xref: /netbsd-src/sys/arch/powerpc/oea/cpu_subr.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: cpu_subr.c,v 1.76 2012/10/20 14:42:15 kiyohara Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.76 2012/10/20 14:42:15 kiyohara Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61 
62 #include <dev/sysmon/sysmonvar.h>
63 
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75 
76 int cpu;
77 int ncpus;
78 
79 struct fmttab {
80 	register_t fmt_mask;
81 	register_t fmt_value;
82 	const char *fmt_string;
83 };
84 
85 /*
86  * This should be one per CPU but since we only support it on 750 variants it
87  * doesn't realy matter since none of them supports SMP
88  */
89 envsys_data_t sensor;
90 
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 	{ L2CR_L2E, 0, " disabled" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
97 	{ L2CR_L2PE, 0, " no parity" },
98 	{ L2CR_L2PE, ~0, " parity enabled" },
99 	{ 0, 0, NULL }
100 };
101 
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 	{ L2CR_L2E, 0, " disabled" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
108 	{ L2CR_L2PE, 0, " no parity" },
109 	{ L2CR_L2PE, ~0, " parity enabled" },
110 	{ 0, 0, NULL }
111 };
112 
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 	{ L2CR_L2E, 0, " disabled" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
119 	{ L2CR_L2PE, 0, " no parity" },
120 	{ L2CR_L2PE, ~0, " parity enabled" },
121 	{ 0, 0, NULL }
122 };
123 
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 	{ L3CR_L3CLK, ~0, " at" },
139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
146 	{ L3CR_L3CLK, ~0, " ratio" },
147 	{ 0, 0, NULL },
148 };
149 
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 	{ L2CR_L2E, 0, " disabled" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 	{ 0, ~0, " 512KB" },
156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
157 	{ L2CR_L2WT, 0, " WB" },
158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 	{ 0, ~0, " L2 cache" },
160 	{ 0, 0, NULL }
161 };
162 
163 static const struct fmttab cpu_l2cr_formats[] = {
164 	{ L2CR_L2E, 0, " disabled" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
169 	{ L2CR_L2PE, 0, " no-parity" },
170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
175 	{ L2CR_L2WT, 0, " WB" },
176 	{ L2CR_L2E, ~0, " L2 cache" },
177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 	{ L2CR_L2CLK, ~0, " at" },
181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
188 	{ L2CR_L2CLK, ~0, " ratio" },
189 	{ 0, 0, NULL }
190 };
191 
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193 
194 struct cputab {
195 	const char name[8];
196 	uint16_t version;
197 	uint16_t revfmt;
198 };
199 #define	REVFMT_MAJMIN	1		/* %u.%u */
200 #define	REVFMT_HEX	2		/* 0x%04x */
201 #define	REVFMT_DEC	3		/* %u */
202 static const struct cputab models[] = {
203 	{ "601",	MPC601,		REVFMT_DEC },
204 	{ "602",	MPC602,		REVFMT_DEC },
205 	{ "603",	MPC603,		REVFMT_MAJMIN },
206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
209 	{ "604",	MPC604,		REVFMT_MAJMIN },
210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
212 	{ "620",	MPC620,  	REVFMT_HEX },
213 	{ "750",	MPC750,		REVFMT_MAJMIN },
214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
225 	{ "970",	IBM970,		REVFMT_MAJMIN },
226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
229 	{ "",		0,		REVFMT_HEX }
230 };
231 
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234     [0] = {
235 	.ci_curlwp = &lwp0,
236     },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248     [0] = {
249 	.ci_curlwp = &lwp0,
250     },
251 };
252 #endif /*MULTIPROCESSOR*/
253 
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258 char cpu_model[80];
259 
260 /* This is to be called from locore.S, and nowhere else. */
