_physmem[bank].pmseg.attrs = attr;
1160 		for (; sz > 0; sz--, pvoh++, attr++) {
1161 			TAILQ_INIT(pvoh);
1162 			*attr = 0;
1163 		}
1164 	}
1165 #endif
1166 
1167 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1168 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1169 	    &pmap_pool_mallocator, IPL_NONE);
1170 
1171 	pool_setlowat(&pmap_mpvo_pool, 1008);
1172 
1173 	pmap_initialized = 1;
1174 
1175 }
1176 
1177 /*
1178  * How much virtual space does the kernel get?
1179  */
1180 void
1181 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1182 {
1183 	/*
1184 	 * For now, reserve one segment (minus some overhead) for kernel
1185 	 * virtual memory
1186 	 */
1187 	*start = VM_MIN_KERNEL_ADDRESS;
1188 	*end = VM_MAX_KERNEL_ADDRESS;
1189 }
1190 
1191 /*
1192  * Allocate, initialize, and return a new physical map.
1193  */
1194 pmap_t
1195 pmap_create(void)
1196 {
1197 	pmap_t pm;
1198 
1199 	pm = pool_get(&pmap_pool, PR_WAITOK);
1200 	memset((void *)pm, 0, sizeof *pm);
1201 	pmap_pinit(pm);
1202 
1203 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1204 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
1205 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
1206 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1207 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1208 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1209 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1210 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1211 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1212 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1213 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1214 	return pm;
1215 }
1216 
1217 /*
1218  * Initialize a preallocated and zeroed pmap structure.
1219  */
1220 void
1221 pmap_pinit(pmap_t pm)
1222 {
1223 	register_t entropy = MFTB();
1224 	register_t mask;
1225 	int i;
1226 
1227 	/*
1228 	 * Allocate some segment registers for this pmap.
1229 	 */
1230 	pm->pm_refs = 1;
1231 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1232 		static register_t pmap_vsidcontext;
1233 		register_t hash;
1234 		unsigned int n;
1235 
1236 		/* Create a new value by multiplying by a prime adding in
1237 		 * entropy from the timebase register.  This is to make the
1238 		 * VSID more random so that the PT Hash function collides
1239 		 * less often. (note that the prime causes gcc to do shifts
1240 		 * instead of a multiply)
1241 		 */
1242 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1243 		hash = pmap_vsidcontext & (NPMAPS - 1);
1244 		if (hash == 0) {		/* 0 is special, avoid it */
1245 			entropy += 0xbadf00d;
1246 			continue;
1247 		}
1248 		n = hash >> 5;
1249 		mask = 1L << (hash & (VSID_NBPW-1));
1250 		hash = pmap_vsidcontext;
1251 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1252 			/* anything free in this bucket? */
1253 			if (~pmap_vsid_bitmap[n] == 0) {
1254 				entropy = hash ^ (hash >> 16);
1255 				continue;
1256 			}
1257 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
1258 			mask = 1L << i;
1259 			hash &= ~(VSID_NBPW-1);
1260 			hash |= i;
1261 		}
1262 		hash &= PTE_VSID >> PTE_VSID_SHFT;
1263 		pmap_vsid_bitmap[n] |= mask;
1264 		pm->pm_vsid = hash;
1265 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1266 		for (i = 0; i < 16; i++)
1267 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1268 			    SR_NOEXEC;
1269 #endif
1270 		return;
1271 	}
1272 	panic("pmap_pinit: out of segments");
1273 }
1274 
1275 /*
1276  * Add a reference to the given pmap.
1277  */
1278 void
1279 pmap_reference(pmap_t pm)
1280 {
1281 	pm->pm_refs++;
1282 }
1283 
1284 /*
1285  * Retire the given pmap from service.
1286  * Should only be called if the map contains no valid mappings.
1287  */
1288 void
1289 pmap_destroy(pmap_t pm)
1290 {
1291 	if (--pm->pm_refs == 0) {
1292 		pmap_release(pm);
1293 		pool_put(&pmap_pool, pm);
1294 	}
1295 }
1296 
1297 /*
1298  * Release any resources held by the given physical map.
1299  * Called when a pmap initialized by pmap_pinit is being released.
1300  */
1301 void
1302 pmap_release(pmap_t pm)
1303 {
1304 	int idx, mask;
1305 
1306 	KASSERT(pm->pm_stats.resident_count == 0);
1307 	KASSERT(pm->pm_stats.wired_count == 0);
1308 
1309 	if (pm->pm_sr[0] == 0)
1310 		panic("pmap_release");
1311 	idx = pm->pm_vsid & (NPMAPS-1);
1312 	mask = 1 << (idx % VSID_NBPW);
1313 	idx /= VSID_NBPW;
1314 
1315 	KASSERT(pmap_vsid_bitmap[idx] & mask);
1316 	pmap_vsid_bitmap[idx] &= ~mask;
1317 }
1318 
1319 /*
1320  * Copy the range specified by src_addr/len
1321  * from the source map to the range dst_addr/len
1322  * in the destination map.
1323  *
1324  * This routine is only advisory and need not do anything.
1325  */
1326 void
1327 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1328 	vsize_t len, vaddr_t src_addr)
1329 {
1330 	PMAPCOUNT(copies);
1331 }
1332 
1333 /*
1334  * Require that all active physical maps contain no
1335  * incorrect entries NOW.
1336  */
1337 void
1338 pmap_update(struct pmap *pmap)
1339 {
1340 	PMAPCOUNT(updates);
1341 	TLBSYNC();
1342 }
1343 
1344 /*
1345  * Garbage collects the physical map system for
1346  * pages which are no longer used.
1347  * Success need not be guaranteed -- that is, there
1348  * may well be pages which are not referenced, but
1349  * others may be collected.
1350  * Called by the pageout daemon when pages are scarce.
1351  */
1352 void
1353 pmap_collect(pmap_t pm)
1354 {
1355 	PMAPCOUNT(collects);
1356 }
1357 
1358 static inline int
1359 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1360 {
1361 	int pteidx;
1362 	/*
1363 	 * We can find the actual pte entry without searching by
1364 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1365 	 * and by noticing the HID bit.
1366 	 */
1367 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1368 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1369 		pteidx ^= pmap_pteg_mask * 8;
1370 	return pteidx;
1371 }
1372 
1373 volatile struct pte *
1374 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1375 {
1376 	volatile struct pte *pt;
1377 
1378 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1379 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1380 		return NULL;
1381 #endif
1382 
1383 	/*
1384 	 * If we haven't been supplied the ptegidx, calculate it.
1385 	 */
1386 	if (pteidx == -1) {
1387 		int ptegidx;
1388 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1389 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1390 	}
1391 
1392 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1393 
1394 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1395 	return pt;
1396 #else
1397 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1398 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1399 		    "pvo but no valid pte index", pvo);
1400 	}
1401 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1402 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1403 		    "pvo but no valid pte", pvo);
1404 	}
1405 
1406 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1407 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1408 #if defined(DEBUG) || defined(PMAPCHECK)
1409 			pmap_pte_print(pt);
1410 #endif
1411 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1412 			    "pmap_pteg_table %p but invalid in pvo",
1413 			    pvo, pt);
1414 		}
1415 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1416 #if defined(DEBUG) || defined(PMAPCHECK)
1417 			pmap_pte_print(pt);
1418 #endif
1419 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1420 			    "not match pte %p in pmap_pteg_table",
1421 			    pvo, pt);
1422 		}
1423 		return pt;
1424 	}
1425 
1426 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1427 #if defined(DEBUG) || defined(PMAPCHECK)
1428 		pmap_pte_print(pt);
1429 #endif
1430 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1431 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1432 	}
1433 	return NULL;
1434 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1435 }
1436 
1437 struct pvo_entry *
1438 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1439 {
1440 	struct pvo_entry *pvo;
1441 	int ptegidx;
1442 
1443 	va &= ~ADDR_POFF;
1444 	ptegidx = va_to_pteg(pm, va);
1445 
1446 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1447 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1448 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1449 			panic("pmap_pvo_find_va: invalid pvo %p on "
1450 			    "list %#x (%p)", pvo, ptegidx,
1451 			     &pmap_pvo_table[ptegidx]);
1452 #endif
1453 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1454 			if (pteidx_p)
1455 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1456 			return pvo;
1457 		}
1458 	}
1459 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1460 		panic("%s: returning NULL for %s pmap, va: 0x%08lx\n", __func__,
1461 		(pm == pmap_kernel() ? "kernel" : "user"), va);
1462 	return NULL;
1463 }
1464 
1465 #if defined(DEBUG) || defined(PMAPCHECK)
1466 void
1467 pmap_pvo_check(const struct pvo_entry *pvo)
1468 {
1469 	struct pvo_head *pvo_head;
1470 	struct pvo_entry *pvo0;
1471 	volatile struct pte *pt;
1472 	int failed = 0;
1473 
1474 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1475 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1476 
1477 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1478 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1479 		    pvo, pvo->pvo_pmap);
1480 		failed = 1;
1481 	}
1482 
1483 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1484 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1485 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1486 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
1487 		failed = 1;
1488 	}
1489 
1490 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1491 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1492 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1493 		    pvo, LIST_NEXT(pvo, pvo_vlink));
1494 		failed = 1;
1495 	}
1496 
1497 	if (PVO_MANAGED_P(pvo)) {
1498 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1499 	} else {
1500 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1501 			printf("pmap_pvo_check: pvo %p: non kernel address "
1502 			    "on kernel unmanaged list\n", pvo);
1503 			failed = 1;
1504 		}
1505 		pvo_head = &pmap_pvo_kunmanaged;
1506 	}
1507 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1508 		if (pvo0 == pvo)
1509 			break;
1510 	}
1511 	if (pvo0 == NULL) {
1512 		printf("pmap_pvo_check: pvo %p: not present "
1513 		    "on its vlist head %p\n", pvo, pvo_head);
1514 		failed = 1;
1515 	}
1516 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1517 		printf("pmap_pvo_check: pvo %p: not present "
1518 		    "on its olist head\n", pvo);
1519 		failed = 1;
1520 	}
1521 	pt = pmap_pvo_to_pte(pvo, -1);
1522 	if (pt == NULL) {
1523 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1524 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1525 			    "no PTE\n", pvo);
1526 			failed = 1;
1527 		}
1528 	} else {
1529 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1530 		    (uintptr_t) pt >=
1531 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1532 			printf("pmap_pvo_check: pvo %p: pte %p not in "
1533 			    "pteg table\n", pvo, pt);
1534 			failed = 1;
1535 		}
1536 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1537 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1538 			    "no PTE\n", pvo);
1539 			failed = 1;
1540 		}
1541 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1542 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1543 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1544 			failed = 1;
1545 		}
1546 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1547 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1548 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1549 			    "%#x/%#x\n", pvo,
1550 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1551 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1552 			failed = 1;
1553 		}
1554 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1555 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1556 			    " doesn't not match PVO's VA %#lx\n",
1557 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1558 			failed = 1;
1559 		}
1560 		if (failed)
1561 			pmap_pte_print(pt);
1562 	}
1563 	if (failed)
1564 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1565 		    pvo->pvo_pmap);
1566 }
1567 #endif /* DEBUG || PMAPCHECK */
1568 
1569 /*
1570  * Search the PVO table looking for a non-wired entry.
