xref: /netbsd-src/sys/arch/powerpc/oea/cpu_subr.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: cpu_subr.c,v 1.86 2017/09/30 03:34:04 macallan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.86 2017/09/30 03:34:04 macallan Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61 
62 #include <dev/sysmon/sysmonvar.h>
63 
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75 
76 int cpu = -1;
77 int ncpus;
78 
79 struct fmttab {
80 	register_t fmt_mask;
81 	register_t fmt_value;
82 	const char *fmt_string;
83 };
84 
85 /*
86  * This should be one per CPU but since we only support it on 750 variants it
87  * doesn't realy matter since none of them supports SMP
88  */
89 envsys_data_t sensor;
90 
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 	{ L2CR_L2E, 0, " disabled" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
97 	{ L2CR_L2PE, 0, " no parity" },
98 	{ L2CR_L2PE, ~0, " parity enabled" },
99 	{ 0, 0, NULL }
100 };
101 
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 	{ L2CR_L2E, 0, " disabled" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
108 	{ L2CR_L2PE, 0, " no parity" },
109 	{ L2CR_L2PE, ~0, " parity enabled" },
110 	{ 0, 0, NULL }
111 };
112 
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 	{ L2CR_L2E, 0, " disabled" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
119 	{ L2CR_L2PE, 0, " no parity" },
120 	{ L2CR_L2PE, ~0, " parity enabled" },
121 	{ 0, 0, NULL }
122 };
123 
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 	{ L3CR_L3CLK, ~0, " at" },
139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
146 	{ L3CR_L3CLK, ~0, " ratio" },
147 	{ 0, 0, NULL },
148 };
149 
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 	{ L2CR_L2E, 0, " disabled" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 	{ 0, ~0, " 512KB" },
156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
157 	{ L2CR_L2WT, 0, " WB" },
158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 	{ 0, ~0, " L2 cache" },
160 	{ 0, 0, NULL }
161 };
162 
163 static const struct fmttab cpu_l2cr_formats[] = {
164 	{ L2CR_L2E, 0, " disabled" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
169 	{ L2CR_L2PE, 0, " no-parity" },
170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
175 	{ L2CR_L2WT, 0, " WB" },
176 	{ L2CR_L2E, ~0, " L2 cache" },
177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 	{ L2CR_L2CLK, ~0, " at" },
181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
188 	{ L2CR_L2CLK, ~0, " ratio" },
189 	{ 0, 0, NULL }
190 };
191 
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193 
194 struct cputab {
195 	const char name[8];
196 	uint16_t version;
197 	uint16_t revfmt;
198 };
199 #define	REVFMT_MAJMIN	1		/* %u.%u */
200 #define	REVFMT_HEX	2		/* 0x%04x */
201 #define	REVFMT_DEC	3		/* %u */
202 static const struct cputab models[] = {
203 	{ "601",	MPC601,		REVFMT_DEC },
204 	{ "602",	MPC602,		REVFMT_DEC },
205 	{ "603",	MPC603,		REVFMT_MAJMIN },
206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
209 	{ "604",	MPC604,		REVFMT_MAJMIN },
210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
212 	{ "620",	MPC620,  	REVFMT_HEX },
213 	{ "750",	MPC750,		REVFMT_MAJMIN },
214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
225 	{ "970",	IBM970,		REVFMT_MAJMIN },
226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
229 	{ "",		0,		REVFMT_HEX }
230 };
231 
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234     [0] = {
235 	.ci_curlwp = &lwp0,
236     },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248     [0] = {
249 	.ci_curlwp = &lwp0,
250     },
251 };
252 #endif /*MULTIPROCESSOR*/
253 
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258 
259 /* This is to be called from locore.S, and nowhere else. */
260 
261 void
262 cpu_model_init(void)
