xref: /netbsd-src/sys/arch/powerpc/oea/pmap.c (revision 5b84b3983f71fd20a534cfa5d1556623a8aaa717)
1 /*	$NetBSD: pmap.c,v 1.32 2005/06/02 14:35:08 he Exp $	*/
2 /*-
3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *        This product includes software developed by the NetBSD
20  *        Foundation, Inc. and its contributors.
21  * 4. Neither the name of The NetBSD Foundation nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40  * Copyright (C) 1995, 1996 TooLs GmbH.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by TooLs GmbH.
54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.32 2005/06/02 14:35:08 he Exp $");
71 
72 #include "opt_ppcarch.h"
73 #include "opt_altivec.h"
74 #include "opt_pmap.h"
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h>		/* for evcnt */
82 #include <sys/systm.h>
83 
84 #if __NetBSD_Version__ < 105010000
85 #include <vm/vm.h>
86 #include <vm/vm_kern.h>
87 #define	splvm()		splimp()
88 #endif
89 
90 #include <uvm/uvm.h>
91 
92 #include <machine/pcb.h>
93 #include <machine/powerpc.h>
94 #include <powerpc/spr.h>
95 #include <powerpc/oea/sr_601.h>
96 #include <powerpc/bat.h>
97 
98 #if defined(DEBUG) || defined(PMAPCHECK)
99 #define	STATIC
100 #else
101 #define	STATIC	static
102 #endif
103 
104 #ifdef ALTIVEC
105 int pmap_use_altivec;
106 #endif
107 
108 volatile struct pteg *pmap_pteg_table;
109 unsigned int pmap_pteg_cnt;
110 unsigned int pmap_pteg_mask;
111 #ifdef PMAP_MEMLIMIT
112 paddr_t pmap_memlimit = PMAP_MEMLIMIT;
113 #else
114 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
115 #endif
116 
117 struct pmap kernel_pmap_;
118 unsigned int pmap_pages_stolen;
119 u_long pmap_pte_valid;
120 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
121 u_long pmap_pvo_enter_depth;
122 u_long pmap_pvo_remove_depth;
123 #endif
124 
125 int physmem;
126 #ifndef MSGBUFADDR
127 extern paddr_t msgbuf_paddr;
128 #endif
129 
130 static struct mem_region *mem, *avail;
131 static u_int mem_cnt, avail_cnt;
132 
133 #ifdef __HAVE_PMAP_PHYSSEG
134 /*
135  * This is a cache of referenced/modified bits.
136  * Bits herein are shifted by ATTRSHFT.
137  */
138 #define	ATTR_SHFT	4
139 struct pmap_physseg pmap_physseg;
140 #endif
141 
142 /*
143  * The following structure is exactly 32 bytes long (one cacheline).
144  */
145 struct pvo_entry {
146 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
147 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
148 	struct pte pvo_pte;			/* Prebuilt PTE */
149 	pmap_t pvo_pmap;			/* ptr to owning pmap */
150 	vaddr_t pvo_vaddr;			/* VA of entry */
151 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
152 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
153 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
154 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
155 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
156 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
157 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
158 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
159 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
160 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
161 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
162 #define	PVO_REMOVE		6		/* PVO has been removed */
163 #define	PVO_WHERE_MASK		15
164 #define	PVO_WHERE_SHFT		8
165 };
166 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
167 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
168 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
169 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
170 #define	PVO_PTEGIDX_CLR(pvo)	\
171 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
172 #define	PVO_PTEGIDX_SET(pvo,i)	\
173 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
174 #define	PVO_WHERE(pvo,w)	\
175 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
176 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
177 
178 TAILQ_HEAD(pvo_tqhead, pvo_entry);
179 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
180 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
181 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
182 
183 struct pool pmap_pool;		/* pool for pmap structures */
184 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
185 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
186 
187 /*
188  * We keep a cache of unmanaged pages to be used for pvo entries for
189  * unmanaged pages.
190  */
191 struct pvo_page {
192 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
193 };
194 SIMPLEQ_HEAD(pvop_head, pvo_page);
195 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
196 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
197 u_long pmap_upvop_free;
198 u_long pmap_upvop_maxfree;
199 u_long pmap_mpvop_free;
200 u_long pmap_mpvop_maxfree;
201 
202 STATIC void *pmap_pool_ualloc(struct pool *, int);
203 STATIC void *pmap_pool_malloc(struct pool *, int);
204 
205 STATIC void pmap_pool_ufree(struct pool *, void *);
206 STATIC void pmap_pool_mfree(struct pool *, void *);
207 
208 static struct pool_allocator pmap_pool_mallocator = {
209 	pmap_pool_malloc, pmap_pool_mfree, 0,
210 };
211 
212 static struct pool_allocator pmap_pool_uallocator = {
213 	pmap_pool_ualloc, pmap_pool_ufree, 0,
214 };
215 
216 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
217 void pmap_pte_print(volatile struct pte *);
218 #endif
219 
220 #ifdef DDB
221 void pmap_pteg_check(void);
222 void pmap_pteg_dist(void);
223 void pmap_print_pte(pmap_t, vaddr_t);
224 void pmap_print_mmuregs(void);
225 #endif
226 
227 #if defined(DEBUG) || defined(PMAPCHECK)
228 #ifdef PMAPCHECK
229 int pmapcheck = 1;
230 #else
231 int pmapcheck = 0;
232 #endif
233 void pmap_pvo_verify(void);
234 STATIC void pmap_pvo_check(const struct pvo_entry *);
235 #define	PMAP_PVO_CHECK(pvo)	 		\
236 	do {					\
237 		if (pmapcheck)			\
238 			pmap_pvo_check(pvo);	\
239 	} while (0)
240 #else
241 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
242 #endif
243 STATIC int pmap_pte_insert(int, struct pte *);
244 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
245 	vaddr_t, paddr_t, register_t, int);
246 STATIC void pmap_pvo_remove(struct pvo_entry *, int, boolean_t);
247 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
248 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
249 STATIC struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
250 STATIC void pvo_set_exec(struct pvo_entry *);
251 STATIC void pvo_clear_exec(struct pvo_entry *);
252 
253 STATIC void tlbia(void);
254 
255 STATIC void pmap_release(pmap_t);
256 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
257 
258 static uint32_t pmap_pvo_reclaim_nextidx;
259 #ifdef DEBUG
260 static int pmap_pvo_reclaim_debugctr;
261 #endif
262 
263 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
264 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
265 
266 static int pmap_initialized;
267 
268 #if defined(DEBUG) || defined(PMAPDEBUG)
269 #define	PMAPDEBUG_BOOT		0x0001
270 #define	PMAPDEBUG_PTE		0x0002
271 #define	PMAPDEBUG_EXEC		0x0008
272 #define	PMAPDEBUG_PVOENTER	0x0010
273 #define	PMAPDEBUG_PVOREMOVE	0x0020
274 #define	PMAPDEBUG_ACTIVATE	0x0100
275 #define	PMAPDEBUG_CREATE	0x0200
276 #define	PMAPDEBUG_ENTER		0x1000
277 #define	PMAPDEBUG_KENTER	0x2000
278 #define	PMAPDEBUG_KREMOVE	0x4000
279 #define	PMAPDEBUG_REMOVE	0x8000
280 unsigned int pmapdebug = 0;
281 # define DPRINTF(x)		printf x
282 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
283 #else
284 # define DPRINTF(x)
285 # define DPRINTFN(n, x)
286 #endif
287 
288 
289 #ifdef PMAPCOUNTERS
290 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
291 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
292 
293 struct evcnt pmap_evcnt_mappings =
294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
295 	    "pmap", "pages mapped");
296 struct evcnt pmap_evcnt_unmappings =
297     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
298 	    "pmap", "pages unmapped");
299 
300 struct evcnt pmap_evcnt_kernel_mappings =
301     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
302 	    "pmap", "kernel pages mapped");
303 struct evcnt pmap_evcnt_kernel_unmappings =
304     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
305 	    "pmap", "kernel pages unmapped");
306 
307 struct evcnt pmap_evcnt_mappings_replaced =
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
309 	    "pmap", "page mappings replaced");
310 
311 struct evcnt pmap_evcnt_exec_mappings =
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
313 	    "pmap", "exec pages mapped");
314 struct evcnt pmap_evcnt_exec_cached =
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
316 	    "pmap", "exec pages cached");
317 
318 struct evcnt pmap_evcnt_exec_synced =
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
320 	    "pmap", "exec pages synced");
321 struct evcnt pmap_evcnt_exec_synced_clear_modify =
322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
323 	    "pmap", "exec pages synced (CM)");
324 
325 struct evcnt pmap_evcnt_exec_uncached_page_protect =
326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
327 	    "pmap", "exec pages uncached (PP)");
328 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
330 	    "pmap", "exec pages uncached (CM)");
331 struct evcnt pmap_evcnt_exec_uncached_zero_page =
332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
333 	    "pmap", "exec pages uncached (ZP)");
334 struct evcnt pmap_evcnt_exec_uncached_copy_page =
335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
336 	    "pmap", "exec pages uncached (CP)");
337 
338 struct evcnt pmap_evcnt_updates =
339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
340 	    "pmap", "updates");
341 struct evcnt pmap_evcnt_collects =
342     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
343 	    "pmap", "collects");
344 struct evcnt pmap_evcnt_copies =
345     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
346 	    "pmap", "copies");
347 
348 struct evcnt pmap_evcnt_ptes_spilled =
349     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
350 	    "pmap", "ptes spilled from overflow");
351 struct evcnt pmap_evcnt_ptes_unspilled =
352     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
353 	    "pmap", "ptes not spilled");
354 struct evcnt pmap_evcnt_ptes_evicted =
355     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
356 	    "pmap", "ptes evicted");
357 
358 struct evcnt pmap_evcnt_ptes_primary[8] = {
359     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
360 	    "pmap", "ptes added at primary[0]"),
361     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
362 	    "pmap", "ptes added at primary[1]"),
363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
364 	    "pmap", "ptes added at primary[2]"),
365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
366 	    "pmap", "ptes added at primary[3]"),
367 
368     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
369 	    "pmap", "ptes added at primary[4]"),
370     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
371 	    "pmap", "ptes added at primary[5]"),
372     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
373 	    "pmap", "ptes added at primary[6]"),
374     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
375 	    "pmap", "ptes added at primary[7]"),
376 };
377 struct evcnt pmap_evcnt_ptes_secondary[8] = {
378     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
379 	    "pmap", "ptes added at secondary[0]"),
380     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
381 	    "pmap", "ptes added at secondary[1]"),
382     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
383 	    "pmap", "ptes added at secondary[2]"),
384     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
385 	    "pmap", "ptes added at secondary[3]"),
386 
387     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
388 	    "pmap", "ptes added at secondary[4]"),
389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
390 	    "pmap", "ptes added at secondary[5]"),
391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
392 	    "pmap", "ptes added at secondary[6]"),
393     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
394 	    "pmap", "ptes added at secondary[7]"),
395 };
396 struct evcnt pmap_evcnt_ptes_removed =
397     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
398 	    "pmap", "ptes removed");
399 struct evcnt pmap_evcnt_ptes_changed =
400     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
401 	    "pmap", "ptes changed");
402 struct evcnt pmap_evcnt_pvos_reclaimed =
403     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
404 	    "pmap", "pvos reclaimed");
405 struct evcnt pmap_evcnt_pvos_failed =
406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
407 	    "pmap", "pvo allocation failures");
408 
409 /*
410  * From pmap_subr.c
411  */
412 extern struct evcnt pmap_evcnt_zeroed_pages;
413 extern struct evcnt pmap_evcnt_copied_pages;
414 extern struct evcnt pmap_evcnt_idlezeroed_pages;
415 
416 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings);
417 EVCNT_ATTACH_STATIC(pmap_evcnt_mappings_replaced);
418 EVCNT_ATTACH_STATIC(pmap_evcnt_unmappings);
419 
420 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_mappings);
421 EVCNT_ATTACH_STATIC(pmap_evcnt_kernel_unmappings);
422 
423 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_mappings);
424 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_cached);
425 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced);
426 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_synced_clear_modify);
427 
428 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_page_protect);
429 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_clear_modify);
430 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_zero_page);
431 EVCNT_ATTACH_STATIC(pmap_evcnt_exec_uncached_copy_page);
432 
433 EVCNT_ATTACH_STATIC(pmap_evcnt_zeroed_pages);
434 EVCNT_ATTACH_STATIC(pmap_evcnt_copied_pages);
435 EVCNT_ATTACH_STATIC(pmap_evcnt_idlezeroed_pages);
436 
437 EVCNT_ATTACH_STATIC(pmap_evcnt_updates);
438 EVCNT_ATTACH_STATIC(pmap_evcnt_collects);
439 EVCNT_ATTACH_STATIC(pmap_evcnt_copies);
440 
441 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_spilled);
442 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_unspilled);
443 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_evicted);
444 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_removed);
445 EVCNT_ATTACH_STATIC(pmap_evcnt_ptes_changed);
446 
447 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 0);
448 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 1);
449 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 2);
450 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 3);
451 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 4);
452 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 5);
453 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 6);
454 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_primary, 7);
455 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 0);
456 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 1);
457 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 2);
458 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 3);
459 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 4);
460 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 5);
461 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 6);
462 EVCNT_ATTACH_STATIC2(pmap_evcnt_ptes_secondary, 7);
463 
464 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_reclaimed);
465 EVCNT_ATTACH_STATIC(pmap_evcnt_pvos_failed);
466 #else
467 #define	PMAPCOUNT(ev)	((void) 0)
468 #define	PMAPCOUNT2(ev)	((void) 0)
469 #endif
470 
471 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
472 #define	TLBSYNC()	__asm __volatile("tlbsync")
473 #define	SYNC()		__asm __volatile("sync")
474 #define	EIEIO()		__asm __volatile("eieio")
475 #define	MFMSR()		mfmsr()
476 #define	MTMSR(psl)	mtmsr(psl)
477 #define	MFPVR()		mfpvr()
478 #define	MFSRIN(va)	mfsrin(va)
479 #define	MFTB()		mfrtcltbl()
480 
481 #ifndef PPC_OEA64
482 static __inline register_t
483 mfsrin(vaddr_t va)
484 {
485 	register_t sr;
486 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
487 	return sr;
488 }
489 #endif	/* PPC_OEA64 */
490 
491 static __inline register_t
492 pmap_interrupts_off(void)
493 {
494 	register_t msr = MFMSR();
495 	if (msr & PSL_EE)
496 		MTMSR(msr & ~PSL_EE);
497 	return msr;
498 }
499 
500 static void
501 pmap_interrupts_restore(register_t msr)
502 {
503 	if (msr & PSL_EE)
504 		MTMSR(msr);
505 }
506 
507 static __inline u_int32_t
508 mfrtcltbl(void)
509 {
510 
511 	if ((MFPVR() >> 16) == MPC601)
512 		return (mfrtcl() >> 7);
513 	else
514 		return (mftbl());
515 }
516 
517 /*
518  * These small routines may have to be replaced,
519  * if/when we support processors other that the 604.