1571  * If we find one, remove it and return it.
1572  */
1573 
1574 struct pvo_entry *
1575 pmap_pvo_reclaim(struct pmap *pm)
1576 {
1577 	struct pvo_tqhead *pvoh;
1578 	struct pvo_entry *pvo;
1579 	uint32_t idx, endidx;
1580 
1581 	endidx = pmap_pvo_reclaim_nextidx;
1582 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1583 	     idx = (idx + 1) & pmap_pteg_mask) {
1584 		pvoh = &pmap_pvo_table[idx];
1585 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1586 			if (!PVO_WIRED_P(pvo)) {
1587 				pmap_pvo_remove(pvo, -1, NULL);
1588 				pmap_pvo_reclaim_nextidx = idx;
1589 				PMAPCOUNT(pvos_reclaimed);
1590 				return pvo;
1591 			}
1592 		}
1593 	}
1594 	return NULL;
1595 }
1596 
1597 /*
1598  * This returns whether this is the first mapping of a page.
1599  */
1600 int
1601 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1602 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1603 {
1604 	struct pvo_entry *pvo;
1605 	struct pvo_tqhead *pvoh;
1606 	register_t msr;
1607 	int ptegidx;
1608 	int i;
1609 	int poolflags = PR_NOWAIT;
1610 
1611 	/*
1612 	 * Compute the PTE Group index.
1613 	 */
1614 	va &= ~ADDR_POFF;
1615 	ptegidx = va_to_pteg(pm, va);
1616 
1617 	msr = pmap_interrupts_off();
1618 
1619 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1620 	if (pmap_pvo_remove_depth > 0)
1621 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1622 	if (++pmap_pvo_enter_depth > 1)
1623 		panic("pmap_pvo_enter: called recursively!");
1624 #endif
1625 
1626 	/*
1627 	 * Remove any existing mapping for this page.  Reuse the
1628 	 * pvo entry if there a mapping.
1629 	 */
1630 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1631 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1632 #ifdef DEBUG
1633 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1634 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1635 			    ~(PTE_REF|PTE_CHG)) == 0 &&
1636 			   va < VM_MIN_KERNEL_ADDRESS) {
1637 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1638 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1639 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1640 				    (unsigned int) pvo->pvo_pte.pte_hi,
1641 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1642 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1643 #ifdef DDBX
1644 				Debugger();
1645 #endif
1646 			}
1647 #endif
1648 			PMAPCOUNT(mappings_replaced);
1649 			pmap_pvo_remove(pvo, -1, NULL);
1650 			break;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * If we aren't overwriting an mapping, try to allocate
1656 	 */
1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1658 	--pmap_pvo_enter_depth;
1659 #endif
1660 	pmap_interrupts_restore(msr);
1661 	if (pvo) {
1662 		pmap_pvo_free(pvo);
1663 	}
1664 	pvo = pool_get(pl, poolflags);
1665 
1666 #ifdef DEBUG
1667 	/*
1668 	 * Exercise pmap_pvo_reclaim() a little.
1669 	 */
1670 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1671 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1672 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1673 		pool_put(pl, pvo);
1674 		pvo = NULL;
1675 	}
1676 #endif
1677 
1678 	msr = pmap_interrupts_off();
1679 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1680 	++pmap_pvo_enter_depth;
1681 #endif
1682 	if (pvo == NULL) {
1683 		pvo = pmap_pvo_reclaim(pm);
1684 		if (pvo == NULL) {
1685 			if ((flags & PMAP_CANFAIL) == 0)
1686 				panic("pmap_pvo_enter: failed");
1687 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1688 			pmap_pvo_enter_depth--;
1689 #endif
1690 			PMAPCOUNT(pvos_failed);
1691 			pmap_interrupts_restore(msr);
1692 			return ENOMEM;
1693 		}
1694 	}
1695 
1696 	pvo->pvo_vaddr = va;
1697 	pvo->pvo_pmap = pm;
1698 	pvo->pvo_vaddr &= ~ADDR_POFF;
1699 	if (flags & VM_PROT_EXECUTE) {
1700 		PMAPCOUNT(exec_mappings);
1701 		pvo_set_exec(pvo);
1702 	}
1703 	if (flags & PMAP_WIRED)
1704 		pvo->pvo_vaddr |= PVO_WIRED;
1705 	if (pvo_head != &pmap_pvo_kunmanaged) {
1706 		pvo->pvo_vaddr |= PVO_MANAGED;
1707 		PMAPCOUNT(mappings);
1708 	} else {
1709 		PMAPCOUNT(kernel_mappings);
1710 	}
1711 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1712 
1713 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1714 	if (PVO_WIRED_P(pvo))
1715 		pvo->pvo_pmap->pm_stats.wired_count++;
1716 	pvo->pvo_pmap->pm_stats.resident_count++;
1717 #if defined(DEBUG)
1718 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1719 		DPRINTFN(PVOENTER,
1720 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1721 		    pvo, pm, va, pa));
1722 #endif
1723 
1724 	/*
1725 	 * We hope this succeeds but it isn't required.
1726 	 */
1727 	pvoh = &pmap_pvo_table[ptegidx];
1728 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1729 	if (i >= 0) {
1730 		PVO_PTEGIDX_SET(pvo, i);
1731 		PVO_WHERE(pvo, ENTER_INSERT);
1732 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1733 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1734 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1735 
1736 	} else {
1737 		/*
1738 		 * Since we didn't have room for this entry (which makes it
1739 		 * and evicted entry), place it at the head of the list.
1740 		 */
1741 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1742 		PMAPCOUNT(ptes_evicted);
1743 		pm->pm_evictions++;
1744 		/*
1745 		 * If this is a kernel page, make sure it's active.
1746 		 */
1747 		if (pm == pmap_kernel()) {
1748 			i = pmap_pte_spill(pm, va, false);
1749 			KASSERT(i);
1750 		}
1751 	}
1752 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1753 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1754 	pmap_pvo_enter_depth--;
1755 #endif
1756 	pmap_interrupts_restore(msr);
1757 	return 0;
1758 }
1759 
1760 void
1761 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1762 {
1763 	volatile struct pte *pt;
1764 	int ptegidx;
1765 
1766 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1767 	if (++pmap_pvo_remove_depth > 1)
1768 		panic("pmap_pvo_remove: called recursively!");
1769 #endif
1770 
1771 	/*
1772 	 * If we haven't been supplied the ptegidx, calculate it.
1773 	 */
1774 	if (pteidx == -1) {
1775 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1776 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1777 	} else {
1778 		ptegidx = pteidx >> 3;
1779 		if (pvo->pvo_pte.pte_hi & PTE_HID)
1780 			ptegidx ^= pmap_pteg_mask;
1781 	}
1782 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1783 
1784 	/*
1785 	 * If there is an active pte entry, we need to deactivate it
1786 	 * (and save the ref & chg bits).