261 
262 void
263 cpu_model_init(void)
264 {
265 	u_int pvr, vers;
266 
267 	pvr = mfpvr();
268 	vers = pvr >> 16;
269 
270 	oeacpufeat = 0;
271 
272 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
273 		vers == IBMCELL || vers == IBMPOWER6P5) {
274 		oeacpufeat |= OEACPU_64;
275 		oeacpufeat |= OEACPU_64_BRIDGE;
276 		oeacpufeat |= OEACPU_NOBAT;
277 
278 	} else if (vers == MPC601) {
279 		oeacpufeat |= OEACPU_601;
280 
281 	} else if (MPC745X_P(vers) && vers != MPC7450) {
282 		oeacpufeat |= OEACPU_HIGHSPRG;
283 		oeacpufeat |= OEACPU_XBSEN;
284 		oeacpufeat |= OEACPU_HIGHBAT;
285 		/* Enable more and larger BAT registers */
286 		register_t hid0 = mfspr(SPR_HID0);
287 		hid0 |= HID0_XBSEN;
288 		hid0 |= HID0_HIGH_BAT_EN;
289 		mtspr(SPR_HID0, hid0);
290 
291 	} else if (vers == IBM750FX || vers == IBM750GX) {
292 		oeacpufeat |= OEACPU_HIGHBAT;
293 	}
294 }
295 
296 void
297 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
298 {
299 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
300 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
301 		    (data & fmt->fmt_mask) == fmt->fmt_value)
302 			aprint_normal("%s", fmt->fmt_string);
303 	}
304 }
305 
306 void
307 cpu_idlespin(void)
308 {
309 	register_t msr;
310 
311 	if (powersave <= 0)
312 		return;
313 
314 	__asm volatile(
315 		"sync;"
316 		"mfmsr	%0;"
317 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
318 		"mtmsr	%0;"
319 		"isync;"
320 	    :	"=r"(msr)
321 	    :	"J"(PSL_POW));
322 }
323 
324 void
325 cpu_probe_cache(void)
326 {
327 	u_int assoc, pvr, vers;
328 
329 	pvr = mfpvr();
330 	vers = pvr >> 16;
331 
332 
333 	/* Presently common across almost all implementations. */
334 	curcpu()->ci_ci.dcache_line_size = 32;
335 	curcpu()->ci_ci.icache_line_size = 32;
336 
337 
338 	switch (vers) {
339 #define	K	*1024
340 	case IBM750FX:
341 	case IBM750GX:
342 	case MPC601:
343 	case MPC750:
344 	case MPC7400:
345 	case MPC7447A:
346 	case MPC7448:
347 	case MPC7450:
348 	case MPC7455:
349 	case MPC7457:
350 		curcpu()->ci_ci.dcache_size = 32 K;
351 		curcpu()->ci_ci.icache_size = 32 K;
352 		assoc = 8;
353 		break;
354 	case MPC603:
355 		curcpu()->ci_ci.dcache_size = 8 K;
356 		curcpu()->ci_ci.icache_size = 8 K;
357 		assoc = 2;
358 		break;
359 	case MPC603e:
360 	case MPC603ev:
361 	case MPC604:
362 	case MPC8240:
363 	case MPC8245:
364 	case MPCG2:
365 		curcpu()->ci_ci.dcache_size = 16 K;
366 		curcpu()->ci_ci.icache_size = 16 K;
367 		assoc = 4;
368 		break;
369 	case MPC604e:
370 	case MPC604ev:
371 		curcpu()->ci_ci.dcache_size = 32 K;
372 		curcpu()->ci_ci.icache_size = 32 K;
373 		assoc = 4;
374 		break;
375 	case IBMPOWER3II:
376 		curcpu()->ci_ci.dcache_size = 64 K;
377 		curcpu()->ci_ci.icache_size = 32 K;
378 		curcpu()->ci_ci.dcache_line_size = 128;
379 		curcpu()->ci_ci.icache_line_size = 128;
380 		assoc = 128; /* not a typo */
381 		break;
382 	case IBM970:
383 	case IBM970FX:
384 	case IBM970MP:
385 		curcpu()->ci_ci.dcache_size = 32 K;
386 		curcpu()->ci_ci.icache_size = 64 K;
387 		curcpu()->ci_ci.dcache_line_size = 128;
388 		curcpu()->ci_ci.icache_line_size = 128;
389 		assoc = 2;
390 		break;
391 
392 	default:
393 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
394 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
395 		assoc = 1;
396 #undef	K
397 	}
398 
399 	/*
400 	 * Possibly recolor.
401 	 */
402 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
403 }
404 
405 struct cpu_info *
406 cpu_attach_common(device_t self, int id)
407 {
408 	struct cpu_info *ci;
409 	u_int pvr, vers;
410 
411 	ci = &cpu_info[id];
412 #ifndef MULTIPROCESSOR
413 	/*
414 	 * If this isn't the primary CPU, print an error message
415 	 * and just bail out.