520  */
521 
522 void
523 tlbia(void)
524 {
525 	caddr_t i;
526 
527 	SYNC();
528 	/*
529 	 * Why not use "tlbia"?  Because not all processors implement it.
530 	 *
531 	 * This needs to be a per-CPU callback to do the appropriate thing
532 	 * for the CPU. XXX
533 	 */
534 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
535 		TLBIE(i);
536 		EIEIO();
537 		SYNC();
538 	}
539 	TLBSYNC();
540 	SYNC();
541 }
542 
543 static __inline register_t
544 va_to_vsid(const struct pmap *pm, vaddr_t addr)
545 {
546 #ifdef PPC_OEA64
547 #if 0
548 	const struct ste *ste;
549 	register_t hash;
550 	int i;
551 
552 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
553 
554 	/*
555 	 * Try the primary group first
556 	 */
557 	ste = pm->pm_stes[hash].stes;
558 	for (i = 0; i < 8; i++, ste++) {
559 		if (ste->ste_hi & STE_V) &&
560 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
561 			return ste;
562 	}
563 
564 	/*
565 	 * Then the secondary group.
566 	 */
567 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
568 	for (i = 0; i < 8; i++, ste++) {
569 		if (ste->ste_hi & STE_V) &&
570 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
571 			return addr;
572 	}
573 
574 	return NULL;
575 #else
576 	/*
577 	 * Rather than searching the STE groups for the VSID, we know
578 	 * how we generate that from the ESID and so do that.
579 	 */
580 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
581 #endif
582 #else
583 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
584 #endif
585 }
586 
587 static __inline register_t
588 va_to_pteg(const struct pmap *pm, vaddr_t addr)
589 {
590 	register_t hash;
591 
592 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
593 	return hash & pmap_pteg_mask;
594 }
595 
596 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
597 /*
598  * Given a PTE in the page table, calculate the VADDR that hashes to it.
599  * The only bit of magic is that the top 4 bits of the address doesn't
600  * technically exist in the PTE.  But we know we reserved 4 bits of the
601  * VSID for it so that's how we get it.
602  */
603 static vaddr_t
604 pmap_pte_to_va(volatile const struct pte *pt)
605 {
606 	vaddr_t va;
607 	uintptr_t ptaddr = (uintptr_t) pt;
608 
609 	if (pt->pte_hi & PTE_HID)
610 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
611 
612 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
613 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
614 	va <<= ADDR_PIDX_SHFT;
615 
616 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
617 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
618 
619 #ifdef PPC_OEA64
620 	/* PPC63 Bits 0-35 */
621 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
622 #endif
623 #ifdef PPC_OEA
624 	/* PPC Bits 0-3 */
625 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
626 #endif
627 
628 	return va;
629 }
630 #endif
631 
632 static __inline struct pvo_head *
633 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
634 {
635 #ifdef __HAVE_VM_PAGE_MD
636 	struct vm_page *pg;
637 
638 	pg = PHYS_TO_VM_PAGE(pa);
639 	if (pg_p != NULL)
640 		*pg_p = pg;
641 	if (pg == NULL)
642 		return &pmap_pvo_unmanaged;
643 	return &pg->mdpage.mdpg_pvoh;
644 #endif
645 #ifdef __HAVE_PMAP_PHYSSEG
646 	int bank, pg;
647 
648 	bank = vm_physseg_find(atop(pa), &pg);
649 	if (pg_p != NULL)
650 		*pg_p = pg;
651 	if (bank == -1)
652 		return &pmap_pvo_unmanaged;
653 	return &vm_physmem[bank].pmseg.pvoh[pg];
654 #endif
655 }
656 
657 static __inline struct pvo_head *
658 vm_page_to_pvoh(struct vm_page *pg)
659 {
660 #ifdef __HAVE_VM_PAGE_MD
661 	return &pg->mdpage.mdpg_pvoh;
662 #endif
663 #ifdef __HAVE_PMAP_PHYSSEG
664 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
665 #endif
666 }
667 
668 
669 #ifdef __HAVE_PMAP_PHYSSEG
670 static __inline char *
671 pa_to_attr(paddr_t pa)
672 {
673 	int bank, pg;
674 
675 	bank = vm_physseg_find(atop(pa), &pg);
676 	if (bank == -1)
677 		return NULL;
678 	return &vm_physmem[bank].pmseg.attrs[pg];
679 }
680 #endif
681 
682 static __inline void
683 pmap_attr_clear(struct vm_page *pg, int ptebit)
684 {
685 #ifdef __HAVE_PMAP_PHYSSEG
686 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
687 #endif
688 #ifdef __HAVE_VM_PAGE_MD
689 	pg->mdpage.mdpg_attrs &= ~ptebit;
690 #endif
691 }
692 
693 static __inline int
694 pmap_attr_fetch(struct vm_page *pg)
695 {
696 #ifdef __HAVE_PMAP_PHYSSEG
697 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
698 #endif
699 #ifdef __HAVE_VM_PAGE_MD
700 	return pg->mdpage.mdpg_attrs;
701 #endif
702 }
703 
704 static __inline void
705 pmap_attr_save(struct vm_page *pg, int ptebit)
706 {
707 #ifdef __HAVE_PMAP_PHYSSEG
708 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
709 #endif
710 #ifdef __HAVE_VM_PAGE_MD
711 	pg->mdpage.mdpg_attrs |= ptebit;
712 #endif
713 }
714 
715 static __inline int
716 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
717 {
718 	if (pt->pte_hi == pvo_pt->pte_hi
719 #if 0
720 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
721 	        ~(PTE_REF|PTE_CHG)) == 0
722 #endif
723 	    )
724 		return 1;
725 	return 0;
726 }
727 
728 static __inline void
729 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
730 {
731 	/*
732 	 * Construct the PTE.  Default to IMB initially.  Valid bit
733 	 * only gets set when the real pte is set in memory.
734 	 *
735 	 * Note: Don't set the valid bit for correct operation of tlb update.
736 	 */
737 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
738 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
739 	pt->pte_lo = pte_lo;
740 }
741 
742 static __inline void
743 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
744 {
745 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
746 }
747 
748 static __inline void
749 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
750 {
751 	/*
752 	 * As shown in Section 7.6.3.2.3
753 	 */
754 	pt->pte_lo &= ~ptebit;
755 	TLBIE(va);
756 	SYNC();
757 	EIEIO();
758 	TLBSYNC();
759 	SYNC();
760 }
761 
762 static __inline void
763 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
764 {
765 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
766 	if (pvo_pt->pte_hi & PTE_VALID)
767 		panic("pte_set: setting an already valid pte %p", pvo_pt);
768 #endif
769 	pvo_pt->pte_hi |= PTE_VALID;
770 	/*
771 	 * Update the PTE as defined in section 7.6.3.1
772 	 * Note that the REF/CHG bits are from pvo_pt and thus should
773 	 * have been saved so this routine can restore them (if desired).
774 	 */
775 	pt->pte_lo = pvo_pt->pte_lo;
776 	EIEIO();
777 	pt->pte_hi = pvo_pt->pte_hi;
778 	SYNC();
779 	pmap_pte_valid++;
780 }
781 
782 static __inline void
783 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
784 {
785 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
786 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
787 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
788 	if ((pt->pte_hi & PTE_VALID) == 0)
789 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
790 #endif
791 
792 	pvo_pt->pte_hi &= ~PTE_VALID;
793 	/*
794 	 * Force the ref & chg bits back into the PTEs.
795 	 */
796 	SYNC();
797 	/*
798 	 * Invalidate the pte ... (Section 7.6.3.3)
799 	 */
800 	pt->pte_hi &= ~PTE_VALID;
801 	SYNC();
802 	TLBIE(va);
803 	SYNC();
804 	EIEIO();
805 	TLBSYNC();
806 	SYNC();
807 	/*
808 	 * Save the ref & chg bits ...
809 	 */
810 	pmap_pte_synch(pt, pvo_pt);
811 	pmap_pte_valid--;
812 }
813 
814 static __inline void
815 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
816 {
817 	/*
818 	 * Invalidate the PTE
819 	 */
820 	pmap_pte_unset(pt, pvo_pt, va);
821 	pmap_pte_set(pt, pvo_pt);
822 }
823 
824 /*
825  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
826  * (either primary or secondary location).
827  *
828  * Note: both the destination and source PTEs must not have PTE_VALID set.
829  */
830 
831 STATIC int
832 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
833 {
834 	volatile struct pte *pt;
835 	int i;
836 
837 #if defined(DEBUG)
838 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
839 		ptegidx, (unsigned int) pvo_pt->pte_hi, (unsigned int) pvo_pt->pte_lo));
840 #endif
841 	/*
842 	 * First try primary hash.
843 	 */
844 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
845 		if ((pt->pte_hi & PTE_VALID) == 0) {
846 			pvo_pt->pte_hi &= ~PTE_HID;
847 			pmap_pte_set(pt, pvo_pt);
848 			return i;
849 		}
850 	}
851 
852 	/*
853 	 * Now try secondary hash.
854 	 */
855 	ptegidx ^= pmap_pteg_mask;
856 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
857 		if ((pt->pte_hi & PTE_VALID) == 0) {
858 			pvo_pt->pte_hi |= PTE_HID;
859 			pmap_pte_set(pt, pvo_pt);
860 			return i;
861 		}
862 	}
863 	return -1;
864 }
865 
866 /*
867  * Spill handler.
868  *
869  * Tries to spill a page table entry from the overflow area.