1787 	 */
1788 	pt = pmap_pvo_to_pte(pvo, pteidx);
1789 	if (pt != NULL) {
1790 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1791 		PVO_WHERE(pvo, REMOVE);
1792 		PVO_PTEGIDX_CLR(pvo);
1793 		PMAPCOUNT(ptes_removed);
1794 	} else {
1795 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1796 		pvo->pvo_pmap->pm_evictions--;
1797 	}
1798 
1799 	/*
1800 	 * Account for executable mappings.
1801 	 */
1802 	if (PVO_EXECUTABLE_P(pvo))
1803 		pvo_clear_exec(pvo);
1804 
1805 	/*
1806 	 * Update our statistics.
1807 	 */
1808 	pvo->pvo_pmap->pm_stats.resident_count--;
1809 	if (PVO_WIRED_P(pvo))
1810 		pvo->pvo_pmap->pm_stats.wired_count--;
1811 
1812 	/*
1813 	 * Save the REF/CHG bits into their cache if the page is managed.
1814 	 */
1815 	if (PVO_MANAGED_P(pvo)) {
1816 		register_t ptelo = pvo->pvo_pte.pte_lo;
1817 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1818 
1819 		if (pg != NULL) {
1820 			/*
1821 			 * If this page was changed and it is mapped exec,
1822 			 * invalidate it.
1823 			 */
1824 			if ((ptelo & PTE_CHG) &&
1825 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
1826 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1827 				if (LIST_EMPTY(pvoh)) {
1828 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1829 					    "%#lx: clear-exec]\n",
1830 					    VM_PAGE_TO_PHYS(pg)));
1831 					pmap_attr_clear(pg, PTE_EXEC);
1832 					PMAPCOUNT(exec_uncached_pvo_remove);
1833 				} else {
1834 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1835 					    "%#lx: syncicache]\n",
1836 					    VM_PAGE_TO_PHYS(pg)));
1837 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1838 					    PAGE_SIZE);
1839 					PMAPCOUNT(exec_synced_pvo_remove);
1840 				}
1841 			}
1842 
1843 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1844 		}
1845 		PMAPCOUNT(unmappings);
1846 	} else {
1847 		PMAPCOUNT(kernel_unmappings);
1848 	}
1849 
1850 	/*
1851 	 * Remove the PVO from its lists and return it to the pool.
1852 	 */
1853 	LIST_REMOVE(pvo, pvo_vlink);
1854 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1855 	if (pvol) {
1856 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1857 	}
1858 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1859 	pmap_pvo_remove_depth--;
1860 #endif
1861 }
1862 
1863 void
1864 pmap_pvo_free(struct pvo_entry *pvo)
1865 {
1866 
1867 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1868 }
1869 
1870 void
1871 pmap_pvo_free_list(struct pvo_head *pvol)
1872 {
1873 	struct pvo_entry *pvo, *npvo;
1874 
1875 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1876 		npvo = LIST_NEXT(pvo, pvo_vlink);
1877 		LIST_REMOVE(pvo, pvo_vlink);
1878 		pmap_pvo_free(pvo);
1879 	}
1880 }
1881 
1882 /*
1883  * Mark a mapping as executable.
1884  * If this is the first executable mapping in the segment,
1885  * clear the noexec flag.
1886  */
1887 STATIC void
1888 pvo_set_exec(struct pvo_entry *pvo)
1889 {
1890 	struct pmap *pm = pvo->pvo_pmap;
1891 
1892 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1893 		return;
1894 	}
1895 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
1896 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1897 	{
1898 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1899 		if (pm->pm_exec[sr]++ == 0) {
1900 			pm->pm_sr[sr] &= ~SR_NOEXEC;
1901 		}
1902 	}
1903 #endif
1904 }
1905 
1906 /*
1907  * Mark a mapping as non-executable.
1908  * If this was the last executable mapping in the segment,
1909  * set the noexec flag.
1910  */
1911 STATIC void
1912 pvo_clear_exec(struct pvo_entry *pvo)
1913 {
1914 	struct pmap *pm = pvo->pvo_pmap;
1915 
1916 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1917 		return;
1918 	}
1919 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1920 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
1921 	{
1922 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1923 		if (--pm->pm_exec[sr] == 0) {
1924 			pm->pm_sr[sr] |= SR_NOEXEC;
1925 		}
1926 	}
1927 #endif
1928 }
1929 
1930 /*
1931  * Insert physical page at pa into the given pmap at virtual address va.
1932  */
1933 int
1934 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1935 {
1936 	struct mem_region *mp;
1937 	struct pvo_head *pvo_head;
1938 	struct vm_page *pg;
1939 	struct pool *pl;
1940 	register_t pte_lo;
1941 	int error;
1942 	u_int pvo_flags;
1943 	u_int was_exec = 0;
1944 
1945 	if (__predict_false(!pmap_initialized)) {
1946 		pvo_head = &pmap_pvo_kunmanaged;
1947 		pl = &pmap_upvo_pool;
1948 		pvo_flags = 0;
1949 		pg = NULL;
1950 		was_exec = PTE_EXEC;
1951 	} else {
1952 		pvo_head = pa_to_pvoh(pa, &pg);
1953 		pl = &pmap_mpvo_pool;
1954 		pvo_flags = PVO_MANAGED;
1955 	}
1956 
1957 	DPRINTFN(ENTER,
1958 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1959 	    pm, va, pa, prot, flags));
1960 
1961 	/*
1962 	 * If this is a managed page, and it's the first reference to the
1963 	 * page clear the execness of the page.  Otherwise fetch the execness.
1964 	 */
1965 	if (pg != NULL)
1966 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1967 
1968 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1969 
1970 	/*
1971 	 * Assume the page is cache inhibited and access is guarded unless
1972 	 * it's in our available memory array.  If it is in the memory array,
1973 	 * asssume it's in memory coherent memory.
1974 	 */
1975 	pte_lo = PTE_IG;
1976 	if ((flags & PMAP_NC) == 0) {
1977 		for (mp = mem; mp->size; mp++) {
1978 			if (pa >= mp->start && pa < mp->start + mp->size) {
1979 				pte_lo = PTE_M;
1980 				break;
1981 			}
1982 		}
1983 	}
1984 
1985 	if (prot & VM_PROT_WRITE)
1986 		pte_lo |= PTE_BW;
1987 	else
1988 		pte_lo |= PTE_BR;
1989 
1990 	/*
1991 	 * If this was in response to a fault, "pre-fault" the PTE's
1992 	 * changed/referenced bit appropriately.
1993 	 */
1994 	if (flags & VM_PROT_WRITE)
1995 		pte_lo |= PTE_CHG;
1996 	if (flags & VM_PROT_ALL)
1997 		pte_lo |= PTE_REF;
1998 
1999 	/*
2000 	 * We need to know if this page can be executable
2001 	 */
2002 	flags |= (prot & VM_PROT_EXECUTE);
2003 
2004 	/*
2005 	 * Record mapping for later back-translation and pte spilling.
2006 	 * This will overwrite any existing mapping.
2007 	 */
2008 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
2009 
2010 	/*
2011 	 * Flush the real page from the instruction cache if this page is
2012 	 * mapped executable and cacheable and has not been flushed since
2013 	 * the last time it was modified.
2014 	 */
2015 	if (error == 0 &&
2016             (flags & VM_PROT_EXECUTE) &&
2017             (pte_lo & PTE_I) == 0 &&
2018 	    was_exec == 0) {
2019 		DPRINTFN(ENTER, (" syncicache"));
2020 		PMAPCOUNT(exec_synced);
2021 		pmap_syncicache(pa, PAGE_SIZE);
2022 		if (pg != NULL) {
2023 			pmap_attr_save(pg, PTE_EXEC);
2024 			PMAPCOUNT(exec_cached);
2025 #if defined(DEBUG) || defined(PMAPDEBUG)
2026 			if (pmapdebug & PMAPDEBUG_ENTER)
2027 				printf(" marked-as-exec");
2028 			else if (pmapdebug & PMAPDEBUG_EXEC)
2029 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
2030 				    VM_PAGE_TO_PHYS(pg));
2031 
2032 #endif
2033 		}
2034 	}
2035 
2036 	DPRINTFN(ENTER, (": error=%d\n", error));
2037 
2038 	return error;
2039 }
2040 
2041 void
2042 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2043 {
2044 	struct mem_region *mp;
2045 	register_t pte_lo;
2046 	int error;
2047 
2048 #if defined (PPC_OEA64_BRIDGE)
2049 	if (va < VM_MIN_KERNEL_ADDRESS)
2050 		panic("pmap_kenter_pa: attempt to enter "
2051 		    "non-kernel address %#lx!", va);
2052 #endif
2053 
2054 	DPRINTFN(KENTER,
2055 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
2056 
2057 	/*
2058 	 * Assume the page is cache inhibited and access is guarded unless
2059 	 * it's in our available memory array.  If it is in the memory array,
2060 	 * asssume it's in memory coherent memory.