416 	 */
417 	if (id != 0) {
418 		aprint_naive("\n");
419 		aprint_normal(": ID %d\n", id);
420 		aprint_normal_dev(self,
421 		    "processor off-line; "
422 		    "multiprocessor support not present in kernel\n");
423 		return (NULL);
424 	}
425 #endif
426 
427 	ci->ci_cpuid = id;
428 	ci->ci_idepth = -1;
429 	ci->ci_dev = self;
430 	ci->ci_idlespin = cpu_idlespin;
431 
432 	pvr = mfpvr();
433 	vers = (pvr >> 16) & 0xffff;
434 
435 	switch (id) {
436 	case 0:
437 		/* load my cpu_number to PIR */
438 		switch (vers) {
439 		case MPC601:
440 		case MPC604:
441 		case MPC604e:
442 		case MPC604ev:
443 		case MPC7400:
444 		case MPC7410:
445 		case MPC7447A:
446 		case MPC7448:
447 		case MPC7450:
448 		case MPC7455:
449 		case MPC7457:
450 			mtspr(SPR_PIR, id);
451 		}
452 		cpu_setup(self, ci);
453 		break;
454 	default:
455 		aprint_naive("\n");
456 		if (id >= CPU_MAXNUM) {
457 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
458 			panic("cpuattach");
459 		}
460 #ifndef MULTIPROCESSOR
461 		aprint_normal(" not configured\n");
462 		return NULL;
463 #else
464 		mi_cpu_attach(ci);
465 		break;
466 #endif
467 	}
468 	return (ci);
469 }
470 
471 void
472 cpu_setup(device_t self, struct cpu_info *ci)
473 {
474 	u_int hid0, hid0_save, pvr, vers;
475 	const char * const xname = device_xname(self);
476 	const char *bitmask;
477 	char hidbuf[128];
478 	char model[80];
479 
480 	pvr = mfpvr();
481 	vers = (pvr >> 16) & 0xffff;
482 
483 	cpu_identify(model, sizeof(model));
484 	aprint_naive("\n");
485 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
486 	    cpu_number() == 0 ? " (primary)" : "");
487 
488 	/* set the cpu number */
489 	ci->ci_cpuid = cpu_number();
490 	hid0_save = hid0 = mfspr(SPR_HID0);
491 
492 	cpu_probe_cache();
493 
494 	/*
495 	 * Configure power-saving mode.
496 	 */
497 	switch (vers) {
498 	case MPC604:
499 	case MPC604e:
500 	case MPC604ev:
501 		/*
502 		 * Do not have HID0 support settings, but can support
503 		 * MSR[POW] off
504 		 */
505 		powersave = 1;
506 		break;
507 
508 	case MPC603:
509 	case MPC603e:
510 	case MPC603ev:
511 	case MPC7400:
512 	case MPC7410:
513 	case MPC8240:
514 	case MPC8245:
515 	case MPCG2:
516 		/* Select DOZE mode. */
517 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
518 		hid0 |= HID0_DOZE | HID0_DPM;
519 		powersave = 1;
520 		break;
521 
522 	case MPC750:
523 	case IBM750FX:
524 	case IBM750GX:
525 		/* Select NAP mode. */
526 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
527 		hid0 |= HID0_NAP | HID0_DPM;
528 		powersave = 1;
529 		break;
530 
531 	case MPC7447A:
532 	case MPC7448:
533 	case MPC7457:
534 	case MPC7455:
535 	case MPC7450:
536 		/* Enable the 7450 branch caches */
537 		hid0 |= HID0_SGE | HID0_BTIC;
538 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
539 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
540 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
541 			hid0 &= ~HID0_BTIC;
542 		/* Select NAP mode. */
543 		hid0 &= ~HID0_SLEEP;
544 		hid0 |= HID0_NAP | HID0_DPM;
545 		powersave = 1;
546 		break;
547 
548 	case IBM970:
549 	case IBM970FX:
550 	case IBM970MP:
551 	case IBMPOWER3II:
552 	default:
553 		/* No power-saving mode is available. */ ;
554 	}
555 
556 #ifdef NAPMODE
557 	switch (vers) {
558 	case IBM750FX:
559 	case IBM750GX:
560 	case MPC750:
561 	case MPC7400:
562 		/* Select NAP mode. */
563 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
564 		hid0 |= HID0_NAP;
565 		break;
566 	}
567 #endif
568 
569 	switch (vers) {
570 	case IBM750FX:
571 	case IBM750GX:
572 	case MPC750:
573 		hid0 &= ~HID0_DBP;		/* XXX correct? */
574 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
575 		break;
576 
577 	case MPC7400:
578 	case MPC7410:
579 		hid0 &= ~HID0_SPD;
580 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
581 		hid0 |= HID0_EIEC;
582 		break;
583 	}
584 
585 #ifdef MULTIPROCESSOR
586 	switch (vers) {
587 	case MPC603e:
588 		hid0 |= HID0_ABE;
589 	}
590 #endif
591 
592 	if (hid0 != hid0_save) {
593 		mtspr(SPR_HID0, hid0);
594 		__asm volatile("sync;isync");
595 	}
596 
597 
598 	switch (vers) {
599 	case MPC601:
600 		bitmask = HID0_601_BITMASK;
601 		break;
602 	case MPC7450:
603 	case MPC7455:
604 	case MPC7457:
605 		bitmask = HID0_7450_BITMASK;
606 		break;
607 	case IBM970:
608 	case IBM970FX:
609 	case IBM970MP:
610 		bitmask = 0;
611 		break;
612 	default:
613 		bitmask = HID0_BITMASK;
614 		break;
615 	}
616 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
617 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
618 
619 	ci->ci_khz = 0;
620 
621 	/*
622 	 * Display speed and cache configuration.