870  * This runs in either real mode (if dealing with a exception spill)
871  * or virtual mode when dealing with manually spilling one of the
872  * kernel's pte entries.  In either case, interrupts are already
873  * disabled.
874  */
875 
876 int
877 pmap_pte_spill(struct pmap *pm, vaddr_t addr, boolean_t exec)
878 {
879 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
880 	struct pvo_entry *pvo;
881 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
882 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
883 	int ptegidx, i, j;
884 	volatile struct pteg *pteg;
885 	volatile struct pte *pt;
886 
887 	ptegidx = va_to_pteg(pm, addr);
888 
889 	/*
890 	 * Have to substitute some entry. Use the primary hash for this.
891 	 * Use low bits of timebase as random generator.  Make sure we are
892 	 * not picking a kernel pte for replacement.
893 	 */
894 	pteg = &pmap_pteg_table[ptegidx];
895 	i = MFTB() & 7;
896 	for (j = 0; j < 8; j++) {
897 		pt = &pteg->pt[i];
898 		if ((pt->pte_hi & PTE_VALID) == 0 ||
899 		    VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
900 				!= KERNEL_VSIDBITS)
901 			break;
902 		i = (i + 1) & 7;
903 	}
904 	KASSERT(j < 8);
905 
906 	source_pvo = NULL;
907 	victim_pvo = NULL;
908 	pvoh = &pmap_pvo_table[ptegidx];
909 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
910 
911 		/*
912 		 * We need to find pvo entry for this address...
913 		 */
914 		PMAP_PVO_CHECK(pvo);		/* sanity check */
915 
916 		/*
917 		 * If we haven't found the source and we come to a PVO with
918 		 * a valid PTE, then we know we can't find it because all
919 		 * evicted PVOs always are first in the list.
920 		 */
921 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
922 			break;
923 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
924 		    addr == PVO_VADDR(pvo)) {
925 
926 			/*
927 			 * Now we have found the entry to be spilled into the
928 			 * pteg.  Attempt to insert it into the page table.
929 			 */
930 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
931 			if (j >= 0) {
932 				PVO_PTEGIDX_SET(pvo, j);
933 				PMAP_PVO_CHECK(pvo);	/* sanity check */
934 				PVO_WHERE(pvo, SPILL_INSERT);
935 				pvo->pvo_pmap->pm_evictions--;
936 				PMAPCOUNT(ptes_spilled);
937 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
938 				    ? pmap_evcnt_ptes_secondary
939 				    : pmap_evcnt_ptes_primary)[j]);
940 
941 				/*
942 				 * Since we keep the evicted entries at the
943 				 * from of the PVO list, we need move this
944 				 * (now resident) PVO after the evicted
945 				 * entries.
946 				 */
947 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
948 
949 				/*
950 				 * If we don't have to move (either we were the
951 				 * last entry or the next entry was valid),
952 				 * don't change our position.  Otherwise
953 				 * move ourselves to the tail of the queue.
954 				 */
955 				if (next_pvo != NULL &&
956 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
957 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
958 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
959 				}
960 				return 1;
961 			}
962 			source_pvo = pvo;
963 			if (exec && !PVO_ISEXECUTABLE(source_pvo)) {
964 				return 0;
965 			}
966 			if (victim_pvo != NULL)
967 				break;
968 		}
969 
970 		/*
971 		 * We also need the pvo entry of the victim we are replacing
972 		 * so save the R & C bits of the PTE.
973 		 */
974 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
975 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
976 			vpvoh = pvoh;			/* *1* */
977 			victim_pvo = pvo;
978 			if (source_pvo != NULL)
979 				break;
980 		}
981 	}
982 
983 	if (source_pvo == NULL) {
984 		PMAPCOUNT(ptes_unspilled);
985 		return 0;
986 	}
987 
988 	if (victim_pvo == NULL) {
989 		if ((pt->pte_hi & PTE_HID) == 0)
990 			panic("pmap_pte_spill: victim p-pte (%p) has "
991 			    "no pvo entry!", pt);
992 
993 		/*
994 		 * If this is a secondary PTE, we need to search
995 		 * its primary pvo bucket for the matching PVO.
996 		 */
997 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
998 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
999 			PMAP_PVO_CHECK(pvo);		/* sanity check */
1000 
1001 			/*
1002 			 * We also need the pvo entry of the victim we are
1003 			 * replacing so save the R & C bits of the PTE.
1004 			 */
1005 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 				victim_pvo = pvo;
1007 				break;
1008 			}
1009 		}
1010 		if (victim_pvo == NULL)
1011 			panic("pmap_pte_spill: victim s-pte (%p) has "
1012 			    "no pvo entry!", pt);
1013 	}
1014 
1015 	/*
1016 	 * The victim should be not be a kernel PVO/PTE entry.
1017 	 */
1018 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1019 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1020 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1021 
1022 	/*
1023 	 * We are invalidating the TLB entry for the EA for the
1024 	 * we are replacing even though its valid; If we don't
1025 	 * we lose any ref/chg bit changes contained in the TLB
1026 	 * entry.
1027 	 */
1028 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1029 
1030 	/*
1031 	 * To enforce the PVO list ordering constraint that all
1032 	 * evicted entries should come before all valid entries,
1033 	 * move the source PVO to the tail of its list and the
1034 	 * victim PVO to the head of its list (which might not be
1035 	 * the same list, if the victim was using the secondary hash).
1036 	 */
1037 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1038 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1039 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1040 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1041 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1042 	pmap_pte_set(pt, &source_pvo->pvo_pte);
1043 	victim_pvo->pvo_pmap->pm_evictions++;
1044 	source_pvo->pvo_pmap->pm_evictions--;
1045 	PVO_WHERE(victim_pvo, SPILL_UNSET);
1046 	PVO_WHERE(source_pvo, SPILL_SET);
1047 
1048 	PVO_PTEGIDX_CLR(victim_pvo);
1049 	PVO_PTEGIDX_SET(source_pvo, i);
1050 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1051 	PMAPCOUNT(ptes_spilled);
1052 	PMAPCOUNT(ptes_evicted);
1053 	PMAPCOUNT(ptes_removed);
1054 
1055 	PMAP_PVO_CHECK(victim_pvo);
1056 	PMAP_PVO_CHECK(source_pvo);
1057 	return 1;
1058 }
1059 
1060 /*
1061  * Restrict given range to physical memory
1062  */
1063 void
1064 pmap_real_memory(paddr_t *start, psize_t *size)
1065 {
1066 	struct mem_region *mp;
1067 
1068 	for (mp = mem; mp->size; mp++) {
1069 		if (*start + *size > mp->start
1070 		    && *start < mp->start + mp->size) {
1071 			if (*start < mp->start) {
1072 				*size -= mp->start - *start;
1073 				*start = mp->start;
1074 			}
1075 			if (*start + *size > mp->start + mp->size)
1076 				*size = mp->start + mp->size - *start;
1077 			return;
1078 		}
1079 	}
1080 	*size = 0;
1081 }
1082 
1083 /*
1084  * Initialize anything else for pmap handling.
1085  * Called during vm_init().
1086  */
1087 void
1088 pmap_init(void)
1089 {
1090 #ifdef __HAVE_PMAP_PHYSSEG
1091 	struct pvo_tqhead *pvoh;
1092 	int bank;
1093 	long sz;
1094 	char *attr;
1095 
1096 	pvoh = pmap_physseg.pvoh;
1097 	attr = pmap_physseg.attrs;
1098 	for (bank = 0; bank < vm_nphysseg; bank++) {
1099 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
1100 		vm_physmem[bank].pmseg.pvoh = pvoh;
1101 		vm_physmem[bank].pmseg.attrs = attr;
1102 		for (; sz > 0; sz--, pvoh++, attr++) {
1103 			TAILQ_INIT(pvoh);
1104 			*attr = 0;
1105 		}
1106 	}
1107 #endif
1108 
1109 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1110 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1111 	    &pmap_pool_mallocator);
1112 
1113 	pool_setlowat(&pmap_mpvo_pool, 1008);
1114 
1115 	pmap_initialized = 1;
1116 
1117 }
1118 
1119 /*
1120  * How much virtual space does the kernel get?
1121  */
1122 void
1123 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1124 {
1125 	/*
1126 	 * For now, reserve one segment (minus some overhead) for kernel
1127 	 * virtual memory
1128 	 */
1129 	*start = VM_MIN_KERNEL_ADDRESS;
1130 	*end = VM_MAX_KERNEL_ADDRESS;
1131 }
1132 
1133 /*
1134  * Allocate, initialize, and return a new physical map.
1135  */
1136 pmap_t
1137 pmap_create(void)
1138 {
1139 	pmap_t pm;
1140 
1141 	pm = pool_get(&pmap_pool, PR_WAITOK);
1142 	memset((caddr_t)pm, 0, sizeof *pm);
1143 	pmap_pinit(pm);
1144 
1145 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1146 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n"
1147 	    "\t%06x %06x %06x %06x    %06x %06x %06x %06x\n", pm,
1148 	    (unsigned int) pm->pm_sr[0], (unsigned int) pm->pm_sr[1],
1149 	    (unsigned int) pm->pm_sr[2], (unsigned int) pm->pm_sr[3],
1150 	    (unsigned int) pm->pm_sr[4], (unsigned int) pm->pm_sr[5],
1151 	    (unsigned int) pm->pm_sr[6], (unsigned int) pm->pm_sr[7],
1152 	    (unsigned int) pm->pm_sr[8], (unsigned int) pm->pm_sr[9],
1153 	    (unsigned int) pm->pm_sr[10], (unsigned int) pm->pm_sr[11],
1154 	    (unsigned int) pm->pm_sr[12], (unsigned int) pm->pm_sr[13],
1155 	    (unsigned int) pm->pm_sr[14], (unsigned int) pm->pm_sr[15]));
1156 	return pm;
1157 }
1158 
1159 /*
1160  * Initialize a preallocated and zeroed pmap structure.
1161  */
1162 void
1163 pmap_pinit(pmap_t pm)
1164 {
1165 	register_t entropy = MFTB();
1166 	register_t mask;
1167 	int i;
1168 
1169 	/*
1170 	 * Allocate some segment registers for this pmap.
1171 	 */
1172 	pm->pm_refs = 1;
1173 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1174 		static register_t pmap_vsidcontext;
1175 		register_t hash;
1176 		unsigned int n;
1177 
1178 		/* Create a new value by multiplying by a prime adding in
1179 		 * entropy from the timebase register.  This is to make the
1180 		 * VSID more random so that the PT Hash function collides
1181 		 * less often. (note that the prime causes gcc to do shifts
1182 		 * instead of a multiply)
1183 		 */
1184 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1185 		hash = pmap_vsidcontext & (NPMAPS - 1);
1186 		if (hash == 0) {		/* 0 is special, avoid it */
1187 			entropy += 0xbadf00d;
1188 			continue;
1189 		}
1190 		n = hash >> 5;
1191 		mask = 1L << (hash & (VSID_NBPW-1));
1192 		hash = pmap_vsidcontext;
1193 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1194 			/* anything free in this bucket? */
1195 			if (~pmap_vsid_bitmap[n] == 0) {
1196 				entropy = hash ^ (hash >> 16);
1197 				continue;
1198 			}
1199 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
1200 			mask = 1L << i;
1201 			hash &= ~(VSID_NBPW-1);
1202 			hash |= i;
1203 		}
1204 		hash &= PTE_VSID >> PTE_VSID_SHFT;
1205 		pmap_vsid_bitmap[n] |= mask;
1206 		pm->pm_vsid = hash;
1207 #ifndef PPC_OEA64
1208 		for (i = 0; i < 16; i++)
1209 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1210 			    SR_NOEXEC;
1211 #endif
1212 		return;
1213 	}
1214 	panic("pmap_pinit: out of segments");
1215 }
1216 
1217 /*
1218  * Add a reference to the given pmap.
1219  */
1220 void
1221 pmap_reference(pmap_t pm)
1222 {
1223 	pm->pm_refs++;
1224 }
1225 
1226 /*
1227  * Retire the given pmap from service.
1228  * Should only be called if the map contains no valid mappings.
1229  */
1230 void
1231 pmap_destroy(pmap_t pm)
1232 {
1233 	if (--pm->pm_refs == 0) {
1234 		pmap_release(pm);
1235 		pool_put(&pmap_pool, pm);
1236 	}
1237 }
1238 
1239 /*
1240  * Release any resources held by the given physical map.