263 {
264 	u_int pvr, vers;
265 
266 	pvr = mfpvr();
267 	vers = pvr >> 16;
268 
269 	oeacpufeat = 0;
270 
271 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
272 		vers == IBMCELL || vers == IBMPOWER6P5) {
273 		oeacpufeat |= OEACPU_64;
274 		oeacpufeat |= OEACPU_64_BRIDGE;
275 		oeacpufeat |= OEACPU_NOBAT;
276 
277 	} else if (vers == MPC601) {
278 		oeacpufeat |= OEACPU_601;
279 
280 	} else if (MPC745X_P(vers)) {
281 		register_t hid1 = mfspr(SPR_HID1);
282 
283 		if (vers != MPC7450) {
284 			register_t hid0 = mfspr(SPR_HID0);
285 
286 			/* Enable more SPRG registers */
287 			oeacpufeat |= OEACPU_HIGHSPRG;
288 
289 			/* Enable more BAT registers */
290 			oeacpufeat |= OEACPU_HIGHBAT;
291 			hid0 |= HID0_HIGH_BAT_EN;
292 
293 			/* Enable larger BAT registers */
294 			oeacpufeat |= OEACPU_XBSEN;
295 			hid0 |= HID0_XBSEN;
296 
297 			mtspr(SPR_HID0, hid0);
298 			__asm volatile("sync;isync");
299 		}
300 
301 		/* Enable address broadcasting for MP systems */
302 		hid1 |= HID1_SYNCBE | HID1_ABE;
303 
304 		mtspr(SPR_HID1, hid1);
305 		__asm volatile("sync;isync");
306 
307 	} else if (vers == IBM750FX || vers == IBM750GX) {
308 		oeacpufeat |= OEACPU_HIGHBAT;
309 	}
310 }
311 
312 void
313 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
314 {
315 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
316 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
317 		    (data & fmt->fmt_mask) == fmt->fmt_value)
318 			aprint_normal("%s", fmt->fmt_string);
319 	}
320 }
321 
322 void
323 cpu_idlespin(void)
324 {
325 	register_t msr;
326 
327 	if (powersave <= 0)
328 		return;
329 
330 	__asm volatile(
331 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
332 		"dssall;"
333 #endif
334 		"sync;"
335 		"mfmsr	%0;"
336 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
337 		"mtmsr	%0;"
338 		"isync;"
339 	    :	"=r"(msr)
340 	    :	"J"(PSL_POW));
341 }
342 
343 void
344 cpu_probe_cache(void)
345 {
346 	u_int assoc, pvr, vers;
347 
348 	pvr = mfpvr();
349 	vers = pvr >> 16;
350 
351 
352 	/* Presently common across almost all implementations. */
353 	curcpu()->ci_ci.dcache_line_size = 32;
354 	curcpu()->ci_ci.icache_line_size = 32;
355 
356 
357 	switch (vers) {
358 #define	K	*1024
359 	case IBM750FX:
360 	case IBM750GX:
361 	case MPC601:
362 	case MPC750:
363 	case MPC7400:
364 	case MPC7447A:
365 	case MPC7448:
366 	case MPC7450:
367 	case MPC7455:
368 	case MPC7457:
369 		curcpu()->ci_ci.dcache_size = 32 K;
370 		curcpu()->ci_ci.icache_size = 32 K;
371 		assoc = 8;
372 		break;
373 	case MPC603:
374 		curcpu()->ci_ci.dcache_size = 8 K;
375 		curcpu()->ci_ci.icache_size = 8 K;
376 		assoc = 2;
377 		break;
378 	case MPC603e:
379 	case MPC603ev:
380 	case MPC604:
381 	case MPC8240:
382 	case MPC8245:
383 	case MPCG2:
384 		curcpu()->ci_ci.dcache_size = 16 K;
385 		curcpu()->ci_ci.icache_size = 16 K;
386 		assoc = 4;
387 		break;
388 	case MPC604e:
389 	case MPC604ev:
390 		curcpu()->ci_ci.dcache_size = 32 K;
391 		curcpu()->ci_ci.icache_size = 32 K;
392 		assoc = 4;
393 		break;
394 	case IBMPOWER3II:
395 		curcpu()->ci_ci.dcache_size = 64 K;
396 		curcpu()->ci_ci.icache_size = 32 K;
397 		curcpu()->ci_ci.dcache_line_size = 128;
398 		curcpu()->ci_ci.icache_line_size = 128;
399 		assoc = 128; /* not a typo */
400 		break;
401 	case IBM970:
402 	case IBM970FX:
403 	case IBM970MP:
404 		curcpu()->ci_ci.dcache_size = 32 K;
405 		curcpu()->ci_ci.icache_size = 64 K;
406 		curcpu()->ci_ci.dcache_line_size = 128;
407 		curcpu()->ci_ci.icache_line_size = 128;
408 		assoc = 2;
409 		break;
410 
411 	default:
412 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
413 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
414 		assoc = 1;
415 #undef	K
416 	}
417 
418 	/*
419 	 * Possibly recolor.