623 	 */
624 	switch (vers) {
625 	case MPC604:
626 	case MPC604e:
627 	case MPC604ev:
628 	case MPC750:
629 	case IBM750FX:
630 	case IBM750GX:
631 	case MPC7400:
632 	case MPC7410:
633 	case MPC7447A:
634 	case MPC7448:
635 	case MPC7450:
636 	case MPC7455:
637 	case MPC7457:
638 		aprint_normal_dev(self, "");
639 		cpu_probe_speed(ci);
640 		aprint_normal("%u.%02u MHz",
641 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
642 		switch (vers) {
643 		case MPC7450: /* 7441 does not have L3! */
644 		case MPC7455: /* 7445 does not have L3! */
645 		case MPC7457: /* 7447 does not have L3! */
646 			cpu_config_l3cr(vers);
647 			break;
648 		case IBM750FX:
649 		case IBM750GX:
650 		case MPC750:
651 		case MPC7400:
652 		case MPC7410:
653 		case MPC7447A:
654 		case MPC7448:
655 			cpu_config_l2cr(pvr);
656 			break;
657 		default:
658 			break;
659 		}
660 		aprint_normal("\n");
661 		break;
662 	}
663 
664 #if NSYSMON_ENVSYS > 0
665 	/*
666 	 * Attach MPC750 temperature sensor to the envsys subsystem.
667 	 * XXX the 74xx series also has this sensor, but it is not
668 	 * XXX supported by Motorola and may return values that are off by
669 	 * XXX 35-55 degrees C.
670 	 */
671 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
672 		cpu_tau_setup(ci);
673 #endif
674 
675 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
676 		NULL, xname, "clock");
677 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
678 		NULL, xname, "traps");
679 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
680 		&ci->ci_ev_traps, xname, "kernel DSI traps");
681 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
682 		&ci->ci_ev_traps, xname, "user DSI traps");
683 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
684 		&ci->ci_ev_udsi, xname, "user DSI failures");
685 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
686 		&ci->ci_ev_traps, xname, "kernel ISI traps");
687 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
688 		&ci->ci_ev_traps, xname, "user ISI traps");
689 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
690 		&ci->ci_ev_isi, xname, "user ISI failures");
691 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
692 		&ci->ci_ev_traps, xname, "system call traps");
693 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
694 		&ci->ci_ev_traps, xname, "PGM traps");
695 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
696 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
697 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
698 		&ci->ci_ev_fpu, xname, "FPU context switches");
699 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
700 		&ci->ci_ev_traps, xname, "user alignment traps");
701 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
702 		&ci->ci_ev_ali, xname, "user alignment traps");
703 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
704 		&ci->ci_ev_umchk, xname, "user MCHK failures");
705 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
706 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
707 #ifdef ALTIVEC
708 	if (cpu_altivec) {
709 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
710 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
711 	}
712 #endif
713 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
714 		NULL, xname, "IPIs");
715 }
716 
717 /*
718  * According to a document labeled "PVR Register Settings":
719  ** For integrated microprocessors the PVR register inside the device
720  ** will identify the version of the microprocessor core. You must also
721  ** read the Device ID, PCI register 02, to identify the part and the
722  ** Revision ID, PCI register 08, to identify the revision of the
723  ** integrated microprocessor.