1241  * Called when a pmap initialized by pmap_pinit is being released.
1242  */
1243 void
1244 pmap_release(pmap_t pm)
1245 {
1246 	int idx, mask;
1247 
1248 	if (pm->pm_sr[0] == 0)
1249 		panic("pmap_release");
1250 	idx = pm->pm_vsid & (NPMAPS-1);
1251 	mask = 1 << (idx % VSID_NBPW);
1252 	idx /= VSID_NBPW;
1253 
1254 	KASSERT(pmap_vsid_bitmap[idx] & mask);
1255 	pmap_vsid_bitmap[idx] &= ~mask;
1256 }
1257 
1258 /*
1259  * Copy the range specified by src_addr/len
1260  * from the source map to the range dst_addr/len
1261  * in the destination map.
1262  *
1263  * This routine is only advisory and need not do anything.
1264  */
1265 void
1266 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1267 	vsize_t len, vaddr_t src_addr)
1268 {
1269 	PMAPCOUNT(copies);
1270 }
1271 
1272 /*
1273  * Require that all active physical maps contain no
1274  * incorrect entries NOW.
1275  */
1276 void
1277 pmap_update(struct pmap *pmap)
1278 {
1279 	PMAPCOUNT(updates);
1280 	TLBSYNC();
1281 }
1282 
1283 /*
1284  * Garbage collects the physical map system for
1285  * pages which are no longer used.
1286  * Success need not be guaranteed -- that is, there
1287  * may well be pages which are not referenced, but
1288  * others may be collected.
1289  * Called by the pageout daemon when pages are scarce.
1290  */
1291 void
1292 pmap_collect(pmap_t pm)
1293 {
1294 	PMAPCOUNT(collects);
1295 }
1296 
1297 static __inline int
1298 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1299 {
1300 	int pteidx;
1301 	/*
1302 	 * We can find the actual pte entry without searching by
1303 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1304 	 * and by noticing the HID bit.
1305 	 */
1306 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1307 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1308 		pteidx ^= pmap_pteg_mask * 8;
1309 	return pteidx;
1310 }
1311 
1312 volatile struct pte *
1313 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1314 {
1315 	volatile struct pte *pt;
1316 
1317 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1318 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1319 		return NULL;
1320 #endif
1321 
1322 	/*
1323 	 * If we haven't been supplied the ptegidx, calculate it.
1324 	 */
1325 	if (pteidx == -1) {
1326 		int ptegidx;
1327 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1328 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1329 	}
1330 
1331 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1332 
1333 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1334 	return pt;
1335 #else
1336 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1337 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1338 		    "pvo but no valid pte index", pvo);
1339 	}
1340 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1341 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1342 		    "pvo but no valid pte", pvo);
1343 	}
1344 
1345 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1346 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1347 #if defined(DEBUG) || defined(PMAPCHECK)
1348 			pmap_pte_print(pt);
1349 #endif
1350 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1351 			    "pmap_pteg_table %p but invalid in pvo",
1352 			    pvo, pt);
1353 		}
1354 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1355 #if defined(DEBUG) || defined(PMAPCHECK)
1356 			pmap_pte_print(pt);
1357 #endif
1358 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1359 			    "not match pte %p in pmap_pteg_table",
1360 			    pvo, pt);
1361 		}
1362 		return pt;
1363 	}
1364 
1365 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1366 #if defined(DEBUG) || defined(PMAPCHECK)
1367 		pmap_pte_print(pt);
1368 #endif
1369 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1370 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1371 	}
1372 	return NULL;
1373 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1374 }
1375 
1376 struct pvo_entry *
1377 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1378 {
1379 	struct pvo_entry *pvo;
1380 	int ptegidx;
1381 
1382 	va &= ~ADDR_POFF;
1383 	ptegidx = va_to_pteg(pm, va);
1384 
1385 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1386 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1387 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1388 			panic("pmap_pvo_find_va: invalid pvo %p on "
1389 			    "list %#x (%p)", pvo, ptegidx,
1390 			     &pmap_pvo_table[ptegidx]);
1391 #endif
1392 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1393 			if (pteidx_p)
1394 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1395 			return pvo;
1396 		}
1397 	}
1398 	return NULL;
1399 }
1400 
1401 #if defined(DEBUG) || defined(PMAPCHECK)
1402 void
1403 pmap_pvo_check(const struct pvo_entry *pvo)
1404 {
1405 	struct pvo_head *pvo_head;
1406 	struct pvo_entry *pvo0;
1407 	volatile struct pte *pt;
1408 	int failed = 0;
1409 
1410 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1411 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1412 
1413 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1414 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1415 		    pvo, pvo->pvo_pmap);
1416 		failed = 1;
1417 	}
1418 
1419 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1420 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1421 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1422 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
1423 		failed = 1;
1424 	}
1425 
1426 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1427 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1428 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1429 		    pvo, LIST_NEXT(pvo, pvo_vlink));
1430 		failed = 1;
1431 	}
1432 
1433 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1434 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1435 	} else {
1436 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1437 			printf("pmap_pvo_check: pvo %p: non kernel address "
1438 			    "on kernel unmanaged list\n", pvo);
1439 			failed = 1;
1440 		}
1441 		pvo_head = &pmap_pvo_kunmanaged;
1442 	}
1443 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1444 		if (pvo0 == pvo)
1445 			break;
1446 	}
1447 	if (pvo0 == NULL) {
1448 		printf("pmap_pvo_check: pvo %p: not present "
1449 		    "on its vlist head %p\n", pvo, pvo_head);
1450 		failed = 1;
1451 	}
1452 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1453 		printf("pmap_pvo_check: pvo %p: not present "
1454 		    "on its olist head\n", pvo);
1455 		failed = 1;
1456 	}
1457 	pt = pmap_pvo_to_pte(pvo, -1);
1458 	if (pt == NULL) {
1459 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1460 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1461 			    "no PTE\n", pvo);
1462 			failed = 1;
1463 		}
1464 	} else {
1465 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1466 		    (uintptr_t) pt >=
1467 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1468 			printf("pmap_pvo_check: pvo %p: pte %p not in "
1469 			    "pteg table\n", pvo, pt);
1470 			failed = 1;
1471 		}
1472 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1473 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1474 			    "no PTE\n", pvo);
1475 			failed = 1;
1476 		}
1477 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1478 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1479 			    "%#x/%#x\n", pvo, (unsigned int) pvo->pvo_pte.pte_hi, (unsigned int) pt->pte_hi);
1480 			failed = 1;
1481 		}
1482 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1483 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1484 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1485 			    "%#x/%#x\n", pvo,
1486 			    (unsigned int) (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1487 			    (unsigned int) (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1488 			failed = 1;
1489 		}
1490 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1491 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
1492 			    " doesn't not match PVO's VA %#lx\n",
1493 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1494 			failed = 1;
1495 		}
1496 		if (failed)
1497 			pmap_pte_print(pt);
1498 	}
1499 	if (failed)
1500 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1501 		    pvo->pvo_pmap);
1502 }
1503 #endif /* DEBUG || PMAPCHECK */
1504 
1505 /*
1506  * Search the PVO table looking for a non-wired entry.
1507  * If we find one, remove it and return it.
1508  */
1509 
1510 struct pvo_entry *
1511 pmap_pvo_reclaim(struct pmap *pm)
1512 {
1513 	struct pvo_tqhead *pvoh;
1514 	struct pvo_entry *pvo;
1515 	uint32_t idx, endidx;
1516 
1517 	endidx = pmap_pvo_reclaim_nextidx;
1518 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1519 	     idx = (idx + 1) & pmap_pteg_mask) {
1520 		pvoh = &pmap_pvo_table[idx];
1521 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1522 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0) {
1523 				pmap_pvo_remove(pvo, -1, FALSE);
1524 				pmap_pvo_reclaim_nextidx = idx;
1525 				PMAPCOUNT(pvos_reclaimed);
1526 				return pvo;
1527 			}
1528 		}
1529 	}
1530 	return NULL;
1531 }
1532 
1533 /*
1534  * This returns whether this is the first mapping of a page.
1535  */
1536 int
1537 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1538 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1539 {
1540 	struct pvo_entry *pvo;
1541 	struct pvo_tqhead *pvoh;
1542 	register_t msr;
1543 	int ptegidx;
1544 	int i;
1545 	int poolflags = PR_NOWAIT;
1546 
1547 	/*
1548 	 * Compute the PTE Group index.
1549 	 */
1550 	va &= ~ADDR_POFF;
1551 	ptegidx = va_to_pteg(pm, va);
1552 
1553 	msr = pmap_interrupts_off();
1554 
1555 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1556 	if (pmap_pvo_remove_depth > 0)
1557 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1558 	if (++pmap_pvo_enter_depth > 1)
1559 		panic("pmap_pvo_enter: called recursively!");
1560 #endif
1561 
1562 	/*
1563 	 * Remove any existing mapping for this page.  Reuse the
1564 	 * pvo entry if there a mapping.
1565 	 */
1566 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1567 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1568 #ifdef DEBUG
1569 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1570 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1571 			    ~(PTE_REF|PTE_CHG)) == 0 &&
1572 			   va < VM_MIN_KERNEL_ADDRESS) {
1573 				printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n",
1574 				    pvo, (unsigned int) pvo->pvo_pte.pte_lo, (unsigned int) pte_lo|pa);
1575 				printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
1576 				    (unsigned int) pvo->pvo_pte.pte_hi,
1577 				    (unsigned int) pm->pm_sr[va >> ADDR_SR_SHFT]);
1578 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1579 #ifdef DDBX
1580 				Debugger();
1581 #endif
1582 			}
1583 #endif
1584 			PMAPCOUNT(mappings_replaced);
1585 			pmap_pvo_remove(pvo, -1, TRUE);
1586 			break;
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * If we aren't overwriting an mapping, try to allocate
1592 	 */
1593 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1594 	--pmap_pvo_enter_depth;
1595 #endif
1596 	pmap_interrupts_restore(msr);
1597 	pvo = pool_get(pl, poolflags);
1598 
1599 #ifdef DEBUG
1600 	/*
1601 	 * Exercise pmap_pvo_reclaim() a little.
1602 	 */
1603 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1604 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1605 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1606 		pool_put(pl, pvo);
1607 		pvo = NULL;
1608 	}
1609 #endif
1610 
1611 	msr = pmap_interrupts_off();
1612 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1613 	++pmap_pvo_enter_depth;
1614 #endif
1615 	if (pvo == NULL) {
1616 		pvo = pmap_pvo_reclaim(pm);
1617 		if (pvo == NULL) {
1618 			if ((flags & PMAP_CANFAIL) == 0)
1619 				panic("pmap_pvo_enter: failed");
1620 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1621 			pmap_pvo_enter_depth--;
1622 #endif
1623 			PMAPCOUNT(pvos_failed);
1624 			pmap_interrupts_restore(msr);
1625 			return ENOMEM;
1626 		}
1627 	}
1628 
1629 	pvo->pvo_vaddr = va;
1630 	pvo->pvo_pmap = pm;
1631 	pvo->pvo_vaddr &= ~ADDR_POFF;
1632 	if (flags & VM_PROT_EXECUTE) {
1633 		PMAPCOUNT(exec_mappings);
1634 		pvo_set_exec(pvo);
1635 	}
1636 	if (flags & PMAP_WIRED)
1637 		pvo->pvo_vaddr |= PVO_WIRED;
1638 	if (pvo_head != &pmap_pvo_kunmanaged) {
1639 		pvo->pvo_vaddr |= PVO_MANAGED;
1640 		PMAPCOUNT(mappings);
1641 	} else {
1642 		PMAPCOUNT(kernel_mappings);
1643 	}
1644 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1645 
1646 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1647 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1648 		pvo->pvo_pmap->pm_stats.wired_count++;
1649 	pvo->pvo_pmap->pm_stats.resident_count++;
1650 #if defined(DEBUG)
1651 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
1652 		DPRINTFN(PVOENTER,
1653 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
1654 		    pvo, pm, va, pa));
1655 #endif
1656 
1657 	/*
1658 	 * We hope this succeeds but it isn't required.