420 	 */
421 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
422 }
423 
424 struct cpu_info *
425 cpu_attach_common(device_t self, int id)
426 {
427 	struct cpu_info *ci;
428 	u_int pvr, vers;
429 
430 	ci = &cpu_info[id];
431 #ifndef MULTIPROCESSOR
432 	/*
433 	 * If this isn't the primary CPU, print an error message
434 	 * and just bail out.
435 	 */
436 	if (id != 0) {
437 		aprint_naive("\n");
438 		aprint_normal(": ID %d\n", id);
439 		aprint_normal_dev(self,
440 		    "processor off-line; "
441 		    "multiprocessor support not present in kernel\n");
442 		return (NULL);
443 	}
444 #endif
445 
446 	ci->ci_cpuid = id;
447 	ci->ci_idepth = -1;
448 	ci->ci_dev = self;
449 	ci->ci_idlespin = cpu_idlespin;
450 
451 	pvr = mfpvr();
452 	vers = (pvr >> 16) & 0xffff;
453 
454 	switch (id) {
455 	case 0:
456 		/* load my cpu_number to PIR */
457 		switch (vers) {
458 		case MPC601:
459 		case MPC604:
460 		case MPC604e:
461 		case MPC604ev:
462 		case MPC7400:
463 		case MPC7410:
464 		case MPC7447A:
465 		case MPC7448:
466 		case MPC7450:
467 		case MPC7455:
468 		case MPC7457:
469 			mtspr(SPR_PIR, id);
470 		}
471 		cpu_setup(self, ci);
472 		break;
473 	default:
474 		aprint_naive("\n");
475 		if (id >= CPU_MAXNUM) {
476 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
477 			panic("cpuattach");
478 		}
479 #ifndef MULTIPROCESSOR
480 		aprint_normal(" not configured\n");
481 		return NULL;
482 #else
483 		mi_cpu_attach(ci);
484 		break;
485 #endif
486 	}
487 	return (ci);
488 }
489 
490 void
491 cpu_setup(device_t self, struct cpu_info *ci)
492 {
493 	u_int pvr, vers;
494 	const char * const xname = device_xname(self);
495 	const char *bitmask;
496 	char hidbuf[128];
497 	char model[80];
498 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
499 	char hidbuf_u[128];
500 	const char *bitmasku = NULL;
501 #endif
502 #if defined(PPC_OEA64_BRIDGE)
503 	volatile uint64_t hid0;
504 #else
505 	register_t hid0;
506 #endif
507 
508 	pvr = mfpvr();
509 	vers = (pvr >> 16) & 0xffff;
510 
511 	cpu_identify(model, sizeof(model));
512 	aprint_naive("\n");
513 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
514 	    cpu_number() == 0 ? " (primary)" : "");
515 
516 	/* set the cpu number */
517 	ci->ci_cpuid = cpu_number();
518 #if defined(_ARCH_PPC64)
519 	__asm volatile("mfspr %0,%1" : "=r"(hid0) : "K"(SPR_HID0));
520 #else
521 	hid0 = mfspr(SPR_HID0);
522 #endif
523 
524 	cpu_probe_cache();
525 
526 	/*
527 	 * Configure power-saving mode.