2061 	 */
2062 	pte_lo = PTE_IG;
2063 	if ((prot & PMAP_NC) == 0) {
2064 		for (mp = mem; mp->size; mp++) {
2065 			if (pa >= mp->start && pa < mp->start + mp->size) {
2066 				pte_lo = PTE_M;
2067 				break;
2068 			}
2069 		}
2070 	}
2071 
2072 	if (prot & VM_PROT_WRITE)
2073 		pte_lo |= PTE_BW;
2074 	else
2075 		pte_lo |= PTE_BR;
2076 
2077 	/*
2078 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
2079 	 */
2080 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2081 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2082 
2083 	if (error != 0)
2084 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
2085 		      va, pa, error);
2086 }
2087 
2088 void
2089 pmap_kremove(vaddr_t va, vsize_t len)
2090 {
2091 	if (va < VM_MIN_KERNEL_ADDRESS)
2092 		panic("pmap_kremove: attempt to remove "
2093 		    "non-kernel address %#lx!", va);
2094 
2095 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
2096 	pmap_remove(pmap_kernel(), va, va + len);
2097 }
2098 
2099 /*
2100  * Remove the given range of mapping entries.
2101  */
2102 void
2103 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2104 {
2105 	struct pvo_head pvol;
2106 	struct pvo_entry *pvo;
2107 	register_t msr;
2108 	int pteidx;
2109 
2110 	LIST_INIT(&pvol);
2111 	msr = pmap_interrupts_off();
2112 	for (; va < endva; va += PAGE_SIZE) {
2113 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2114 		if (pvo != NULL) {
2115 			pmap_pvo_remove(pvo, pteidx, &pvol);
2116 		}
2117 	}
2118 	pmap_interrupts_restore(msr);
2119 	pmap_pvo_free_list(&pvol);
2120 }
2121 
2122 /*
2123  * Get the physical page address for the given pmap/virtual address.
2124  */
2125 bool
2126 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2127 {
2128 	struct pvo_entry *pvo;
2129 	register_t msr;
2130 
2131 
2132 	/*
2133 	 * If this is a kernel pmap lookup, also check the battable
2134 	 * and if we get a hit, translate the VA to a PA using the
2135 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
2136 	 * that will wrap back to 0.
2137 	 */
2138 	if (pm == pmap_kernel() &&
2139 	    (va < VM_MIN_KERNEL_ADDRESS ||
2140 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2141 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2142 #if defined (PPC_OEA)
2143 		if ((MFPVR() >> 16) != MPC601) {
2144 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2145 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2146 				register_t batl =
2147 				    battable[va >> ADDR_SR_SHFT].batl;
2148 				register_t mask =
2149 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2150 				if (pap)
2151 					*pap = (batl & mask) | (va & ~mask);
2152 				return true;
2153 			}
2154 		} else {
2155 			register_t batu = battable[va >> 23].batu;
2156 			register_t batl = battable[va >> 23].batl;
2157 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2158 			if (BAT601_VALID_P(batl) &&
2159 			    BAT601_VA_MATCH_P(batu, batl, va)) {
2160 				register_t mask =
2161 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2162 				if (pap)
2163 					*pap = (batl & mask) | (va & ~mask);
2164 				return true;
2165 			} else if (SR601_VALID_P(sr) &&
2166 				   SR601_PA_MATCH_P(sr, va)) {
2167 				if (pap)
2168 					*pap = va;
2169 				return true;
2170 			}
2171 		}
2172 		return false;
2173 #elif defined (PPC_OEA64_BRIDGE)
2174 	panic("%s: pm: %s, va: 0x%08lx\n", __func__,
2175 		(pm == pmap_kernel() ? "kernel" : "user"), va);
2176 #elif defined (PPC_OEA64)
2177 #error PPC_OEA64 not supported
2178 #endif /* PPC_OEA */
2179 	}
2180 
2181 	msr = pmap_interrupts_off();
2182 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2183 	if (pvo != NULL) {
2184 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2185 		if (pap)
2186 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2187 			    | (va & ADDR_POFF);
2188 	}
2189 	pmap_interrupts_restore(msr);
2190 	return pvo != NULL;
2191 }
2192 
2193 /*
2194  * Lower the protection on the specified range of this pmap.
2195  */
2196 void
2197 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2198 {
2199 	struct pvo_entry *pvo;
2200 	volatile struct pte *pt;
2201 	register_t msr;
2202 	int pteidx;
2203 
2204 	/*
2205 	 * Since this routine only downgrades protection, we should
2206 	 * always be called with at least one bit not set.
2207 	 */
2208 	KASSERT(prot != VM_PROT_ALL);
2209 
2210 	/*
2211 	 * If there is no protection, this is equivalent to
2212 	 * remove the pmap from the pmap.
2213 	 */
2214 	if ((prot & VM_PROT_READ) == 0) {
2215 		pmap_remove(pm, va, endva);
2216 		return;
2217 	}
2218 
2219 	msr = pmap_interrupts_off();
2220 	for (; va < endva; va += PAGE_SIZE) {
2221 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2222 		if (pvo == NULL)
2223 			continue;
2224 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2225 
2226 		/*
2227 		 * Revoke executable if asked to do so.
2228 		 */
2229 		if ((prot & VM_PROT_EXECUTE) == 0)
2230 			pvo_clear_exec(pvo);
2231 
2232 #if 0
2233 		/*
2234 		 * If the page is already read-only, no change
2235 		 * needs to be made.
2236 		 */
2237 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2238 			continue;
2239 #endif
2240 		/*
2241 		 * Grab the PTE pointer before we diddle with
2242 		 * the cached PTE copy.
2243 		 */
2244 		pt = pmap_pvo_to_pte(pvo, pteidx);
2245 		/*
2246 		 * Change the protection of the page.
2247 		 */
2248 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2249 		pvo->pvo_pte.pte_lo |= PTE_BR;
2250 
2251 		/*
2252 		 * If the PVO is in the page table, update
2253 		 * that pte at well.
2254 		 */
2255 		if (pt != NULL) {
2256 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2257 			PVO_WHERE(pvo, PMAP_PROTECT);
2258 			PMAPCOUNT(ptes_changed);
2259 		}
2260 
2261 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2262 	}
2263 	pmap_interrupts_restore(msr);
2264 }
2265 
2266 void
2267 pmap_unwire(pmap_t pm, vaddr_t va)
2268 {
2269 	struct pvo_entry *pvo;
2270 	register_t msr;
2271 
2272 	msr = pmap_interrupts_off();
2273 	pvo = pmap_pvo_find_va(pm, va, NULL);
2274 	if (pvo != NULL) {
2275 		if (PVO_WIRED_P(pvo)) {
2276 			pvo->pvo_vaddr &= ~PVO_WIRED;
2277 			pm->pm_stats.wired_count--;
2278 		}
2279 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2280 	}
2281 	pmap_interrupts_restore(msr);
2282 }
2283 
2284 /*
2285  * Lower the protection on the specified physical page.
2286  */
2287 void
2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2289 {
2290 	struct pvo_head *pvo_head, pvol;
2291 	struct pvo_entry *pvo, *next_pvo;
2292 	volatile struct pte *pt;
2293 	register_t msr;
2294 
2295 	KASSERT(prot != VM_PROT_ALL);
2296 	LIST_INIT(&pvol);
2297 	msr = pmap_interrupts_off();
2298 
2299 	/*
2300 	 * When UVM reuses a page, it does a pmap_page_protect with
2301 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
2302 	 * since we know the page will have different contents.
2303 	 */
2304 	if ((prot & VM_PROT_READ) == 0) {
2305 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2306 		    VM_PAGE_TO_PHYS(pg)));
2307 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
2308 			PMAPCOUNT(exec_uncached_page_protect);
2309 			pmap_attr_clear(pg, PTE_EXEC);
2310 		}
2311 	}
2312 
2313 	pvo_head = vm_page_to_pvoh(pg);
2314 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2315 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2316 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2317 
2318 		/*
2319 		 * Downgrading to no mapping at all, we just remove the entry.
2320 		 */
2321 		if ((prot & VM_PROT_READ) == 0) {
2322 			pmap_pvo_remove(pvo, -1, &pvol);
2323 			continue;
2324 		}
2325 
2326 		/*
2327 		 * If EXEC permission is being revoked, just clear the
2328 		 * flag in the PVO.
2329 		 */
2330 		if ((prot & VM_PROT_EXECUTE) == 0)
2331 			pvo_clear_exec(pvo);
2332 
2333 		/*
2334 		 * If this entry is already RO, don't diddle with the
2335 		 * page table.
2336 		 */
2337 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2338 			PMAP_PVO_CHECK(pvo);
2339 			continue;
2340 		}
2341 
2342 		/*
2343 		 * Grab the PTE before the we diddle the bits so
2344 		 * pvo_to_pte can verify the pte contents are as
2345 		 * expected.
2346 		 */
2347 		pt = pmap_pvo_to_pte(pvo, -1);
2348 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2349 		pvo->pvo_pte.pte_lo |= PTE_BR;
2350 		if (pt != NULL) {
2351 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2352 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2353 			PMAPCOUNT(ptes_changed);
2354 		}
2355 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2356 	}
2357 	pmap_interrupts_restore(msr);
2358 	pmap_pvo_free_list(&pvol);
2359 }
2360 
2361 /*
2362  * Activate the address space for the specified process.  If the process
2363  * is the current process, load the new MMU context.