1659 	 */
1660 	pvoh = &pmap_pvo_table[ptegidx];
1661 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1662 	if (i >= 0) {
1663 		PVO_PTEGIDX_SET(pvo, i);
1664 		PVO_WHERE(pvo, ENTER_INSERT);
1665 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1666 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1667 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1668 	} else {
1669 		/*
1670 		 * Since we didn't have room for this entry (which makes it
1671 		 * and evicted entry), place it at the head of the list.
1672 		 */
1673 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1674 		PMAPCOUNT(ptes_evicted);
1675 		pm->pm_evictions++;
1676 		/*
1677 		 * If this is a kernel page, make sure it's active.
1678 		 */
1679 		if (pm == pmap_kernel()) {
1680 			i = pmap_pte_spill(pm, va, FALSE);
1681 			KASSERT(i);
1682 		}
1683 	}
1684 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1685 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1686 	pmap_pvo_enter_depth--;
1687 #endif
1688 	pmap_interrupts_restore(msr);
1689 	return 0;
1690 }
1691 
1692 void
1693 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, boolean_t do_free)
1694 {
1695 	volatile struct pte *pt;
1696 	int ptegidx;
1697 
1698 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1699 	if (++pmap_pvo_remove_depth > 1)
1700 		panic("pmap_pvo_remove: called recursively!");
1701 #endif
1702 
1703 	/*
1704 	 * If we haven't been supplied the ptegidx, calculate it.
1705 	 */
1706 	if (pteidx == -1) {
1707 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1708 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1709 	} else {
1710 		ptegidx = pteidx >> 3;
1711 		if (pvo->pvo_pte.pte_hi & PTE_HID)
1712 			ptegidx ^= pmap_pteg_mask;
1713 	}
1714 	PMAP_PVO_CHECK(pvo);		/* sanity check */
1715 
1716 	/*
1717 	 * If there is an active pte entry, we need to deactivate it
1718 	 * (and save the ref & chg bits).
1719 	 */
1720 	pt = pmap_pvo_to_pte(pvo, pteidx);
1721 	if (pt != NULL) {
1722 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1723 		PVO_WHERE(pvo, REMOVE);
1724 		PVO_PTEGIDX_CLR(pvo);
1725 		PMAPCOUNT(ptes_removed);
1726 	} else {
1727 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1728 		pvo->pvo_pmap->pm_evictions--;
1729 	}
1730 
1731 	/*
1732 	 * Account for executable mappings.
1733 	 */
1734 	if (PVO_ISEXECUTABLE(pvo))
1735 		pvo_clear_exec(pvo);
1736 
1737 	/*
1738 	 * Update our statistics.
1739 	 */
1740 	pvo->pvo_pmap->pm_stats.resident_count--;
1741 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1742 		pvo->pvo_pmap->pm_stats.wired_count--;
1743 
1744 	/*
1745 	 * Save the REF/CHG bits into their cache if the page is managed.
1746 	 */
1747 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1748 		register_t ptelo = pvo->pvo_pte.pte_lo;
1749 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1750 
1751 		if (pg != NULL) {
1752 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1753 		}
1754 		PMAPCOUNT(unmappings);
1755 	} else {
1756 		PMAPCOUNT(kernel_unmappings);
1757 	}
1758 
1759 	/*
1760 	 * Remove the PVO from its lists and return it to the pool.
1761 	 */
1762 	LIST_REMOVE(pvo, pvo_vlink);
1763 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1764 	if (do_free) {
1765 		pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool :
1766 			 &pmap_upvo_pool, pvo);
1767 	}
1768 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1769 	pmap_pvo_remove_depth--;
1770 #endif
1771 }
1772 
1773 /*
1774  * Mark a mapping as executable.
1775  * If this is the first executable mapping in the segment,
1776  * clear the noexec flag.
1777  */
1778 STATIC void
1779 pvo_set_exec(struct pvo_entry *pvo)
1780 {
1781 	struct pmap *pm = pvo->pvo_pmap;
1782 
1783 	if (pm == pmap_kernel() || PVO_ISEXECUTABLE(pvo)) {
1784 		return;
1785 	}
1786 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
1787 #ifdef PPC_OEA
1788 	{
1789 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1790 		if (pm->pm_exec[sr]++ == 0) {
1791 			pm->pm_sr[sr] &= ~SR_NOEXEC;
1792 		}
1793 	}
1794 #endif
1795 }
1796 
1797 /*
1798  * Mark a mapping as non-executable.
1799  * If this was the last executable mapping in the segment,
1800  * set the noexec flag.
1801  */
1802 STATIC void
1803 pvo_clear_exec(struct pvo_entry *pvo)
1804 {
1805 	struct pmap *pm = pvo->pvo_pmap;
1806 
1807 	if (pm == pmap_kernel() || !PVO_ISEXECUTABLE(pvo)) {
1808 		return;
1809 	}
1810 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1811 #ifdef PPC_OEA
1812 	{
1813 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1814 		if (--pm->pm_exec[sr] == 0) {
1815 			pm->pm_sr[sr] |= SR_NOEXEC;
1816 		}
1817 	}
1818 #endif
1819 }
1820 
1821 /*
1822  * Insert physical page at pa into the given pmap at virtual address va.
1823  */
1824 int
1825 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1826 {
1827 	struct mem_region *mp;
1828 	struct pvo_head *pvo_head;
1829 	struct vm_page *pg;
1830 	struct pool *pl;
1831 	register_t pte_lo;
1832 	int error;
1833 	u_int pvo_flags;
1834 	u_int was_exec = 0;
1835 
1836 	if (__predict_false(!pmap_initialized)) {
1837 		pvo_head = &pmap_pvo_kunmanaged;
1838 		pl = &pmap_upvo_pool;
1839 		pvo_flags = 0;
1840 		pg = NULL;
1841 		was_exec = PTE_EXEC;
1842 	} else {
1843 		pvo_head = pa_to_pvoh(pa, &pg);
1844 		pl = &pmap_mpvo_pool;
1845 		pvo_flags = PVO_MANAGED;
1846 	}
1847 
1848 	DPRINTFN(ENTER,
1849 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
1850 	    pm, va, pa, prot, flags));
1851 
1852 	/*
1853 	 * If this is a managed page, and it's the first reference to the
1854 	 * page clear the execness of the page.  Otherwise fetch the execness.
1855 	 */
1856 	if (pg != NULL)
1857 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1858 
1859 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1860 
1861 	/*
1862 	 * Assume the page is cache inhibited and access is guarded unless
1863 	 * it's in our available memory array.  If it is in the memory array,
1864 	 * asssume it's in memory coherent memory.
1865 	 */
1866 	pte_lo = PTE_IG;
1867 	if ((flags & PMAP_NC) == 0) {
1868 		for (mp = mem; mp->size; mp++) {
1869 			if (pa >= mp->start && pa < mp->start + mp->size) {
1870 				pte_lo = PTE_M;
1871 				break;
1872 			}
1873 		}
1874 	}
1875 
1876 	if (prot & VM_PROT_WRITE)
1877 		pte_lo |= PTE_BW;
1878 	else
1879 		pte_lo |= PTE_BR;
1880 
1881 	/*
1882 	 * If this was in response to a fault, "pre-fault" the PTE's
1883 	 * changed/referenced bit appropriately.
1884 	 */
1885 	if (flags & VM_PROT_WRITE)
1886 		pte_lo |= PTE_CHG;
1887 	if (flags & VM_PROT_ALL)
1888 		pte_lo |= PTE_REF;
1889 
1890 	/*
1891 	 * We need to know if this page can be executable
1892 	 */
1893 	flags |= (prot & VM_PROT_EXECUTE);
1894 
1895 	/*
1896 	 * Record mapping for later back-translation and pte spilling.
1897 	 * This will overwrite any existing mapping.
1898 	 */
1899 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1900 
1901 	/*
1902 	 * Flush the real page from the instruction cache if this page is
1903 	 * mapped executable and cacheable and has not been flushed since
1904 	 * the last time it was modified.
1905 	 */
1906 	if (error == 0 &&
1907             (flags & VM_PROT_EXECUTE) &&
1908             (pte_lo & PTE_I) == 0 &&
1909 	    was_exec == 0) {
1910 		DPRINTFN(ENTER, (" syncicache"));
1911 		PMAPCOUNT(exec_synced);
1912 		pmap_syncicache(pa, PAGE_SIZE);
1913 		if (pg != NULL) {
1914 			pmap_attr_save(pg, PTE_EXEC);
1915 			PMAPCOUNT(exec_cached);
1916 #if defined(DEBUG) || defined(PMAPDEBUG)
1917 			if (pmapdebug & PMAPDEBUG_ENTER)
1918 				printf(" marked-as-exec");
1919 			else if (pmapdebug & PMAPDEBUG_EXEC)
1920 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
1921 				    pg->phys_addr);
1922 
1923 #endif
1924 		}
1925 	}
1926 
1927 	DPRINTFN(ENTER, (": error=%d\n", error));
1928 
1929 	return error;
1930 }
1931 
1932 void
1933 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
1934 {
1935 	struct mem_region *mp;
1936 	register_t pte_lo;
1937 	int error;
1938 
1939 	if (va < VM_MIN_KERNEL_ADDRESS)
1940 		panic("pmap_kenter_pa: attempt to enter "
1941 		    "non-kernel address %#lx!", va);
1942 
1943 	DPRINTFN(KENTER,
1944 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
1945 
1946 	/*
1947 	 * Assume the page is cache inhibited and access is guarded unless
1948 	 * it's in our available memory array.  If it is in the memory array,
1949 	 * asssume it's in memory coherent memory.
1950 	 */
1951 	pte_lo = PTE_IG;
1952 	if ((prot & PMAP_NC) == 0) {
1953 		for (mp = mem; mp->size; mp++) {
1954 			if (pa >= mp->start && pa < mp->start + mp->size) {
1955 				pte_lo = PTE_M;
1956 				break;
1957 			}
1958 		}
1959 	}
1960 
1961 	if (prot & VM_PROT_WRITE)
1962 		pte_lo |= PTE_BW;
1963 	else
1964 		pte_lo |= PTE_BR;
1965 
1966 	/*
1967 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
1968 	 */
1969 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
1970 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
1971 
1972 	if (error != 0)
1973 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
1974 		      va, pa, error);
1975 }
1976 
1977 void
1978 pmap_kremove(vaddr_t va, vsize_t len)
1979 {
1980 	if (va < VM_MIN_KERNEL_ADDRESS)
1981 		panic("pmap_kremove: attempt to remove "
1982 		    "non-kernel address %#lx!", va);
1983 
1984 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
1985 	pmap_remove(pmap_kernel(), va, va + len);
1986 }
1987 
1988 /*
1989  * Remove the given range of mapping entries.
1990  */
1991 void
1992 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
1993 {
1994 	struct pvo_entry *pvo;
1995 	register_t msr;
1996 	int pteidx;
1997 
1998 	msr = pmap_interrupts_off();
1999 	for (; va < endva; va += PAGE_SIZE) {
2000 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2001 		if (pvo != NULL) {
2002 			pmap_pvo_remove(pvo, pteidx, TRUE);
2003 		}
2004 	}
2005 	pmap_interrupts_restore(msr);
2006 }
2007 
2008 /*
2009  * Get the physical page address for the given pmap/virtual address.
2010  */
2011 boolean_t
2012 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2013 {
2014 	struct pvo_entry *pvo;
2015 	register_t msr;
2016 
2017 	/*
2018 	 * If this is a kernel pmap lookup, also check the battable
2019 	 * and if we get a hit, translate the VA to a PA using the
2020 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
2021 	 * that will wrap back to 0.