528 	 */
529 	switch (vers) {
530 	case MPC604:
531 	case MPC604e:
532 	case MPC604ev:
533 		/*
534 		 * Do not have HID0 support settings, but can support
535 		 * MSR[POW] off
536 		 */
537 		powersave = 1;
538 		break;
539 
540 	case MPC603:
541 	case MPC603e:
542 	case MPC603ev:
543 	case MPC7400:
544 	case MPC7410:
545 	case MPC8240:
546 	case MPC8245:
547 	case MPCG2:
548 		/* Select DOZE mode. */
549 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
550 		hid0 |= HID0_DOZE | HID0_DPM;
551 		powersave = 1;
552 		break;
553 
554 	case MPC750:
555 	case IBM750FX:
556 	case IBM750GX:
557 		/* Select NAP mode. */
558 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
559 		hid0 |= HID0_NAP | HID0_DPM;
560 		powersave = 1;
561 		break;
562 
563 	case MPC7447A:
564 	case MPC7448:
565 	case MPC7457:
566 	case MPC7455:
567 	case MPC7450:
568 		/* Enable the 7450 branch caches */
569 		hid0 |= HID0_SGE | HID0_BTIC;
570 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
571 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
572 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
573 			hid0 &= ~HID0_BTIC;
574 		/* Select NAP mode. */
575 		hid0 &= ~HID0_SLEEP;
576 		hid0 |= HID0_NAP | HID0_DPM;
577 		powersave = 1;
578 		break;
579 
580 	case IBM970:
581 	case IBM970FX:
582 	case IBM970MP:
583 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
584 		hid0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
585 		hid0 |= HID0_64_DOZE | HID0_64_DPM | HID0_64_EX_TBEN |
586 			HID0_64_TB_CTRL | HID0_64_EN_MCHK;
587 		powersave = 1;
588 		break;
589 #endif
590 	case IBMPOWER3II:
591 	default:
592 		/* No power-saving mode is available. */ ;
593 	}
594 
595 #ifdef NAPMODE
596 	switch (vers) {
597 	case IBM750FX:
598 	case IBM750GX:
599 	case MPC750:
600 	case MPC7400:
601 		/* Select NAP mode. */
602 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
603 		hid0 |= HID0_NAP;
604 		break;
605 	}
606 #endif
607 
608 	switch (vers) {
609 	case IBM750FX:
610 	case IBM750GX:
611 	case MPC750:
612 		hid0 &= ~HID0_DBP;		/* XXX correct? */
613 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
614 		break;
615 
616 	case MPC7400:
617 	case MPC7410:
618 		hid0 &= ~HID0_SPD;
619 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
620 		hid0 |= HID0_EIEC;
621 		break;
622 	}
623 
624 	/*
625 	 * according to the 603e manual this is necessary for an external L2
626 	 * cache to work properly
627 	 */
628 	switch (vers) {
629 	case MPC603e:
630 		hid0 |= HID0_ABE;
631 	}
632 
633 #if defined(_ARCH_PPC64)
634 	/* ppc970 needs extre goop around writes to HID0 */
635 	__asm volatile( "sync;" \
636 			"mtspr %0,%1;" \
637 			"mfspr %1,%0;" \
638 			"mfspr %1,%0;" \
639 			"mfspr %1,%0;" \
640 			"mfspr %1,%0;" \
641 			"mfspr %1,%0;" \
642 			"mfspr %1,%0;" \
643 			 : : "K"(SPR_HID0), "r"(hid0));
644 #else
645 	mtspr(SPR_HID0, hid0);
646 #endif
647 	__asm volatile("sync;isync");
648 
649 
650 
651 	switch (vers) {
652 	case MPC601:
653 		bitmask = HID0_601_BITMASK;
654 		break;
655 	case MPC7447A:
656 	case MPC7448:
657 	case MPC7450:
658 	case MPC7455:
659 	case MPC7457:
660 		bitmask = HID0_7450_BITMASK;
661 		break;
662 	case IBM970:
663 	case IBM970FX:
664 	case IBM970MP:
665 		bitmask = HID0_970_BITMASK;
666 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
667 		bitmasku = HID0_970_BITMASK_U;
668 #endif
669 		break;
670 	default:
671 		bitmask = HID0_BITMASK;
672 		break;
673 	}
674 
675 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
676 	if (bitmasku != NULL) {
677 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid0 & 0xffffffff);
678 		snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid0 >> 32);
679 		aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
680 		    hidbuf_u, hidbuf, powersave);
681 	} else
682 #endif
683 	{
684 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
685 		aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
686 		    hidbuf, powersave);
687 	}
688 
689 	ci->ci_khz = 0;
690 
691 	/*
692 	 * Display speed and cache configuration.