2364  */
2365 void
2366 pmap_activate(struct lwp *l)
2367 {
2368 	struct pcb *pcb = &l->l_addr->u_pcb;
2369 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2370 
2371 	DPRINTFN(ACTIVATE,
2372 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2373 
2374 	/*
2375 	 * XXX Normally performed in cpu_fork().
2376 	 */
2377 	pcb->pcb_pm = pmap;
2378 
2379 	/*
2380 	* In theory, the SR registers need only be valid on return
2381 	* to user space wait to do them there.
2382 	*/
2383 	if (l == curlwp) {
2384 		/* Store pointer to new current pmap. */
2385 		curpm = pmap;
2386 	}
2387 }
2388 
2389 /*
2390  * Deactivate the specified process's address space.
2391  */
2392 void
2393 pmap_deactivate(struct lwp *l)
2394 {
2395 }
2396 
2397 bool
2398 pmap_query_bit(struct vm_page *pg, int ptebit)
2399 {
2400 	struct pvo_entry *pvo;
2401 	volatile struct pte *pt;
2402 	register_t msr;
2403 
2404 	if (pmap_attr_fetch(pg) & ptebit)
2405 		return true;
2406 
2407 	msr = pmap_interrupts_off();
2408 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2409 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2410 		/*
2411 		 * See if we saved the bit off.  If so cache, it and return
2412 		 * success.
2413 		 */
2414 		if (pvo->pvo_pte.pte_lo & ptebit) {
2415 			pmap_attr_save(pg, ptebit);
2416 			PMAP_PVO_CHECK(pvo);		/* sanity check */
2417 			pmap_interrupts_restore(msr);
2418 			return true;
2419 		}
2420 	}
2421 	/*
2422 	 * No luck, now go thru the hard part of looking at the ptes
2423 	 * themselves.  Sync so any pending REF/CHG bits are flushed
2424 	 * to the PTEs.
2425 	 */
2426 	SYNC();
2427 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2428 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2429 		/*
2430 		 * See if this pvo have a valid PTE.  If so, fetch the
2431 		 * REF/CHG bits from the valid PTE.  If the appropriate
2432 		 * ptebit is set, cache, it and return success.
2433 		 */
2434 		pt = pmap_pvo_to_pte(pvo, -1);
2435 		if (pt != NULL) {
2436 			pmap_pte_synch(pt, &pvo->pvo_pte);
2437 			if (pvo->pvo_pte.pte_lo & ptebit) {
2438 				pmap_attr_save(pg, ptebit);
2439 				PMAP_PVO_CHECK(pvo);		/* sanity check */
2440 				pmap_interrupts_restore(msr);
2441 				return true;
2442 			}
2443 		}
2444 	}
2445 	pmap_interrupts_restore(msr);
2446 	return false;
2447 }
2448 
2449 bool
2450 pmap_clear_bit(struct vm_page *pg, int ptebit)
2451 {
2452 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2453 	struct pvo_entry *pvo;
2454 	volatile struct pte *pt;
2455 	register_t msr;
2456 	int rv = 0;
2457 
2458 	msr = pmap_interrupts_off();
2459 
2460 	/*
2461 	 * Fetch the cache value
2462 	 */
2463 	rv |= pmap_attr_fetch(pg);
2464 
2465 	/*
2466 	 * Clear the cached value.
2467 	 */
2468 	pmap_attr_clear(pg, ptebit);
2469 
2470 	/*
2471 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2472 	 * can reset the right ones).  Note that since the pvo entries and
2473 	 * list heads are accessed via BAT0 and are never placed in the
2474 	 * page table, we don't have to worry about further accesses setting
2475 	 * the REF/CHG bits.
2476 	 */
2477 	SYNC();
2478 
2479 	/*
2480 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
2481 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
2482 	 */
2483 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2484 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2485 		pt = pmap_pvo_to_pte(pvo, -1);
2486 		if (pt != NULL) {
2487 			/*
2488 			 * Only sync the PTE if the bit we are looking
2489 			 * for is not already set.
2490 			 */
2491 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2492 				pmap_pte_synch(pt, &pvo->pvo_pte);
2493 			/*
2494 			 * If the bit we are looking for was already set,
2495 			 * clear that bit in the pte.
2496 			 */
2497 			if (pvo->pvo_pte.pte_lo & ptebit)
2498 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2499 		}
2500 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2501 		pvo->pvo_pte.pte_lo &= ~ptebit;
2502 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2503 	}
2504 	pmap_interrupts_restore(msr);
2505 
2506 	/*
2507 	 * If we are clearing the modify bit and this page was marked EXEC
2508 	 * and the user of the page thinks the page was modified, then we
2509 	 * need to clean it from the icache if it's mapped or clear the EXEC
2510 	 * bit if it's not mapped.  The page itself might not have the CHG
2511 	 * bit set if the modification was done via DMA to the page.
2512 	 */
2513 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2514 		if (LIST_EMPTY(pvoh)) {
2515 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2516 			    VM_PAGE_TO_PHYS(pg)));
2517 			pmap_attr_clear(pg, PTE_EXEC);
2518 			PMAPCOUNT(exec_uncached_clear_modify);
2519 		} else {
2520 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2521 			    VM_PAGE_TO_PHYS(pg)));
2522 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2523 			PMAPCOUNT(exec_synced_clear_modify);
2524 		}
2525 	}
2526 	return (rv & ptebit) != 0;
2527 }
2528 
2529 void
2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2531 {
2532 	struct pvo_entry *pvo;
2533 	size_t offset = va & ADDR_POFF;
2534 	int s;
2535 
2536 	s = splvm();
2537 	while (len > 0) {
2538 		size_t seglen = PAGE_SIZE - offset;
2539 		if (seglen > len)
2540 			seglen = len;
2541 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2542 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2543 			pmap_syncicache(
2544 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2545 			PMAP_PVO_CHECK(pvo);
2546 		}
2547 		va += seglen;
2548 		len -= seglen;
2549 		offset = 0;
2550 	}
2551 	splx(s);
2552 }
2553 
2554 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2555 void
2556 pmap_pte_print(volatile struct pte *pt)
2557 {
2558 	printf("PTE %p: ", pt);
2559 
2560 #if defined(PPC_OEA)
2561 	/* High word: */
2562 	printf("0x%08lx: [", pt->pte_hi);
2563 #elif defined (PPC_OEA64_BRIDGE)
2564 	printf("0x%016llx: [", pt->pte_hi);
2565 #else /* PPC_OEA64 */
2566 	printf("0x%016lx: [", pt->pte_hi);
2567 #endif /* PPC_OEA */
2568 
2569 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2570 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2571 
2572 #if defined (PPC_OEA)
2573 	printf("0x%06lx 0x%02lx",
2574 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2575 	    pt->pte_hi & PTE_API);
2576 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2577 #elif defined (PPC_OEA64)
2578 	printf("0x%06lx 0x%02lx",
2579 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2580 	    pt->pte_hi & PTE_API);
2581 	printf(" (va 0x%016lx)] ", pmap_pte_to_va(pt));
2582 #else
2583 	/* PPC_OEA64_BRIDGE */
2584 	printf("0x%06llx 0x%02llx",
2585 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2586 	    pt->pte_hi & PTE_API);
2587 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2588 #endif /* PPC_OEA */
2589 
2590 	/* Low word: */
2591 #if defined (PPC_OEA)
2592 	printf(" 0x%08lx: [", pt->pte_lo);
2593 	printf("0x%05lx... ", pt->pte_lo >> 12);
2594 #elif defined (PPC_OEA64)
2595 	printf(" 0x%016lx: [", pt->pte_lo);
2596 	printf("0x%012lx... ", pt->pte_lo >> 12);
2597 #else	/* PPC_OEA64_BRIDGE */
2598 	printf(" 0x%016llx: [", pt->pte_lo);
2599 	printf("0x%012llx... ", pt->pte_lo >> 12);
2600 #endif
2601 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2602 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2603 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2604 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2605 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2606 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2607 	switch (pt->pte_lo & PTE_PP) {
2608 	case PTE_BR: printf("br]\n"); break;
2609 	case PTE_BW: printf("bw]\n"); break;
2610 	case PTE_SO: printf("so]\n"); break;
2611 	case PTE_SW: printf("sw]\n"); break;
2612 	}
2613 }
2614 #endif
2615 
2616 #if defined(DDB)
2617 void
2618 pmap_pteg_check(void)
2619 {
2620 	volatile struct pte *pt;
2621 	int i;
2622 	int ptegidx;
2623 	u_int p_valid = 0;
2624 	u_int s_valid = 0;
2625 	u_int invalid = 0;
2626 
2627 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2628 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2629 			if (pt->pte_hi & PTE_VALID) {
2630 				if (pt->pte_hi & PTE_HID)
2631 					s_valid++;
2632 				else
2633 				{
2634 					p_valid++;
2635 				}
2636 			} else
2637 				invalid++;
2638 		}
2639 	}
2640 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2641 		p_valid, p_valid, s_valid, s_valid,