724  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
725  */
726 
727 void
728 cpu_identify(char *str, size_t len)
729 {
730 	u_int pvr, major, minor;
731 	uint16_t vers, rev, revfmt;
732 	const struct cputab *cp;
733 	const char *name;
734 	size_t n;
735 
736 	pvr = mfpvr();
737 	vers = pvr >> 16;
738 	rev = pvr;
739 
740 	switch (vers) {
741 	case MPC7410:
742 		minor = (pvr >> 0) & 0xff;
743 		major = minor <= 4 ? 1 : 2;
744 		break;
745 	case MPCG2: /*XXX see note above */
746 		major = (pvr >> 4) & 0xf;
747 		minor = (pvr >> 0) & 0xf;
748 		break;
749 	default:
750 		major = (pvr >>  8) & 0xf;
751 		minor = (pvr >>  0) & 0xf;
752 	}
753 
754 	for (cp = models; cp->name[0] != '\0'; cp++) {
755 		if (cp->version == vers)
756 			break;
757 	}
758 
759 	if (str == NULL) {
760 		str = cpu_model;
761 		len = sizeof(cpu_model);
762 		cpu = vers;
763 	}
764 
765 	revfmt = cp->revfmt;
766 	name = cp->name;
767 	if (rev == MPC750 && pvr == 15) {
768 		name = "755";
769 		revfmt = REVFMT_HEX;
770 	}
771 
772 	if (cp->name[0] != '\0') {
773 		n = snprintf(str, len, "%s (Revision ", cp->name);
774 	} else {
775 		n = snprintf(str, len, "Version %#x (Revision ", vers);
776 	}
777 	if (len > n) {
778 		switch (revfmt) {
779 		case REVFMT_MAJMIN:
780 			snprintf(str + n, len - n, "%u.%u)", major, minor);
781 			break;
782 		case REVFMT_HEX:
783 			snprintf(str + n, len - n, "0x%04x)", rev);
784 			break;
785 		case REVFMT_DEC:
786 			snprintf(str + n, len - n, "%u)", rev);
787 			break;
788 		}
789 	}
790 }
791 
792 #ifdef L2CR_CONFIG
793 u_int l2cr_config = L2CR_CONFIG;
794 #else
795 u_int l2cr_config = 0;
796 #endif
797 
798 #ifdef L3CR_CONFIG
799 u_int l3cr_config = L3CR_CONFIG;
800 #else
801 u_int l3cr_config = 0;
802 #endif
803 
804 void
805 cpu_enable_l2cr(register_t l2cr)
806 {
807 	register_t msr, x;
808 	uint16_t vers;
809 
810 	vers = mfpvr() >> 16;
811 
812 	/* Disable interrupts and set the cache config bits. */
813 	msr = mfmsr();
814 	mtmsr(msr & ~PSL_EE);
815 #ifdef ALTIVEC
816 	if (cpu_altivec)
817 		__asm volatile("dssall");
818 #endif
819 	__asm volatile("sync");
820 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
821 	__asm volatile("sync");
822 
823 	/* Wait for L2 clock to be stable (640 L2 clocks). */
824 	delay(100);
825 
826 	/* Invalidate all L2 contents. */
827 	if (MPC745X_P(vers)) {
828 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
829 		do {
830 			x = mfspr(SPR_L2CR);
831 		} while (x & L2CR_L2I);
832 	} else {
833 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
834 		do {
835 			x = mfspr(SPR_L2CR);
836 		} while (x & L2CR_L2IP);
837 	}
838 	/* Enable L2 cache. */
839 	l2cr |= L2CR_L2E;
840 	mtspr(SPR_L2CR, l2cr);
841 	mtmsr(msr);
842 }
843 
844 void
845 cpu_enable_l3cr(register_t l3cr)
846 {
847 	register_t x;
848 
849 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
850 
851 	/*
852 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
853 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
854 	 *    in L3CR_CONFIG)
855 	 */
856 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
857 	mtspr(SPR_L3CR, l3cr);
858 
859 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
860 	l3cr |= 0x04000000;
861 	mtspr(SPR_L3CR, l3cr);
862 
863 	/* 3: Set L3CLKEN to 1*/
864 	l3cr |= L3CR_L3CLKEN;
865 	mtspr(SPR_L3CR, l3cr);
866 
867 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
868 	__asm volatile("dssall;sync");
869 	/* L3 cache is already disabled, no need to clear L3E */
870 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
871 	do {
872 		x = mfspr(SPR_L3CR);
873 	} while (x & L3CR_L3I);
874 
875 	/* 6: Clear L3CLKEN to 0 */
876 	l3cr &= ~L3CR_L3CLKEN;
877 	mtspr(SPR_L3CR, l3cr);
878 
879 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
880 	__asm volatile("sync");
881 	delay(100);
882 
883 	/* 8: Set L3E and L3CLKEN */
884 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
885 	mtspr(SPR_L3CR, l3cr);
886 
887 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
888 	__asm volatile("sync");
889 	delay(100);
890 }
891 
892 void
893 cpu_config_l2cr(int pvr)
894 {
895 	register_t l2cr;
896 	u_int vers = (pvr >> 16) & 0xffff;
897 
898 	l2cr = mfspr(SPR_L2CR);
899 
900 	/*
901 	 * For MP systems, the firmware may only configure the L2 cache
902 	 * on the first CPU.  In this case, assume that the other CPUs
903 	 * should use the same value for L2CR.
904 	 */
905 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
906 		l2cr_config = l2cr;
907 	}
908 
909 	/*
910 	 * Configure L2 cache if not enabled.