693 	 */
694 	switch (vers) {
695 	case MPC604:
696 	case MPC604e:
697 	case MPC604ev:
698 	case MPC750:
699 	case IBM750FX:
700 	case IBM750GX:
701 	case MPC7400:
702 	case MPC7410:
703 	case MPC7447A:
704 	case MPC7448:
705 	case MPC7450:
706 	case MPC7455:
707 	case MPC7457:
708 		aprint_normal_dev(self, "");
709 		cpu_probe_speed(ci);
710 		aprint_normal("%u.%02u MHz",
711 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
712 		switch (vers) {
713 		case MPC7450: /* 7441 does not have L3! */
714 		case MPC7455: /* 7445 does not have L3! */
715 		case MPC7457: /* 7447 does not have L3! */
716 			cpu_config_l3cr(vers);
717 			break;
718 		case IBM750FX:
719 		case IBM750GX:
720 		case MPC750:
721 		case MPC7400:
722 		case MPC7410:
723 		case MPC7447A:
724 		case MPC7448:
725 			cpu_config_l2cr(pvr);
726 			break;
727 		default:
728 			break;
729 		}
730 		aprint_normal("\n");
731 		break;
732 	}
733 
734 #if NSYSMON_ENVSYS > 0
735 	/*
736 	 * Attach MPC750 temperature sensor to the envsys subsystem.
737 	 * XXX the 74xx series also has this sensor, but it is not
738 	 * XXX supported by Motorola and may return values that are off by
739 	 * XXX 35-55 degrees C.
740 	 */
741 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
742 		cpu_tau_setup(ci);
743 #endif
744 
745 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
746 		NULL, xname, "clock");
747 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
748 		NULL, xname, "traps");
749 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
750 		&ci->ci_ev_traps, xname, "kernel DSI traps");
751 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
752 		&ci->ci_ev_traps, xname, "user DSI traps");
753 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
754 		&ci->ci_ev_udsi, xname, "user DSI failures");
755 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
756 		&ci->ci_ev_traps, xname, "kernel ISI traps");
757 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
758 		&ci->ci_ev_traps, xname, "user ISI traps");
759 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
760 		&ci->ci_ev_isi, xname, "user ISI failures");
761 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
762 		&ci->ci_ev_traps, xname, "system call traps");
763 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
764 		&ci->ci_ev_traps, xname, "PGM traps");
765 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
766 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
767 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
768 		&ci->ci_ev_fpu, xname, "FPU context switches");
769 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
770 		&ci->ci_ev_traps, xname, "user alignment traps");
771 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
772 		&ci->ci_ev_ali, xname, "user alignment traps");
773 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
774 		&ci->ci_ev_umchk, xname, "user MCHK failures");
775 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
776 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
777 #ifdef ALTIVEC
778 	if (cpu_altivec) {
779 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
780 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
781 	}
782 #endif
783 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
784 		NULL, xname, "IPIs");
785 }
786 
787 /*
788  * According to a document labeled "PVR Register Settings":
789  ** For integrated microprocessors the PVR register inside the device
790  ** will identify the version of the microprocessor core. You must also
791  ** read the Device ID, PCI register 02, to identify the part and the
792  ** Revision ID, PCI register 08, to identify the revision of the
793  ** integrated microprocessor.