2642 		invalid, invalid);
2643 }
2644 
2645 void
2646 pmap_print_mmuregs(void)
2647 {
2648 	int i;
2649 	u_int cpuvers;
2650 #ifndef PPC_OEA64
2651 	vaddr_t addr;
2652 	register_t soft_sr[16];
2653 #endif
2654 #if defined (PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2655 	struct bat soft_ibat[4];
2656 	struct bat soft_dbat[4];
2657 #endif
2658 	register_t sdr1;
2659 
2660 	cpuvers = MFPVR() >> 16;
2661 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2662 #ifndef PPC_OEA64
2663 	addr = 0;
2664 	for (i = 0; i < 16; i++) {
2665 		soft_sr[i] = MFSRIN(addr);
2666 		addr += (1 << ADDR_SR_SHFT);
2667 	}
2668 #endif
2669 
2670 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2671 	/* read iBAT (601: uBAT) registers */
2672 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2673 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2674 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2675 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2676 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2677 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2678 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2679 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2680 
2681 
2682 	if (cpuvers != MPC601) {
2683 		/* read dBAT registers */
2684 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2685 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2686 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2687 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2688 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2689 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2690 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2691 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2692 	}
2693 #endif
2694 
2695 	printf("SDR1:\t0x%lx\n", (long) sdr1);
2696 #ifndef PPC_OEA64
2697 	printf("SR[]:\t");
2698 	for (i = 0; i < 4; i++)
2699 		printf("0x%08lx,   ", (long) soft_sr[i]);
2700 	printf("\n\t");
2701 	for ( ; i < 8; i++)
2702 		printf("0x%08lx,   ", (long) soft_sr[i]);
2703 	printf("\n\t");
2704 	for ( ; i < 12; i++)
2705 		printf("0x%08lx,   ", (long) soft_sr[i]);
2706 	printf("\n\t");
2707 	for ( ; i < 16; i++)
2708 		printf("0x%08lx,   ", (long) soft_sr[i]);
2709 	printf("\n");
2710 #endif
2711 
2712 #if defined(PPC_OEA) && !defined (PPC_OEA64) && !defined (PPC_OEA64_BRIDGE)
2713 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2714 	for (i = 0; i < 4; i++) {
2715 		printf("0x%08lx 0x%08lx, ",
2716 			soft_ibat[i].batu, soft_ibat[i].batl);
2717 		if (i == 1)
2718 			printf("\n\t");
2719 	}
2720 	if (cpuvers != MPC601) {
2721 		printf("\ndBAT[]:\t");
2722 		for (i = 0; i < 4; i++) {
2723 			printf("0x%08lx 0x%08lx, ",
2724 				soft_dbat[i].batu, soft_dbat[i].batl);
2725 			if (i == 1)
2726 				printf("\n\t");
2727 		}
2728 	}
2729 	printf("\n");
2730 #endif /* PPC_OEA... */
2731 }
2732 
2733 void
2734 pmap_print_pte(pmap_t pm, vaddr_t va)
2735 {
2736 	struct pvo_entry *pvo;
2737 	volatile struct pte *pt;
2738 	int pteidx;
2739 
2740 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
2741 	if (pvo != NULL) {
2742 		pt = pmap_pvo_to_pte(pvo, pteidx);
2743 		if (pt != NULL) {
2744 #if defined (PPC_OEA) || defined (PPC_OEA64)
2745 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2746 				va, pt,
2747 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2748 				pt->pte_hi, pt->pte_lo);
2749 #else	/* PPC_OEA64_BRIDGE */
2750 			printf("VA %#lx -> %p -> %s %#llx, %#llx\n",
2751 				va, pt,
2752 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2753 				pt->pte_hi, pt->pte_lo);
2754 #endif
2755 		} else {
2756 			printf("No valid PTE found\n");
2757 		}
2758 	} else {
2759 		printf("Address not in pmap\n");
2760 	}
2761 }
2762 
2763 void
2764 pmap_pteg_dist(void)
2765 {
2766 	struct pvo_entry *pvo;
2767 	int ptegidx;
2768 	int depth;
2769 	int max_depth = 0;
2770 	unsigned int depths[64];
2771 
2772 	memset(depths, 0, sizeof(depths));
2773 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2774 		depth = 0;
2775 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2776 			depth++;
2777 		}
2778 		if (depth > max_depth)
2779 			max_depth = depth;
2780 		if (depth > 63)
2781 			depth = 63;
2782 		depths[depth]++;
2783 	}
2784 
2785 	for (depth = 0; depth < 64; depth++) {
2786 		printf("  [%2d]: %8u", depth, depths[depth]);
2787 		if ((depth & 3) == 3)
2788 			printf("\n");
2789 		if (depth == max_depth)
2790 			break;
2791 	}
2792 	if ((depth & 3) != 3)
2793 		printf("\n");
2794 	printf("Max depth found was %d\n", max_depth);
2795 }
2796 #endif /* DEBUG */
2797 
2798 #if defined(PMAPCHECK) || defined(DEBUG)
2799 void
2800 pmap_pvo_verify(void)
2801 {
2802 	int ptegidx;
2803 	int s;
2804 
2805 	s = splvm();
2806 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2807 		struct pvo_entry *pvo;
2808 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2809 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2810 				panic("pmap_pvo_verify: invalid pvo %p "
2811 				    "on list %#x", pvo, ptegidx);
2812 			pmap_pvo_check(pvo);
2813 		}
2814 	}
2815 	splx(s);
2816 }
2817 #endif /* PMAPCHECK */
2818 
2819 
2820 void *
2821 pmap_pool_ualloc(struct pool *pp, int flags)
2822 {
2823 	struct pvo_page *pvop;
2824 
2825 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2826 	if (pvop != NULL) {
2827 		pmap_upvop_free--;
2828 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2829 		return pvop;
2830 	}
2831 	if (uvm.page_init_done != true) {
2832 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2833 	}
2834 	return pmap_pool_malloc(pp, flags);
2835 }
2836 
2837 void *
2838 pmap_pool_malloc(struct pool *pp, int flags)
2839 {
2840 	struct pvo_page *pvop;
2841 	struct vm_page *pg;
2842 
2843 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2844 	if (pvop != NULL) {
2845 		pmap_mpvop_free--;
2846 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2847 		return pvop;
2848 	}
2849  again:
2850 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2851 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2852 	if (__predict_false(pg == NULL)) {
2853 		if (flags & PR_WAITOK) {
2854 			uvm_wait("plpg");
2855 			goto again;
2856 		} else {
2857 			return (0);
2858 		}
2859 	}
2860 	return (void *) VM_PAGE_TO_PHYS(pg);
2861 }
2862 
2863 void
2864 pmap_pool_ufree(struct pool *pp, void *va)
2865 {
2866 	struct pvo_page *pvop;
2867 #if 0
2868 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2869 		pmap_pool_mfree(va, size, tag);
2870 		return;
2871 	}
2872 #endif
2873 	pvop = va;
2874 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2875 	pmap_upvop_free++;
2876 	if (pmap_upvop_free > pmap_upvop_maxfree)
2877 		pmap_upvop_maxfree = pmap_upvop_free;
2878 }
2879 
2880 void
2881 pmap_pool_mfree(struct pool *pp, void *va)
2882 {
2883 	struct pvo_page *pvop;
2884 
2885 	pvop = va;
2886 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2887 	pmap_mpvop_free++;
2888 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
2889 		pmap_mpvop_maxfree = pmap_mpvop_free;
2890 #if 0
2891 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2892 #endif
2893 }
2894 
2895 /*
2896  * This routine in bootstraping to steal to-be-managed memory (which will
2897  * then be unmanaged).  We use it to grab from the first 256MB for our
2898  * pmap needs and above 256MB for other stuff.
2899  */
2900 vaddr_t
2901 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2902 {
2903 	vsize_t size;
2904 	vaddr_t va;
2905 	paddr_t pa = 0;
2906 	int npgs, bank;
2907 	struct vm_physseg *ps;
2908 
2909 	if (uvm.page_init_done == true)
2910 		panic("pmap_steal_memory: called _after_ bootstrap");
2911 
2912 	*vstartp = VM_MIN_KERNEL_ADDRESS;
2913 	*vendp = VM_MAX_KERNEL_ADDRESS;
2914 
2915 	size = round_page(vsize);
2916 	npgs = atop(size);
2917 
2918 	/*
2919 	 * PA 0 will never be among those given to UVM so we can use it
2920 	 * to indicate we couldn't steal any memory.
2921 	 */
2922 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2923 		if (ps->free_list == VM_FREELIST_FIRST256 &&
2924 		    ps->avail_end - ps->avail_start >= npgs) {
2925 			pa = ptoa(ps->avail_start);
2926 			break;
2927 		}
2928 	}
2929 
2930 	if (pa == 0)
2931 		panic("pmap_steal_memory: no approriate memory to steal!");
2932 
2933 	ps->avail_start += npgs;
2934 	ps->start += npgs;
2935 
2936 	/*
2937 	 * If we've used up all the pages in the segment, remove it and
2938 	 * compact the list.