911 	 */
912 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
913 		cpu_enable_l2cr(l2cr_config);
914 		l2cr = mfspr(SPR_L2CR);
915 	}
916 
917 	if ((l2cr & L2CR_L2E) == 0) {
918 		aprint_normal(" L2 cache present but not enabled ");
919 		return;
920 	}
921 	aprint_normal(",");
922 
923 	switch (vers) {
924 	case IBM750FX:
925 	case IBM750GX:
926 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
927 		break;
928 	case MPC750:
929 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
930 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
931 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
932 		else
933 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
934 		break;
935 	case MPC7447A:
936 	case MPC7457:
937 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
938 		return;
939 	case MPC7448:
940 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
941 		return;
942 	case MPC7450:
943 	case MPC7455:
944 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
945 		break;
946 	default:
947 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
948 		break;
949 	}
950 }
951 
952 void
953 cpu_config_l3cr(int vers)
954 {
955 	register_t l2cr;
956 	register_t l3cr;
957 
958 	l2cr = mfspr(SPR_L2CR);
959 
960 	/*
961 	 * For MP systems, the firmware may only configure the L2 cache
962 	 * on the first CPU.  In this case, assume that the other CPUs
963 	 * should use the same value for L2CR.
964 	 */
965 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
966 		l2cr_config = l2cr;
967 	}
968 
969 	/*
970 	 * Configure L2 cache if not enabled.
971 	 */
972 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
973 		cpu_enable_l2cr(l2cr_config);
974 		l2cr = mfspr(SPR_L2CR);
975 	}
976 
977 	aprint_normal(",");
978 	switch (vers) {
979 	case MPC7447A:
980 	case MPC7457:
981 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
982 		return;
983 	case MPC7448:
984 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
985 		return;
986 	default:
987 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
988 		break;
989 	}
990 
991 	l3cr = mfspr(SPR_L3CR);
992 
993 	/*
994 	 * For MP systems, the firmware may only configure the L3 cache
995 	 * on the first CPU.  In this case, assume that the other CPUs
996 	 * should use the same value for L3CR.
997 	 */
998 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
999 		l3cr_config = l3cr;
1000 	}
1001 
1002 	/*
1003 	 * Configure L3 cache if not enabled.
1004 	 */
1005 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1006 		cpu_enable_l3cr(l3cr_config);
1007 		l3cr = mfspr(SPR_L3CR);
1008 	}
1009 
1010 	if (l3cr & L3CR_L3E) {
1011 		aprint_normal(",");
1012 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1013 	}
1014 }
1015 
1016 void
1017 cpu_probe_speed(struct cpu_info *ci)
1018 {
1019 	uint64_t cps;
1020 
1021 	mtspr(SPR_MMCR0, MMCR0_FC);
1022 	mtspr(SPR_PMC1, 0);
1023 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1024 	delay(100000);
1025 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1026 
1027 	mtspr(SPR_MMCR0, MMCR0_FC);
1028 
1029 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1030 }
1031 
1032 /*
1033  * Read the Dynamic Frequency Switching state and return a divisor for
1034  * the maximum frequency.
1035  */
1036 int
1037 cpu_get_dfs(void)
1038 {
1039 	u_int pvr, vers;
1040 
1041 	pvr = mfpvr();
1042 	vers = pvr >> 16;
1043 
1044 	switch (vers) {
1045 	case MPC7448:
1046 		if (mfspr(SPR_HID1) & HID1_DFS4)
1047 			return 4;
1048 	case MPC7447A:
1049 		if (mfspr(SPR_HID1) & HID1_DFS2)
1050 			return 2;
1051 	}
1052 	return 1;
1053 }
1054 
1055 /*
1056  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1057  */
1058 void
1059 cpu_set_dfs(int div)
1060 {
1061 	uint64_t where;
1062 	u_int dfs_mask, pvr, vers;
1063 
1064 	pvr = mfpvr();
1065 	vers = pvr >> 16;
1066 	dfs_mask = 0;
1067 
1068 	switch (vers) {
1069 	case MPC7448:
1070 		dfs_mask |= HID1_DFS4;
1071 	case MPC7447A:
1072 		dfs_mask |= HID1_DFS2;
1073 		break;
1074 	default:
1075 		printf("cpu_set_dfs: DFS not supported\n");
1076 		return;
1077 
1078 	}
1079 
1080 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1081 	xc_wait(where);
1082 }
1083 
1084 static void
1085 cpu_set_dfs_xcall(void *arg1, void *arg2)
1086 {
1087 	u_int dfs_mask, hid1, old_hid1;
1088 	int *divisor, s;
1089 
1090 	divisor = arg1;
1091 	dfs_mask = *(u_int *)arg2;
1092 
1093 	s = splhigh();
1094 	hid1 = old_hid1 = mfspr(SPR_HID1);
1095 
1096 	switch (*divisor) {
1097 	case 1:
1098 		hid1 &= ~dfs_mask;
1099 		break;
1100 	case 2:
1101 		hid1 &= ~(dfs_mask & HID1_DFS4);
1102 		hid1 |= dfs_mask & HID1_DFS2;
1103 		break;
1104 	case 4:
1105 		hid1 &= ~(dfs_mask & HID1_DFS2);
1106 		hid1 |= dfs_mask & HID1_DFS4;
1107 		break;
1108 	}
1109 
1110 	if (hid1 != old_hid1) {
1111 		__asm volatile("sync");