2022 	 */
2023 	if (pm == pmap_kernel() &&
2024 	    (va < VM_MIN_KERNEL_ADDRESS ||
2025 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2026 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2027 		if ((MFPVR() >> 16) != MPC601) {
2028 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2029 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2030 				register_t batl =
2031 				    battable[va >> ADDR_SR_SHFT].batl;
2032 				register_t mask =
2033 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2034 				if (pap)
2035 					*pap = (batl & mask) | (va & ~mask);
2036 				return TRUE;
2037 			}
2038 		} else {
2039 			register_t batu = battable[va >> 23].batu;
2040 			register_t batl = battable[va >> 23].batl;
2041 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2042 			if (BAT601_VALID_P(batl) &&
2043 			    BAT601_VA_MATCH_P(batu, batl, va)) {
2044 				register_t mask =
2045 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2046 				if (pap)
2047 					*pap = (batl & mask) | (va & ~mask);
2048 				return TRUE;
2049 			} else if (SR601_VALID_P(sr) &&
2050 				   SR601_PA_MATCH_P(sr, va)) {
2051 				if (pap)
2052 					*pap = va;
2053 				return TRUE;
2054 			}
2055 		}
2056 		return FALSE;
2057 	}
2058 
2059 	msr = pmap_interrupts_off();
2060 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2061 	if (pvo != NULL) {
2062 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2063 		if (pap)
2064 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2065 			    | (va & ADDR_POFF);
2066 	}
2067 	pmap_interrupts_restore(msr);
2068 	return pvo != NULL;
2069 }
2070 
2071 /*
2072  * Lower the protection on the specified range of this pmap.
2073  */
2074 void
2075 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2076 {
2077 	struct pvo_entry *pvo;
2078 	volatile struct pte *pt;
2079 	register_t msr;
2080 	int pteidx;
2081 
2082 	/*
2083 	 * Since this routine only downgrades protection, we should
2084 	 * always be called with at least one bit not set.
2085 	 */
2086 	KASSERT(prot != VM_PROT_ALL);
2087 
2088 	/*
2089 	 * If there is no protection, this is equivalent to
2090 	 * remove the pmap from the pmap.
2091 	 */
2092 	if ((prot & VM_PROT_READ) == 0) {
2093 		pmap_remove(pm, va, endva);
2094 		return;
2095 	}
2096 
2097 	msr = pmap_interrupts_off();
2098 	for (; va < endva; va += PAGE_SIZE) {
2099 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
2100 		if (pvo == NULL)
2101 			continue;
2102 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2103 
2104 		/*
2105 		 * Revoke executable if asked to do so.
2106 		 */
2107 		if ((prot & VM_PROT_EXECUTE) == 0)
2108 			pvo_clear_exec(pvo);
2109 
2110 #if 0
2111 		/*
2112 		 * If the page is already read-only, no change
2113 		 * needs to be made.
2114 		 */
2115 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2116 			continue;
2117 #endif
2118 		/*
2119 		 * Grab the PTE pointer before we diddle with
2120 		 * the cached PTE copy.
2121 		 */
2122 		pt = pmap_pvo_to_pte(pvo, pteidx);
2123 		/*
2124 		 * Change the protection of the page.
2125 		 */
2126 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2127 		pvo->pvo_pte.pte_lo |= PTE_BR;
2128 
2129 		/*
2130 		 * If the PVO is in the page table, update
2131 		 * that pte at well.
2132 		 */
2133 		if (pt != NULL) {
2134 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2135 			PVO_WHERE(pvo, PMAP_PROTECT);
2136 			PMAPCOUNT(ptes_changed);
2137 		}
2138 
2139 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2140 	}
2141 	pmap_interrupts_restore(msr);
2142 }
2143 
2144 void
2145 pmap_unwire(pmap_t pm, vaddr_t va)
2146 {
2147 	struct pvo_entry *pvo;
2148 	register_t msr;
2149 
2150 	msr = pmap_interrupts_off();
2151 	pvo = pmap_pvo_find_va(pm, va, NULL);
2152 	if (pvo != NULL) {
2153 		if (pvo->pvo_vaddr & PVO_WIRED) {
2154 			pvo->pvo_vaddr &= ~PVO_WIRED;
2155 			pm->pm_stats.wired_count--;
2156 		}
2157 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2158 	}
2159 	pmap_interrupts_restore(msr);
2160 }
2161 
2162 /*
2163  * Lower the protection on the specified physical page.
2164  */
2165 void
2166 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2167 {
2168 	struct pvo_head *pvo_head;
2169 	struct pvo_entry *pvo, *next_pvo;
2170 	volatile struct pte *pt;
2171 	register_t msr;
2172 
2173 	KASSERT(prot != VM_PROT_ALL);
2174 	msr = pmap_interrupts_off();
2175 
2176 	/*
2177 	 * When UVM reuses a page, it does a pmap_page_protect with
2178 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
2179 	 * since we know the page will have different contents.
2180 	 */
2181 	if ((prot & VM_PROT_READ) == 0) {
2182 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
2183 		    pg->phys_addr));
2184 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
2185 			PMAPCOUNT(exec_uncached_page_protect);
2186 			pmap_attr_clear(pg, PTE_EXEC);
2187 		}
2188 	}
2189 
2190 	pvo_head = vm_page_to_pvoh(pg);
2191 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2192 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2193 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2194 
2195 		/*
2196 		 * Downgrading to no mapping at all, we just remove the entry.
2197 		 */
2198 		if ((prot & VM_PROT_READ) == 0) {
2199 			pmap_pvo_remove(pvo, -1, TRUE);
2200 			continue;
2201 		}
2202 
2203 		/*
2204 		 * If EXEC permission is being revoked, just clear the
2205 		 * flag in the PVO.
2206 		 */
2207 		if ((prot & VM_PROT_EXECUTE) == 0)
2208 			pvo_clear_exec(pvo);
2209 
2210 		/*
2211 		 * If this entry is already RO, don't diddle with the
2212 		 * page table.
2213 		 */
2214 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2215 			PMAP_PVO_CHECK(pvo);
2216 			continue;
2217 		}
2218 
2219 		/*
2220 		 * Grab the PTE before the we diddle the bits so
2221 		 * pvo_to_pte can verify the pte contents are as
2222 		 * expected.
2223 		 */
2224 		pt = pmap_pvo_to_pte(pvo, -1);
2225 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
2226 		pvo->pvo_pte.pte_lo |= PTE_BR;
2227 		if (pt != NULL) {
2228 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2229 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2230 			PMAPCOUNT(ptes_changed);
2231 		}
2232 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2233 	}
2234 	pmap_interrupts_restore(msr);
2235 }
2236 
2237 /*
2238  * Activate the address space for the specified process.  If the process
2239  * is the current process, load the new MMU context.
2240  */
2241 void
2242 pmap_activate(struct lwp *l)
2243 {
2244 	struct pcb *pcb = &l->l_addr->u_pcb;
2245 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2246 
2247 	DPRINTFN(ACTIVATE,
2248 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2249 
2250 	/*
2251 	 * XXX Normally performed in cpu_fork().
2252 	 */
2253 	pcb->pcb_pm = pmap;
2254 
2255 	/*
2256 	* In theory, the SR registers need only be valid on return
2257 	* to user space wait to do them there.
2258 	*/
2259 	if (l == curlwp) {
2260 		/* Store pointer to new current pmap. */
2261 		curpm = pmap;
2262 	}
2263 }
2264 
2265 /*
2266  * Deactivate the specified process's address space.
2267  */
2268 void
2269 pmap_deactivate(struct lwp *l)
2270 {
2271 }
2272 
2273 boolean_t
2274 pmap_query_bit(struct vm_page *pg, int ptebit)
2275 {
2276 	struct pvo_entry *pvo;
2277 	volatile struct pte *pt;
2278 	register_t msr;
2279 
2280 	if (pmap_attr_fetch(pg) & ptebit)
2281 		return TRUE;
2282 
2283 	msr = pmap_interrupts_off();
2284 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2285 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2286 		/*
2287 		 * See if we saved the bit off.  If so cache, it and return
2288 		 * success.
2289 		 */
2290 		if (pvo->pvo_pte.pte_lo & ptebit) {
2291 			pmap_attr_save(pg, ptebit);
2292 			PMAP_PVO_CHECK(pvo);		/* sanity check */
2293 			pmap_interrupts_restore(msr);
2294 			return TRUE;
2295 		}
2296 	}
2297 	/*
2298 	 * No luck, now go thru the hard part of looking at the ptes
2299 	 * themselves.  Sync so any pending REF/CHG bits are flushed
2300 	 * to the PTEs.
2301 	 */
2302 	SYNC();
2303 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2304 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2305 		/*
2306 		 * See if this pvo have a valid PTE.  If so, fetch the
2307 		 * REF/CHG bits from the valid PTE.  If the appropriate
2308 		 * ptebit is set, cache, it and return success.
2309 		 */
2310 		pt = pmap_pvo_to_pte(pvo, -1);
2311 		if (pt != NULL) {
2312 			pmap_pte_synch(pt, &pvo->pvo_pte);
2313 			if (pvo->pvo_pte.pte_lo & ptebit) {
2314 				pmap_attr_save(pg, ptebit);
2315 				PMAP_PVO_CHECK(pvo);		/* sanity check */
2316 				pmap_interrupts_restore(msr);
2317 				return TRUE;
2318 			}
2319 		}
2320 	}
2321 	pmap_interrupts_restore(msr);
2322 	return FALSE;
2323 }
2324 
2325 boolean_t
2326 pmap_clear_bit(struct vm_page *pg, int ptebit)
2327 {
2328 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2329 	struct pvo_entry *pvo;
2330 	volatile struct pte *pt;
2331 	register_t msr;
2332 	int rv = 0;
2333 
2334 	msr = pmap_interrupts_off();
2335 
2336 	/*
2337 	 * Fetch the cache value
2338 	 */
2339 	rv |= pmap_attr_fetch(pg);
2340 
2341 	/*
2342 	 * Clear the cached value.
2343 	 */
2344 	pmap_attr_clear(pg, ptebit);
2345 
2346 	/*
2347 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2348 	 * can reset the right ones).  Note that since the pvo entries and
2349 	 * list heads are accessed via BAT0 and are never placed in the
2350 	 * page table, we don't have to worry about further accesses setting
2351 	 * the REF/CHG bits.
2352 	 */
2353 	SYNC();
2354 
2355 	/*
2356 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
2357 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
2358 	 */
2359 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2360 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2361 		pt = pmap_pvo_to_pte(pvo, -1);
2362 		if (pt != NULL) {
2363 			/*
2364 			 * Only sync the PTE if the bit we are looking
2365 			 * for is not already set.
2366 			 */
2367 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2368 				pmap_pte_synch(pt, &pvo->pvo_pte);
2369 			/*
2370 			 * If the bit we are looking for was already set,
2371 			 * clear that bit in the pte.
2372 			 */
2373 			if (pvo->pvo_pte.pte_lo & ptebit)
2374 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2375 		}
2376 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2377 		pvo->pvo_pte.pte_lo &= ~ptebit;
2378 		PMAP_PVO_CHECK(pvo);		/* sanity check */
2379 	}
2380 	pmap_interrupts_restore(msr);
2381 
2382 	/*
2383 	 * If we are clearing the modify bit and this page was marked EXEC
2384 	 * and the user of the page thinks the page was modified, then we
2385 	 * need to clean it from the icache if it's mapped or clear the EXEC
2386 	 * bit if it's not mapped.  The page itself might not have the CHG
2387 	 * bit set if the modification was done via DMA to the page.