2939 	 */
2940 	if (ps->avail_start == ps->end) {
2941 		/*
2942 		 * If this was the last one, then a very bad thing has occurred
2943 		 */
2944 		if (--vm_nphysseg == 0)
2945 			panic("pmap_steal_memory: out of memory!");
2946 
2947 		printf("pmap_steal_memory: consumed bank %d\n", bank);
2948 		for (; bank < vm_nphysseg; bank++, ps++) {
2949 			ps[0] = ps[1];
2950 		}
2951 	}
2952 
2953 	va = (vaddr_t) pa;
2954 	memset((void *) va, 0, size);
2955 	pmap_pages_stolen += npgs;
2956 #ifdef DEBUG
2957 	if (pmapdebug && npgs > 1) {
2958 		u_int cnt = 0;
2959 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2960 			cnt += ps->avail_end - ps->avail_start;
2961 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2962 		    npgs, pmap_pages_stolen, cnt);
2963 	}
2964 #endif
2965 
2966 	return va;
2967 }
2968 
2969 /*
2970  * Find a chuck of memory with right size and alignment.
2971  */
2972 void *
2973 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2974 {
2975 	struct mem_region *mp;
2976 	paddr_t s, e;
2977 	int i, j;
2978 
2979 	size = round_page(size);
2980 
2981 	DPRINTFN(BOOT,
2982 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2983 	    size, alignment, at_end));
2984 
2985 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2986 		panic("pmap_boot_find_memory: invalid alignment %lx",
2987 		    alignment);
2988 
2989 	if (at_end) {
2990 		if (alignment != PAGE_SIZE)
2991 			panic("pmap_boot_find_memory: invalid ending "
2992 			    "alignment %lx", alignment);
2993 
2994 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2995 			s = mp->start + mp->size - size;
2996 			if (s >= mp->start && mp->size >= size) {
2997 				DPRINTFN(BOOT,(": %lx\n", s));
2998 				DPRINTFN(BOOT,
2999 				    ("pmap_boot_find_memory: b-avail[%d] start "
3000 				     "0x%lx size 0x%lx\n", mp - avail,
3001 				     mp->start, mp->size));
3002 				mp->size -= size;
3003 				DPRINTFN(BOOT,
3004 				    ("pmap_boot_find_memory: a-avail[%d] start "
3005 				     "0x%lx size 0x%lx\n", mp - avail,
3006 				     mp->start, mp->size));
3007 				return (void *) s;
3008 			}
3009 		}
3010 		panic("pmap_boot_find_memory: no available memory");
3011 	}
3012 
3013 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3014 		s = (mp->start + alignment - 1) & ~(alignment-1);
3015 		e = s + size;
3016 
3017 		/*
3018 		 * Is the calculated region entirely within the region?
3019 		 */
3020 		if (s < mp->start || e > mp->start + mp->size)
3021 			continue;
3022 
3023 		DPRINTFN(BOOT,(": %lx\n", s));
3024 		if (s == mp->start) {
3025 			/*
3026 			 * If the block starts at the beginning of region,
3027 			 * adjust the size & start. (the region may now be
3028 			 * zero in length)
3029 			 */
3030 			DPRINTFN(BOOT,
3031 			    ("pmap_boot_find_memory: b-avail[%d] start "
3032 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3033 			mp->start += size;
3034 			mp->size -= size;
3035 			DPRINTFN(BOOT,
3036 			    ("pmap_boot_find_memory: a-avail[%d] start "
3037 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3038 		} else if (e == mp->start + mp->size) {
3039 			/*
3040 			 * If the block starts at the beginning of region,
3041 			 * adjust only the size.
3042 			 */
3043 			DPRINTFN(BOOT,
3044 			    ("pmap_boot_find_memory: b-avail[%d] start "
3045 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3046 			mp->size -= size;
3047 			DPRINTFN(BOOT,
3048 			    ("pmap_boot_find_memory: a-avail[%d] start "
3049 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3050 		} else {
3051 			/*
3052 			 * Block is in the middle of the region, so we
3053 			 * have to split it in two.
3054 			 */
3055 			for (j = avail_cnt; j > i + 1; j--) {
3056 				avail[j] = avail[j-1];
3057 			}
3058 			DPRINTFN(BOOT,
3059 			    ("pmap_boot_find_memory: b-avail[%d] start "
3060 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
3061 			mp[1].start = e;
3062 			mp[1].size = mp[0].start + mp[0].size - e;
3063 			mp[0].size = s - mp[0].start;
3064 			avail_cnt++;
3065 			for (; i < avail_cnt; i++) {
3066 				DPRINTFN(BOOT,
3067 				    ("pmap_boot_find_memory: a-avail[%d] "
3068 				     "start 0x%lx size 0x%lx\n", i,
3069 				     avail[i].start, avail[i].size));
3070 			}
3071 		}
3072 		return (void *) s;
3073 	}
3074 	panic("pmap_boot_find_memory: not enough memory for "
3075 	    "%lx/%lx allocation?", size, alignment);
3076 }
3077 
3078 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3079 #if defined (PPC_OEA64_BRIDGE)
3080 int
3081 pmap_setup_segment0_map(int use_large_pages, ...)
3082 {
3083     vaddr_t va;
3084 
3085     register_t pte_lo = 0x0;
3086     int ptegidx = 0, i = 0;
3087     struct pte pte;
3088     va_list ap;
3089 
3090     /* Coherent + Supervisor RW, no user access */
3091     pte_lo = PTE_M;
3092 
3093     /* XXXSL
3094      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3095      * these have to take priority.
3096      */
3097     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3098         ptegidx = va_to_pteg(pmap_kernel(), va);
3099         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3100         i = pmap_pte_insert(ptegidx, &pte);
3101     }
3102 
3103     va_start(ap, use_large_pages);
3104     while (1) {
3105         paddr_t pa;
3106         size_t size;
3107 
3108         va = va_arg(ap, vaddr_t);
3109 
3110         if (va == 0)
3111             break;
3112 
3113         pa = va_arg(ap, paddr_t);
3114         size = va_arg(ap, size_t);
3115 
3116         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3117 #if 0
3118 	    printf("%s: Inserting: va: 0x%08lx, pa: 0x%08lx\n", __func__,  va, pa);
3119 #endif
3120             ptegidx = va_to_pteg(pmap_kernel(), va);
3121             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3122             i = pmap_pte_insert(ptegidx, &pte);
3123         }
3124     }
3125 
3126     TLBSYNC();
3127     SYNC();
3128     return (0);
3129 }
3130 #endif /* PPC_OEA64_BRIDGE */
3131 
3132 /*
3133  * This is not part of the defined PMAP interface and is specific to the
3134  * PowerPC architecture.  This is called during initppc, before the system
3135  * is really initialized.
3136  */
3137 void
3138 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3139 {
3140 	struct mem_region *mp, tmp;
3141 	paddr_t s, e;
3142 	psize_t size;
3143 	int i, j;
3144 
3145 	/*
3146 	 * Get memory.
3147 	 */
3148 	mem_regions(&mem, &avail);
3149 #if defined(DEBUG)
3150 	if (pmapdebug & PMAPDEBUG_BOOT) {
3151 		printf("pmap_bootstrap: memory configuration:\n");
3152 		for (mp = mem; mp->size; mp++) {
3153 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
3154 				mp->start, mp->size);
3155 		}
3156 		for (mp = avail; mp->size; mp++) {
3157 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
3158 				mp->start, mp->size);
3159 		}
3160 	}
3161 #endif
3162 
3163 	/*
3164 	 * Find out how much physical memory we have and in how many chunks.
3165 	 */
3166 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3167 		if (mp->start >= pmap_memlimit)
3168 			continue;
3169 		if (mp->start + mp->size > pmap_memlimit) {
3170 			size = pmap_memlimit - mp->start;
3171 			physmem += btoc(size);
3172 		} else {
3173 			physmem += btoc(mp->size);
3174 		}
3175 		mem_cnt++;
3176 	}
3177 
3178 	/*
3179 	 * Count the number of available entries.
3180 	 */
3181 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
3182 		avail_cnt++;
3183 
3184 	/*
3185 	 * Page align all regions.
3186 	 */
3187 	kernelstart = trunc_page(kernelstart);
3188 	kernelend = round_page(kernelend);
3189 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3190 		s = round_page(mp->start);
3191 		mp->size -= (s - mp->start);
3192 		mp->size = trunc_page(mp->size);
3193 		mp->start = s;
3194 		e = mp->start + mp->size;
3195 
3196 		DPRINTFN(BOOT,
3197 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
3198 		    i, mp->start, mp->size));
3199 
3200 		/*
3201 		 * Don't allow the end to run beyond our artificial limit
3202 		 */
3203 		if (e > pmap_memlimit)
3204 			e = pmap_memlimit;
3205 
3206 		/*
3207 		 * Is this region empty or strange?  skip it.
3208 		 */
3209 		if (e <= s) {
3210 			mp->start = 0;
3211 			mp->size = 0;
3212 			continue;
3213 		}
3214 
3215 		/*
3216 		 * Does this overlap the beginning of kernel?
3217 		 *   Does extend past the end of the kernel?
3218 		 */
3219 		else if (s < kernelstart && e > kernelstart) {
3220 			if (e > kernelend) {
3221 				avail[avail_cnt].start = kernelend;
3222 				avail[avail_cnt].size = e - kernelend;
3223 				avail_cnt++;
3224 			}
3225 			mp->size = kernelstart - s;
3226 		}
3227 		/*
3228 		 * Check whether this region overlaps the end of the kernel.