1112 		mtspr(SPR_HID1, hid1);
1113 		__asm volatile("sync;isync");
1114 	}
1115 
1116 	splx(s);
1117 }
1118 
1119 #if NSYSMON_ENVSYS > 0
1120 void
1121 cpu_tau_setup(struct cpu_info *ci)
1122 {
1123 	struct sysmon_envsys *sme;
1124 	int error, therm_delay;
1125 
1126 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1127 	mtspr(SPR_THRM2, 0);
1128 
1129 	/*
1130 	 * we need to figure out how much 20+us in units of CPU clock cycles
1131 	 * are
1132 	 */
1133 
1134 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1135 
1136         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1137 
1138 	sme = sysmon_envsys_create();
1139 
1140 	sensor.units = ENVSYS_STEMP;
1141 	sensor.state = ENVSYS_SINVALID;
1142 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1143 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1144 		sysmon_envsys_destroy(sme);
1145 		return;
1146 	}
1147 
1148 	sme->sme_name = device_xname(ci->ci_dev);
1149 	sme->sme_cookie = ci;
1150 	sme->sme_refresh = cpu_tau_refresh;
1151 
1152 	if ((error = sysmon_envsys_register(sme)) != 0) {
1153 		aprint_error_dev(ci->ci_dev,
1154 		    " unable to register with sysmon (%d)\n", error);
1155 		sysmon_envsys_destroy(sme);
1156 	}
1157 }
1158 
1159 
1160 /* Find the temperature of the CPU. */
1161 void
1162 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1163 {
1164 	int i, threshold, count;
1165 
1166 	threshold = 64; /* Half of the 7-bit sensor range */
1167 
1168 	/* Successive-approximation code adapted from Motorola
1169 	 * application note AN1800/D, "Programming the Thermal Assist
1170 	 * Unit in the MPC750 Microprocessor".
1171 	 */
1172 	for (i = 5; i >= 0 ; i--) {
1173 		mtspr(SPR_THRM1,
1174 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1175 		count = 0;
1176 		while ((count < 100000) &&
1177 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1178 			count++;
1179 			delay(1);
1180 		}
1181 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1182 			/* The interrupt bit was set, meaning the
1183 			 * temperature was above the threshold
1184 			 */
1185 			threshold += 1 << i;
1186 		} else {
1187 			/* Temperature was below the threshold */
1188 			threshold -= 1 << i;
1189 		}
1190 	}
1191 	threshold += 2;
1192 
1193 	/* Convert the temperature in degrees C to microkelvin */
1194 	edata->value_cur = (threshold * 1000000) + 273150000;
1195 	edata->state = ENVSYS_SVALID;
1196 }
1197 #endif /* NSYSMON_ENVSYS > 0 */
1198 
1199 #ifdef MULTIPROCESSOR
1200 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1201 
1202 int
1203 cpu_spinup(device_t self, struct cpu_info *ci)
1204 {
1205 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1206 	struct pglist mlist;
1207 	int i, error, pvr, vers;
1208 	char *hp;
1209 
1210 	pvr = mfpvr();
1211 	vers = pvr >> 16;
1212 	KASSERT(ci != curcpu());
1213 
1214 	/* Now allocate a hatch stack */
1215 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1216 	    &mlist, 1, 1);
1217 	if (error) {
1218 		aprint_error(": unable to allocate hatch stack\n");
1219 		return -1;
1220 	}
1221 
1222 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1223 	memset(hp, 0, HATCH_STACK_SIZE);
1224 
1225 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1226 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1227 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1228 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1229 
1230 	cpu_hatch_data = h;
1231 	h->hatch_running = 0;
1232 	h->hatch_self = self;
1233 	h->hatch_ci = ci;
1234 	h->hatch_pir = ci->ci_cpuid;
1235 
1236 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1237 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1238 
1239 	/* copy special registers */
1240 
1241 	h->hatch_hid0 = mfspr(SPR_HID0);
1242 
1243 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1244 	for (i = 0; i < 16; i++) {
1245 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1246 		       "r"(i << ADDR_SR_SHFT));
1247 	}
1248 	if (oeacpufeat & OEACPU_64)
1249 		h->hatch_asr = mfspr(SPR_ASR);
1250 	else
1251 		h->hatch_asr = 0;
1252 
1253 	/* copy the bat regs */
1254 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1255 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1256 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1257 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1258 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1259 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1260 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1261 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1262 	__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1263 	__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1264 	__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1265 	__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1266 	__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1267 	__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1268 	__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1269 	__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1270 	__asm volatile ("sync; isync");