2388 	 */
2389 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2390 		if (LIST_EMPTY(pvoh)) {
2391 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
2392 			    pg->phys_addr));
2393 			pmap_attr_clear(pg, PTE_EXEC);
2394 			PMAPCOUNT(exec_uncached_clear_modify);
2395 		} else {
2396 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
2397 			    pg->phys_addr));
2398 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
2399 			PMAPCOUNT(exec_synced_clear_modify);
2400 		}
2401 	}
2402 	return (rv & ptebit) != 0;
2403 }
2404 
2405 void
2406 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2407 {
2408 	struct pvo_entry *pvo;
2409 	size_t offset = va & ADDR_POFF;
2410 	int s;
2411 
2412 	s = splvm();
2413 	while (len > 0) {
2414 		size_t seglen = PAGE_SIZE - offset;
2415 		if (seglen > len)
2416 			seglen = len;
2417 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2418 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
2419 			pmap_syncicache(
2420 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2421 			PMAP_PVO_CHECK(pvo);
2422 		}
2423 		va += seglen;
2424 		len -= seglen;
2425 		offset = 0;
2426 	}
2427 	splx(s);
2428 }
2429 
2430 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2431 void
2432 pmap_pte_print(volatile struct pte *pt)
2433 {
2434 	printf("PTE %p: ", pt);
2435 	/* High word: */
2436 	printf("0x%08lx: [", pt->pte_hi);
2437 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2438 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2439 	printf("0x%06lx 0x%02lx",
2440 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2441 	    pt->pte_hi & PTE_API);
2442 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
2443 	/* Low word: */
2444 	printf(" 0x%08lx: [", pt->pte_lo);
2445 	printf("0x%05lx... ", pt->pte_lo >> 12);
2446 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2447 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2448 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2449 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2450 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2451 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2452 	switch (pt->pte_lo & PTE_PP) {
2453 	case PTE_BR: printf("br]\n"); break;
2454 	case PTE_BW: printf("bw]\n"); break;
2455 	case PTE_SO: printf("so]\n"); break;
2456 	case PTE_SW: printf("sw]\n"); break;
2457 	}
2458 }
2459 #endif
2460 
2461 #if defined(DDB)
2462 void
2463 pmap_pteg_check(void)
2464 {
2465 	volatile struct pte *pt;
2466 	int i;
2467 	int ptegidx;
2468 	u_int p_valid = 0;
2469 	u_int s_valid = 0;
2470 	u_int invalid = 0;
2471 
2472 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2473 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2474 			if (pt->pte_hi & PTE_VALID) {
2475 				if (pt->pte_hi & PTE_HID)
2476 					s_valid++;
2477 				else
2478 					p_valid++;
2479 			} else
2480 				invalid++;
2481 		}
2482 	}
2483 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2484 		p_valid, p_valid, s_valid, s_valid,
2485 		invalid, invalid);
2486 }
2487 
2488 void
2489 pmap_print_mmuregs(void)
2490 {
2491 	int i;
2492 	u_int cpuvers;
2493 #ifndef PPC_OEA64
2494 	vaddr_t addr;
2495 	register_t soft_sr[16];
2496 #endif
2497 	struct bat soft_ibat[4];
2498 	struct bat soft_dbat[4];
2499 	register_t sdr1;
2500 
2501 	cpuvers = MFPVR() >> 16;
2502 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
2503 #ifndef PPC_OEA64
2504 	addr = 0;
2505 	for (i = 0; i < 16; i++) {
2506 		soft_sr[i] = MFSRIN(addr);
2507 		addr += (1 << ADDR_SR_SHFT);
2508 	}
2509 #endif
2510 
2511 	/* read iBAT (601: uBAT) registers */
2512 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2513 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2514 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2515 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2516 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2517 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2518 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2519 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2520 
2521 
2522 	if (cpuvers != MPC601) {
2523 		/* read dBAT registers */
2524 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2525 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2526 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2527 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2528 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2529 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2530 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2531 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2532 	}
2533 
2534 	printf("SDR1:\t0x%lx\n", (long) sdr1);
2535 #ifndef PPC_OEA64
2536 	printf("SR[]:\t");
2537 	for (i = 0; i < 4; i++)
2538 		printf("0x%08lx,   ", soft_sr[i]);
2539 	printf("\n\t");
2540 	for ( ; i < 8; i++)
2541 		printf("0x%08lx,   ", soft_sr[i]);
2542 	printf("\n\t");
2543 	for ( ; i < 12; i++)
2544 		printf("0x%08lx,   ", soft_sr[i]);
2545 	printf("\n\t");
2546 	for ( ; i < 16; i++)
2547 		printf("0x%08lx,   ", soft_sr[i]);
2548 	printf("\n");
2549 #endif
2550 
2551 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2552 	for (i = 0; i < 4; i++) {
2553 		printf("0x%08lx 0x%08lx, ",
2554 			soft_ibat[i].batu, soft_ibat[i].batl);
2555 		if (i == 1)
2556 			printf("\n\t");
2557 	}
2558 	if (cpuvers != MPC601) {
2559 		printf("\ndBAT[]:\t");
2560 		for (i = 0; i < 4; i++) {
2561 			printf("0x%08lx 0x%08lx, ",
2562 				soft_dbat[i].batu, soft_dbat[i].batl);
2563 			if (i == 1)
2564 				printf("\n\t");
2565 		}
2566 	}
2567 	printf("\n");
2568 }
2569 
2570 void
2571 pmap_print_pte(pmap_t pm, vaddr_t va)
2572 {
2573 	struct pvo_entry *pvo;
2574 	volatile struct pte *pt;
2575 	int pteidx;
2576 
2577 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
2578 	if (pvo != NULL) {
2579 		pt = pmap_pvo_to_pte(pvo, pteidx);
2580 		if (pt != NULL) {
2581 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
2582 				va, pt,
2583 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2584 				pt->pte_hi, pt->pte_lo);
2585 		} else {
2586 			printf("No valid PTE found\n");
2587 		}
2588 	} else {
2589 		printf("Address not in pmap\n");
2590 	}
2591 }
2592 
2593 void
2594 pmap_pteg_dist(void)
2595 {
2596 	struct pvo_entry *pvo;
2597 	int ptegidx;
2598 	int depth;
2599 	int max_depth = 0;
2600 	unsigned int depths[64];
2601 
2602 	memset(depths, 0, sizeof(depths));
2603 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2604 		depth = 0;
2605 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2606 			depth++;
2607 		}
2608 		if (depth > max_depth)
2609 			max_depth = depth;
2610 		if (depth > 63)
2611 			depth = 63;
2612 		depths[depth]++;
2613 	}
2614 
2615 	for (depth = 0; depth < 64; depth++) {
2616 		printf("  [%2d]: %8u", depth, depths[depth]);
2617 		if ((depth & 3) == 3)
2618 			printf("\n");
2619 		if (depth == max_depth)
2620 			break;
2621 	}
2622 	if ((depth & 3) != 3)
2623 		printf("\n");
2624 	printf("Max depth found was %d\n", max_depth);
2625 }
2626 #endif /* DEBUG */
2627 
2628 #if defined(PMAPCHECK) || defined(DEBUG)
2629 void
2630 pmap_pvo_verify(void)
2631 {
2632 	int ptegidx;
2633 	int s;
2634 
2635 	s = splvm();
2636 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2637 		struct pvo_entry *pvo;
2638 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2639 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2640 				panic("pmap_pvo_verify: invalid pvo %p "
2641 				    "on list %#x", pvo, ptegidx);
2642 			pmap_pvo_check(pvo);
2643 		}
2644 	}
2645 	splx(s);
2646 }
2647 #endif /* PMAPCHECK */
2648 
2649 
2650 void *
2651 pmap_pool_ualloc(struct pool *pp, int flags)
2652 {
2653 	struct pvo_page *pvop;
2654 
2655 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2656 	if (pvop != NULL) {
2657 		pmap_upvop_free--;
2658 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2659 		return pvop;
2660 	}
2661 	if (uvm.page_init_done != TRUE) {
2662 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2663 	}
2664 	return pmap_pool_malloc(pp, flags);
2665 }
2666 
2667 void *
2668 pmap_pool_malloc(struct pool *pp, int flags)
2669 {
2670 	struct pvo_page *pvop;
2671 	struct vm_page *pg;
2672 
2673 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2674 	if (pvop != NULL) {
2675 		pmap_mpvop_free--;
2676 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2677 		return pvop;
2678 	}
2679  again:
2680 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2681 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2682 	if (__predict_false(pg == NULL)) {
2683 		if (flags & PR_WAITOK) {
2684 			uvm_wait("plpg");
2685 			goto again;
2686 		} else {
2687 			return (0);
2688 		}
2689 	}
2690 	return (void *) VM_PAGE_TO_PHYS(pg);
2691 }
2692 
2693 void
2694 pmap_pool_ufree(struct pool *pp, void *va)
2695 {
2696 	struct pvo_page *pvop;
2697 #if 0
2698 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2699 		pmap_pool_mfree(va, size, tag);
2700 		return;
2701 	}
2702 #endif
2703 	pvop = va;
2704 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2705 	pmap_upvop_free++;
2706 	if (pmap_upvop_free > pmap_upvop_maxfree)
2707 		pmap_upvop_maxfree = pmap_upvop_free;
2708 }
2709 
2710 void
2711 pmap_pool_mfree(struct pool *pp, void *va)
2712 {
2713 	struct pvo_page *pvop;
2714 
2715 	pvop = va;
2716 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2717 	pmap_mpvop_free++;
2718 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
2719 		pmap_mpvop_maxfree = pmap_mpvop_free;
2720 #if 0
2721 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2722 #endif
2723 }
2724 
2725 /*
2726  * This routine in bootstraping to steal to-be-managed memory (which will
2727  * then be unmanaged).  We use it to grab from the first 256MB for our
2728  * pmap needs and above 256MB for other stuff.
2729  */
2730 vaddr_t
2731 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2732 {
2733 	vsize_t size;
2734 	vaddr_t va;
2735 	paddr_t pa = 0;
2736 	int npgs, bank;
2737 	struct vm_physseg *ps;
2738 
2739 	if (uvm.page_init_done == TRUE)
2740 		panic("pmap_steal_memory: called _after_ bootstrap");
2741 
2742 	*vstartp = VM_MIN_KERNEL_ADDRESS;
2743 	*vendp = VM_MAX_KERNEL_ADDRESS;
2744 
2745 	size = round_page(vsize);
2746 	npgs = atop(size);
2747 
2748 	/*
2749 	 * PA 0 will never be among those given to UVM so we can use it
2750 	 * to indicate we couldn't steal any memory.
2751 	 */
2752 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2753 		if (ps->free_list == VM_FREELIST_FIRST256 &&
2754 		    ps->avail_end - ps->avail_start >= npgs) {
2755 			pa = ptoa(ps->avail_start);
2756 			break;
2757 		}
2758 	}
2759 
2760 	if (pa == 0)
2761 		panic("pmap_steal_memory: no approriate memory to steal!");
2762 
2763 	ps->avail_start += npgs;
2764 	ps->start += npgs;
2765 
2766 	/*
2767 	 * If we've used up all the pages in the segment, remove it and
2768 	 * compact the list.
2769 	 */
2770 	if (ps->avail_start == ps->end) {
2771 		/*
2772 		 * If this was the last one, then a very bad thing has occurred
2773 		 */
2774 		if (--vm_nphysseg == 0)
2775 			panic("pmap_steal_memory: out of memory!");
2776 
2777 		printf("pmap_steal_memory: consumed bank %d\n", bank);
2778 		for (; bank < vm_nphysseg; bank++, ps++) {
2779 			ps[0] = ps[1];
2780 		}
2781 	}
2782 
2783 	va = (vaddr_t) pa;
2784 	memset((caddr_t) va, 0, size);
2785 	pmap_pages_stolen += npgs;
2786 #ifdef DEBUG
2787 	if (pmapdebug && npgs > 1) {
2788 		u_int cnt = 0;
2789 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2790 			cnt += ps->avail_end - ps->avail_start;
2791 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2792 		    npgs, pmap_pages_stolen, cnt);
2793 	}
2794 #endif
2795 
2796 	return va;
2797 }
2798 
2799 /*
2800  * Find a chuck of memory with right size and alignment.
2801  */
2802 void *
2803 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2804 {
2805 	struct mem_region *mp;
2806 	paddr_t s, e;
2807 	int i, j;
2808 
2809 	size = round_page(size);
2810 
2811 	DPRINTFN(BOOT,
2812 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
2813 	    size, alignment, at_end));
2814 
2815 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2816 		panic("pmap_boot_find_memory: invalid alignment %lx",
2817 		    alignment);
2818 
2819 	if (at_end) {
2820 		if (alignment != PAGE_SIZE)
2821 			panic("pmap_boot_find_memory: invalid ending "
2822 			    "alignment %lx", alignment);
2823 
2824 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2825 			s = mp->start + mp->size - size;
2826 			if (s >= mp->start && mp->size >= size) {
2827 				DPRINTFN(BOOT,(": %lx\n", s));
2828 				DPRINTFN(BOOT,
2829 				    ("pmap_boot_find_memory: b-avail[%d] start "
2830 				     "0x%lx size 0x%lx\n", mp - avail,
2831 				     mp->start, mp->size));
2832 				mp->size -= size;
2833 				DPRINTFN(BOOT,
2834 				    ("pmap_boot_find_memory: a-avail[%d] start "
2835 				     "0x%lx size 0x%lx\n", mp - avail,
2836 				     mp->start, mp->size));
2837 				return (void *) s;
2838 			}
2839 		}
2840 		panic("pmap_boot_find_memory: no available memory");
2841 	}
2842 
2843 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2844 		s = (mp->start + alignment - 1) & ~(alignment-1);
2845 		e = s + size;
2846 
2847 		/*
2848 		 * Is the calculated region entirely within the region?