3229 		 */
3230 		else if (s < kernelend && e > kernelend) {
3231 			mp->start = kernelend;
3232 			mp->size = e - kernelend;
3233 		}
3234 		/*
3235 		 * Look whether this regions is completely inside the kernel.
3236 		 * Nuke it if it does.
3237 		 */
3238 		else if (s >= kernelstart && e <= kernelend) {
3239 			mp->start = 0;
3240 			mp->size = 0;
3241 		}
3242 		/*
3243 		 * If the user imposed a memory limit, enforce it.
3244 		 */
3245 		else if (s >= pmap_memlimit) {
3246 			mp->start = -PAGE_SIZE;	/* let's know why */
3247 			mp->size = 0;
3248 		}
3249 		else {
3250 			mp->start = s;
3251 			mp->size = e - s;
3252 		}
3253 		DPRINTFN(BOOT,
3254 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3255 		    i, mp->start, mp->size));
3256 	}
3257 
3258 	/*
3259 	 * Move (and uncount) all the null return to the end.
3260 	 */
3261 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3262 		if (mp->size == 0) {
3263 			tmp = avail[i];
3264 			avail[i] = avail[--avail_cnt];
3265 			avail[avail_cnt] = avail[i];
3266 		}
3267 	}
3268 
3269 	/*
3270 	 * (Bubble)sort them into asecnding order.
3271 	 */
3272 	for (i = 0; i < avail_cnt; i++) {
3273 		for (j = i + 1; j < avail_cnt; j++) {
3274 			if (avail[i].start > avail[j].start) {
3275 				tmp = avail[i];
3276 				avail[i] = avail[j];
3277 				avail[j] = tmp;
3278 			}
3279 		}
3280 	}
3281 
3282 	/*
3283 	 * Make sure they don't overlap.
3284 	 */
3285 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3286 		if (mp[0].start + mp[0].size > mp[1].start) {
3287 			mp[0].size = mp[1].start - mp[0].start;
3288 		}
3289 		DPRINTFN(BOOT,
3290 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3291 		    i, mp->start, mp->size));
3292 	}
3293 	DPRINTFN(BOOT,
3294 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3295 	    i, mp->start, mp->size));
3296 
3297 #ifdef	PTEGCOUNT
3298 	pmap_pteg_cnt = PTEGCOUNT;
3299 #else /* PTEGCOUNT */
3300 
3301 	pmap_pteg_cnt = 0x1000;
3302 
3303 	while (pmap_pteg_cnt < physmem)
3304 		pmap_pteg_cnt <<= 1;
3305 
3306 	pmap_pteg_cnt >>= 1;
3307 #endif /* PTEGCOUNT */
3308 
3309 #ifdef DEBUG
3310 	DPRINTFN(BOOT,
3311 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3312 #endif
3313 
3314 	/*
3315 	 * Find suitably aligned memory for PTEG hash table.
3316 	 */
3317 	size = pmap_pteg_cnt * sizeof(struct pteg);
3318 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3319 
3320 #ifdef DEBUG
3321 	DPRINTFN(BOOT,
3322 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3323 #endif
3324 
3325 
3326 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3327 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3328 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3329 		    pmap_pteg_table, size);
3330 #endif
3331 
3332 	memset(__UNVOLATILE(pmap_pteg_table), 0,
3333 		pmap_pteg_cnt * sizeof(struct pteg));
3334 	pmap_pteg_mask = pmap_pteg_cnt - 1;
3335 
3336 	/*
3337 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3338 	 * with pages.  So we just steal them before giving them to UVM.
3339 	 */
3340 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3341 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3342 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3343 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3344 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3345 		    pmap_pvo_table, size);
3346 #endif
3347 
3348 	for (i = 0; i < pmap_pteg_cnt; i++)
3349 		TAILQ_INIT(&pmap_pvo_table[i]);
3350 
3351 #ifndef MSGBUFADDR
3352 	/*
3353 	 * Allocate msgbuf in high memory.
3354 	 */
3355 	msgbuf_paddr =
3356 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3357 #endif
3358 
3359 #ifdef __HAVE_PMAP_PHYSSEG
3360 	{
3361 		u_int npgs = 0;
3362 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3363 			npgs += btoc(mp->size);
3364 		size = (sizeof(struct pvo_head) + 1) * npgs;
3365 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3366 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3367 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3368 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3369 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3370 			    pmap_physseg.pvoh, size);
3371 #endif
3372 	}
3373 #endif
3374 
3375 
3376 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3377 		paddr_t pfstart = atop(mp->start);
3378 		paddr_t pfend = atop(mp->start + mp->size);
3379 		if (mp->size == 0)
3380 			continue;
3381 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
3382 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3383 				VM_FREELIST_FIRST256);
3384 		} else if (mp->start >= SEGMENT_LENGTH) {
3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 				VM_FREELIST_DEFAULT);
3387 		} else {
3388 			pfend = atop(SEGMENT_LENGTH);
3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 				VM_FREELIST_FIRST256);
3391 			pfstart = atop(SEGMENT_LENGTH);
3392 			pfend = atop(mp->start + mp->size);
3393 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3394 				VM_FREELIST_DEFAULT);
3395 		}
3396 	}
3397 
3398 	/*
3399 	 * Make sure kernel vsid is allocated as well as VSID 0.
3400 	 */
3401 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3402 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3403 	pmap_vsid_bitmap[0] |= 1;
3404 
3405 	/*
3406 	 * Initialize kernel pmap and hardware.
3407 	 */
3408 
3409 /* PPC_OEA64_BRIDGE does support these instructions */
3410 #if defined (PPC_OEA) || defined (PPC_OEA64_BRIDGE)
3411 	for (i = 0; i < 16; i++) {
3412  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3413 		__asm volatile ("mtsrin %0,%1"
3414  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3415 	}
3416 
3417 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3418 	__asm volatile ("mtsr %0,%1"
3419 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3420 #ifdef KERNEL2_SR
3421 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3422 	__asm volatile ("mtsr %0,%1"
3423 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3424 #endif
3425 	for (i = 0; i < 16; i++) {
3426 		if (iosrtable[i] & SR601_T) {
3427 			pmap_kernel()->pm_sr[i] = iosrtable[i];
3428 			__asm volatile ("mtsrin %0,%1"
3429 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3430 		}
3431 	}
3432 #endif /* PPC_OEA || PPC_OEA64_BRIDGE */
3433 #if defined (PPC_OEA)
3434 	__asm volatile ("sync; mtsdr1 %0; isync"
3435 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3436 #elif defined (PPC_OEA64) || defined (PPC_OEA64_BRIDGE)
3437  	__asm __volatile ("sync; mtsdr1 %0; isync"
3438  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3439 #endif
3440 	tlbia();
3441 
3442 #ifdef ALTIVEC
3443 	pmap_use_altivec = cpu_altivec;
3444 #endif
3445 
3446 #ifdef DEBUG
3447 	if (pmapdebug & PMAPDEBUG_BOOT) {
3448 		u_int cnt;
3449 		int bank;
3450 		char pbuf[9];
3451 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3452 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3453 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3454 			    bank,
3455 			    ptoa(vm_physmem[bank].avail_start),
3456 			    ptoa(vm_physmem[bank].avail_end),
3457 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3458 		}
3459 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3460 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3461 		    pbuf, cnt);
3462 	}
3463 #endif
3464 
3465 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3466 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3467 	    &pmap_pool_uallocator, IPL_NONE);
3468 
3469 	pool_setlowat(&pmap_upvo_pool, 252);
3470 
3471 	pool_init(&pmap_pool, sizeof(struct pmap),
3472 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3473 	    IPL_NONE);
3474 
3475 #if defined(PMAP_NEED_MAPKERNEL)
3476 	{
3477 		extern int etext[], kernel_text[];
3478 		vaddr_t va, va_etext = (paddr_t) etext;
3479 		paddr_t pa;
3480 		register_t sr;
3481 
3482 		sr = KERNELN_SEGMENT(kernelstart >> ADDR_SR_SHFT)
3483 		    |SR_SUKEY|SR_PRKEY;
3484 
3485 		va = (vaddr_t) kernel_text;
3486 
3487 		for (pa = kernelstart; va < va_etext;
3488 		     pa += PAGE_SIZE, va += PAGE_SIZE)
3489 			pmap_enter(pmap_kernel(), va, pa,
3490 			    VM_PROT_READ|VM_PROT_EXECUTE, 0);
3491 
3492 		for (; pa < kernelend;
3493 		     pa += PAGE_SIZE, va += PAGE_SIZE)
3494 			pmap_enter(pmap_kernel(), va, pa,
3495 			    VM_PROT_READ|VM_PROT_WRITE, 0);
3496 
3497 		pmap_kernel()->pm_sr[kernelstart >> ADDR_SR_SHFT] = sr;
3498 		__asm volatile ("mtsrin %0,%1"
3499  			      :: "r"(sr), "r"(kernelstart));
3500 	}
3501 #endif
3502 }
3503