1271 
1272 	if (md_setup_trampoline(h, ci) == -1)
1273 		return -1;
1274 	md_presync_timebase(h);
1275 	md_start_timebase(h);
1276 
1277 	/* wait for secondary printf */
1278 
1279 	delay(200000);
1280 
1281 #ifdef CACHE_PROTO_MEI
1282 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1283 	__asm volatile ("sync; isync");
1284 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1285 	__asm volatile ("sync; isync");
1286 #endif
1287 	if (h->hatch_running < 1) {
1288 #ifdef CACHE_PROTO_MEI
1289 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1290 		__asm volatile ("sync; isync");
1291 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1292 		__asm volatile ("sync; isync");
1293 #endif
1294 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1295 		    ci->ci_cpuid, cpu_spinstart_ack);
1296 		Debugger();
1297 		return -1;
1298 	}
1299 
1300 	/* Register IPI Interrupt */
1301 	if (ipiops.ppc_establish_ipi)
1302 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1303 
1304 	return 0;
1305 }
1306 
1307 static volatile int start_secondary_cpu;
1308 
1309 register_t
1310 cpu_hatch(void)
1311 {
1312 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1313 	struct cpu_info * const ci = h->hatch_ci;
1314 	struct pcb *pcb;
1315 	u_int msr;
1316 	int i;
1317 
1318 	/* Initialize timebase. */
1319 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1320 
1321 	/*
1322 	 * Set PIR (Processor Identification Register).  i.e. whoami
1323 	 * Note that PIR is read-only on some CPU versions, so we write to it
1324 	 * only if it has a different value than we need.
1325 	 */
1326 
1327 	msr = mfspr(SPR_PIR);
1328 	if (msr != h->hatch_pir)
1329 		mtspr(SPR_PIR, h->hatch_pir);
1330 
1331 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
1332 	curlwp = ci->ci_curlwp;
1333 	cpu_spinstart_ack = 0;
1334 
1335 	/* Initialize MMU. */
1336 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1337 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1338 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1339 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1340 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1341 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1342 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1343 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1344 	__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1345 	__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1346 	__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1347 	__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1348 	__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1349 	__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1350 	__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1351 	__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1352 
1353 	mtspr(SPR_HID0, h->hatch_hid0);
1354 
1355 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1356 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
1357 
1358 	__asm volatile ("sync");
1359 	for (i = 0; i < 16; i++)
1360 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1361 	__asm volatile ("sync; isync");
1362 
1363 	if (oeacpufeat & OEACPU_64)
1364 		mtspr(SPR_ASR, h->hatch_asr);
1365 
1366 	cpu_spinstart_ack = 1;
1367 	__asm ("ptesync");
1368 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1369 	__asm volatile ("sync; isync");
1370 
1371 	cpu_spinstart_ack = 5;
1372 	for (i = 0; i < 16; i++)
1373 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1374 		       "r"(i << ADDR_SR_SHFT));
1375 
1376 	/* Enable I/D address translations. */
1377 	msr = mfmsr();
1378 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1379 	mtmsr(msr);
1380 	__asm volatile ("sync; isync");
1381 	cpu_spinstart_ack = 2;
1382 
1383 	md_sync_timebase(h);
1384 
1385 	cpu_setup(h->hatch_self, ci);
1386 
1387 	h->hatch_running = 1;
1388 	__asm volatile ("sync; isync");
1389 
1390 	while (start_secondary_cpu == 0)
1391 		;
1392 
1393 	__asm volatile ("sync; isync");
1394 
1395 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1396 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1397 
1398 	md_setup_interrupts();
1399 
1400 	ci->ci_ipending = 0;
1401 	ci->ci_cpl = 0;
1402 
1403 	mtmsr(mfmsr() | PSL_EE);
1404 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1405 	return pcb->pcb_sp;
1406 }
1407 
1408 void
1409 cpu_boot_secondary_processors(void)
1410 {
1411 	start_secondary_cpu = 1;
1412 	__asm volatile ("sync");
1413 }
1414 
1415 #endif /*MULTIPROCESSOR*/
1416