2849 		 */
2850 		if (s < mp->start || e > mp->start + mp->size)
2851 			continue;
2852 
2853 		DPRINTFN(BOOT,(": %lx\n", s));
2854 		if (s == mp->start) {
2855 			/*
2856 			 * If the block starts at the beginning of region,
2857 			 * adjust the size & start. (the region may now be
2858 			 * zero in length)
2859 			 */
2860 			DPRINTFN(BOOT,
2861 			    ("pmap_boot_find_memory: b-avail[%d] start "
2862 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2863 			mp->start += size;
2864 			mp->size -= size;
2865 			DPRINTFN(BOOT,
2866 			    ("pmap_boot_find_memory: a-avail[%d] start "
2867 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2868 		} else if (e == mp->start + mp->size) {
2869 			/*
2870 			 * If the block starts at the beginning of region,
2871 			 * adjust only the size.
2872 			 */
2873 			DPRINTFN(BOOT,
2874 			    ("pmap_boot_find_memory: b-avail[%d] start "
2875 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2876 			mp->size -= size;
2877 			DPRINTFN(BOOT,
2878 			    ("pmap_boot_find_memory: a-avail[%d] start "
2879 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2880 		} else {
2881 			/*
2882 			 * Block is in the middle of the region, so we
2883 			 * have to split it in two.
2884 			 */
2885 			for (j = avail_cnt; j > i + 1; j--) {
2886 				avail[j] = avail[j-1];
2887 			}
2888 			DPRINTFN(BOOT,
2889 			    ("pmap_boot_find_memory: b-avail[%d] start "
2890 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
2891 			mp[1].start = e;
2892 			mp[1].size = mp[0].start + mp[0].size - e;
2893 			mp[0].size = s - mp[0].start;
2894 			avail_cnt++;
2895 			for (; i < avail_cnt; i++) {
2896 				DPRINTFN(BOOT,
2897 				    ("pmap_boot_find_memory: a-avail[%d] "
2898 				     "start 0x%lx size 0x%lx\n", i,
2899 				     avail[i].start, avail[i].size));
2900 			}
2901 		}
2902 		return (void *) s;
2903 	}
2904 	panic("pmap_boot_find_memory: not enough memory for "
2905 	    "%lx/%lx allocation?", size, alignment);
2906 }
2907 
2908 /*
2909  * This is not part of the defined PMAP interface and is specific to the
2910  * PowerPC architecture.  This is called during initppc, before the system
2911  * is really initialized.
2912  */
2913 void
2914 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
2915 {
2916 	struct mem_region *mp, tmp;
2917 	paddr_t s, e;
2918 	psize_t size;
2919 	int i, j;
2920 
2921 	/*
2922 	 * Get memory.
2923 	 */
2924 	mem_regions(&mem, &avail);
2925 #if defined(DEBUG)
2926 	if (pmapdebug & PMAPDEBUG_BOOT) {
2927 		printf("pmap_bootstrap: memory configuration:\n");
2928 		for (mp = mem; mp->size; mp++) {
2929 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
2930 				mp->start, mp->size);
2931 		}
2932 		for (mp = avail; mp->size; mp++) {
2933 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
2934 				mp->start, mp->size);
2935 		}
2936 	}
2937 #endif
2938 
2939 	/*
2940 	 * Find out how much physical memory we have and in how many chunks.
2941 	 */
2942 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
2943 		if (mp->start >= pmap_memlimit)
2944 			continue;
2945 		if (mp->start + mp->size > pmap_memlimit) {
2946 			size = pmap_memlimit - mp->start;
2947 			physmem += btoc(size);
2948 		} else {
2949 			physmem += btoc(mp->size);
2950 		}
2951 		mem_cnt++;
2952 	}
2953 
2954 	/*
2955 	 * Count the number of available entries.
2956 	 */
2957 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
2958 		avail_cnt++;
2959 
2960 	/*
2961 	 * Page align all regions.
2962 	 */
2963 	kernelstart = trunc_page(kernelstart);
2964 	kernelend = round_page(kernelend);
2965 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
2966 		s = round_page(mp->start);
2967 		mp->size -= (s - mp->start);
2968 		mp->size = trunc_page(mp->size);
2969 		mp->start = s;
2970 		e = mp->start + mp->size;
2971 
2972 		DPRINTFN(BOOT,
2973 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
2974 		    i, mp->start, mp->size));
2975 
2976 		/*
2977 		 * Don't allow the end to run beyond our artificial limit
2978 		 */
2979 		if (e > pmap_memlimit)
2980 			e = pmap_memlimit;
2981 
2982 		/*
2983 		 * Is this region empty or strange?  skip it.
2984 		 */
2985 		if (e <= s) {
2986 			mp->start = 0;
2987 			mp->size = 0;
2988 			continue;
2989 		}
2990 
2991 		/*
2992 		 * Does this overlap the beginning of kernel?
2993 		 *   Does extend past the end of the kernel?
2994 		 */
2995 		else if (s < kernelstart && e > kernelstart) {
2996 			if (e > kernelend) {
2997 				avail[avail_cnt].start = kernelend;
2998 				avail[avail_cnt].size = e - kernelend;
2999 				avail_cnt++;
3000 			}
3001 			mp->size = kernelstart - s;
3002 		}
3003 		/*
3004 		 * Check whether this region overlaps the end of the kernel.
3005 		 */
3006 		else if (s < kernelend && e > kernelend) {
3007 			mp->start = kernelend;
3008 			mp->size = e - kernelend;
3009 		}
3010 		/*
3011 		 * Look whether this regions is completely inside the kernel.
3012 		 * Nuke it if it does.
3013 		 */
3014 		else if (s >= kernelstart && e <= kernelend) {
3015 			mp->start = 0;
3016 			mp->size = 0;
3017 		}
3018 		/*
3019 		 * If the user imposed a memory limit, enforce it.
3020 		 */
3021 		else if (s >= pmap_memlimit) {
3022 			mp->start = -PAGE_SIZE;	/* let's know why */
3023 			mp->size = 0;
3024 		}
3025 		else {
3026 			mp->start = s;
3027 			mp->size = e - s;
3028 		}
3029 		DPRINTFN(BOOT,
3030 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
3031 		    i, mp->start, mp->size));
3032 	}
3033 
3034 	/*
3035 	 * Move (and uncount) all the null return to the end.
3036 	 */
3037 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3038 		if (mp->size == 0) {
3039 			tmp = avail[i];
3040 			avail[i] = avail[--avail_cnt];
3041 			avail[avail_cnt] = avail[i];
3042 		}
3043 	}
3044 
3045 	/*
3046 	 * (Bubble)sort them into asecnding order.
3047 	 */
3048 	for (i = 0; i < avail_cnt; i++) {
3049 		for (j = i + 1; j < avail_cnt; j++) {
3050 			if (avail[i].start > avail[j].start) {
3051 				tmp = avail[i];
3052 				avail[i] = avail[j];
3053 				avail[j] = tmp;
3054 			}
3055 		}
3056 	}
3057 
3058 	/*
3059 	 * Make sure they don't overlap.
3060 	 */
3061 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3062 		if (mp[0].start + mp[0].size > mp[1].start) {
3063 			mp[0].size = mp[1].start - mp[0].start;
3064 		}
3065 		DPRINTFN(BOOT,
3066 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3067 		    i, mp->start, mp->size));
3068 	}
3069 	DPRINTFN(BOOT,
3070 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
3071 	    i, mp->start, mp->size));
3072 
3073 #ifdef	PTEGCOUNT
3074 	pmap_pteg_cnt = PTEGCOUNT;
3075 #else /* PTEGCOUNT */
3076 	pmap_pteg_cnt = 0x1000;
3077 
3078 	while (pmap_pteg_cnt < physmem)
3079 		pmap_pteg_cnt <<= 1;
3080 
3081 	pmap_pteg_cnt >>= 1;
3082 #endif /* PTEGCOUNT */
3083 
3084 	/*
3085 	 * Find suitably aligned memory for PTEG hash table.
3086 	 */
3087 	size = pmap_pteg_cnt * sizeof(struct pteg);
3088 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
3089 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3090 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3091 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
3092 		    pmap_pteg_table, size);
3093 #endif
3094 
3095 	memset(__UNVOLATILE(pmap_pteg_table), 0,
3096 		pmap_pteg_cnt * sizeof(struct pteg));
3097 	pmap_pteg_mask = pmap_pteg_cnt - 1;
3098 
3099 	/*
3100 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3101 	 * with pages.  So we just steal them before giving them to UVM.
3102 	 */
3103 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3104 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3105 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3106 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3107 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
3108 		    pmap_pvo_table, size);
3109 #endif
3110 
3111 	for (i = 0; i < pmap_pteg_cnt; i++)
3112 		TAILQ_INIT(&pmap_pvo_table[i]);
3113 
3114 #ifndef MSGBUFADDR
3115 	/*
3116 	 * Allocate msgbuf in high memory.
3117 	 */
3118 	msgbuf_paddr =
3119 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3120 #endif
3121 
3122 #ifdef __HAVE_PMAP_PHYSSEG
3123 	{
3124 		u_int npgs = 0;
3125 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
3126 			npgs += btoc(mp->size);
3127 		size = (sizeof(struct pvo_head) + 1) * npgs;
3128 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
3129 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
3130 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3131 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
3132 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
3133 			    pmap_physseg.pvoh, size);
3134 #endif
3135 	}
3136 #endif
3137 
3138 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3139 		paddr_t pfstart = atop(mp->start);
3140 		paddr_t pfend = atop(mp->start + mp->size);
3141 		if (mp->size == 0)
3142 			continue;
3143 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
3144 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3145 				VM_FREELIST_FIRST256);
3146 		} else if (mp->start >= SEGMENT_LENGTH) {
3147 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3148 				VM_FREELIST_DEFAULT);
3149 		} else {
3150 			pfend = atop(SEGMENT_LENGTH);
3151 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3152 				VM_FREELIST_FIRST256);
3153 			pfstart = atop(SEGMENT_LENGTH);
3154 			pfend = atop(mp->start + mp->size);
3155 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
3156 				VM_FREELIST_DEFAULT);
3157 		}
3158 	}
3159 
3160 	/*
3161 	 * Make sure kernel vsid is allocated as well as VSID 0.
3162 	 */
3163 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3164 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3165 	pmap_vsid_bitmap[0] |= 1;
3166 
3167 	/*
3168 	 * Initialize kernel pmap and hardware.
3169 	 */
3170 #ifndef PPC_OEA64
3171 	for (i = 0; i < 16; i++) {
3172 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
3173 		__asm __volatile ("mtsrin %0,%1"
3174 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
3175 	}
3176 
3177 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3178 	__asm __volatile ("mtsr %0,%1"
3179 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3180 #ifdef KERNEL2_SR
3181 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3182 	__asm __volatile ("mtsr %0,%1"
3183 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3184 #endif
3185 	for (i = 0; i < 16; i++) {
3186 		if (iosrtable[i] & SR601_T) {
3187 			pmap_kernel()->pm_sr[i] = iosrtable[i];
3188 			__asm __volatile ("mtsrin %0,%1"
3189 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3190 		}
3191 	}
3192 #endif /* !PPC_OEA64 */
3193 
3194 	__asm __volatile ("sync; mtsdr1 %0; isync"
3195 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3196 	tlbia();
3197 
3198 #ifdef ALTIVEC
3199 	pmap_use_altivec = cpu_altivec;
3200 #endif
3201 
3202 #ifdef DEBUG
3203 	if (pmapdebug & PMAPDEBUG_BOOT) {
3204 		u_int cnt;
3205 		int bank;
3206 		char pbuf[9];
3207 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3208 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3209 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
3210 			    bank,
3211 			    ptoa(vm_physmem[bank].avail_start),
3212 			    ptoa(vm_physmem[bank].avail_end),
3213 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3214 		}
3215 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3216 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3217 		    pbuf, cnt);
3218 	}
3219 #endif
3220 
3221 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3222 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3223 	    &pmap_pool_uallocator);
3224 
3225 	pool_setlowat(&pmap_upvo_pool, 252);
3226 
3227 	pool_init(&pmap_pool, sizeof(struct pmap),
3228 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
3229 }
3230