794  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
795  */
796 
797 void
798 cpu_identify(char *str, size_t len)
799 {
800 	u_int pvr, major, minor;
801 	uint16_t vers, rev, revfmt;
802 	const struct cputab *cp;
803 	size_t n;
804 
805 	pvr = mfpvr();
806 	vers = pvr >> 16;
807 	rev = pvr;
808 
809 	switch (vers) {
810 	case MPC7410:
811 		minor = (pvr >> 0) & 0xff;
812 		major = minor <= 4 ? 1 : 2;
813 		break;
814 	case MPCG2: /*XXX see note above */
815 		major = (pvr >> 4) & 0xf;
816 		minor = (pvr >> 0) & 0xf;
817 		break;
818 	default:
819 		major = (pvr >>  8) & 0xf;
820 		minor = (pvr >>  0) & 0xf;
821 	}
822 
823 	for (cp = models; cp->name[0] != '\0'; cp++) {
824 		if (cp->version == vers)
825 			break;
826 	}
827 
828 	if (cpu == -1)
829 		cpu = vers;
830 
831 	revfmt = cp->revfmt;
832 	if (rev == MPC750 && pvr == 15) {
833 		revfmt = REVFMT_HEX;
834 	}
835 
836 	if (cp->name[0] != '\0') {
837 		n = snprintf(str, len, "%s (Revision ", cp->name);
838 	} else {
839 		n = snprintf(str, len, "Version %#x (Revision ", vers);
840 	}
841 	if (len > n) {
842 		switch (revfmt) {
843 		case REVFMT_MAJMIN:
844 			snprintf(str + n, len - n, "%u.%u)", major, minor);
845 			break;
846 		case REVFMT_HEX:
847 			snprintf(str + n, len - n, "0x%04x)", rev);
848 			break;
849 		case REVFMT_DEC:
850 			snprintf(str + n, len - n, "%u)", rev);
851 			break;
852 		}
853 	}
854 }
855 
856 #ifdef L2CR_CONFIG
857 u_int l2cr_config = L2CR_CONFIG;
858 #else
859 u_int l2cr_config = 0;
860 #endif
861 
862 #ifdef L3CR_CONFIG
863 u_int l3cr_config = L3CR_CONFIG;
864 #else
865 u_int l3cr_config = 0;
866 #endif
867 
868 void
869 cpu_enable_l2cr(register_t l2cr)
870 {
871 	register_t msr, x;
872 	uint16_t vers;
873 
874 	vers = mfpvr() >> 16;
875 
876 	/* Disable interrupts and set the cache config bits. */
877 	msr = mfmsr();
878 	mtmsr(msr & ~PSL_EE);
879 #ifdef ALTIVEC
880 	if (cpu_altivec)
881 		__asm volatile("dssall");
882 #endif
883 	__asm volatile("sync");
884 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
885 	__asm volatile("sync");
886 
887 	/* Wait for L2 clock to be stable (640 L2 clocks). */
888 	delay(100);
889 
890 	/* Invalidate all L2 contents. */
891 	if (MPC745X_P(vers)) {
892 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
893 		do {
894 			x = mfspr(SPR_L2CR);
895 		} while (x & L2CR_L2I);
896 	} else {
897 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
898 		do {
899 			x = mfspr(SPR_L2CR);
900 		} while (x & L2CR_L2IP);
901 	}
902 	/* Enable L2 cache. */
903 	l2cr |= L2CR_L2E;
904 	mtspr(SPR_L2CR, l2cr);
905 	mtmsr(msr);
906 }
907 
908 void
909 cpu_enable_l3cr(register_t l3cr)
910 {
911 	register_t x;
912 
913 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
914 
915 	/*
916 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
917 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
918 	 *    in L3CR_CONFIG)
919 	 */
920 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
921 	mtspr(SPR_L3CR, l3cr);
922 
923 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
924 	l3cr |= 0x04000000;
925 	mtspr(SPR_L3CR, l3cr);
926 
927 	/* 3: Set L3CLKEN to 1*/
928 	l3cr |= L3CR_L3CLKEN;
929 	mtspr(SPR_L3CR, l3cr);
930 
931 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
932 	__asm volatile("dssall;sync");
933 	/* L3 cache is already disabled, no need to clear L3E */
934 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
935 	do {
936 		x = mfspr(SPR_L3CR);
937 	} while (x & L3CR_L3I);
938 
939 	/* 6: Clear L3CLKEN to 0 */
940 	l3cr &= ~L3CR_L3CLKEN;
941 	mtspr(SPR_L3CR, l3cr);
942 
943 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
944 	__asm volatile("sync");
945 	delay(100);
946 
947 	/* 8: Set L3E and L3CLKEN */
948 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
949 	mtspr(SPR_L3CR, l3cr);
950 
951 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
952 	__asm volatile("sync");
953 	delay(100);
954 }
955 
956 void
957 cpu_config_l2cr(int pvr)
958 {
959 	register_t l2cr;
960 	u_int vers = (pvr >> 16) & 0xffff;
961 
962 	l2cr = mfspr(SPR_L2CR);
963 
964 	/*
965 	 * For MP systems, the firmware may only configure the L2 cache
966 	 * on the first CPU.  In this case, assume that the other CPUs
967 	 * should use the same value for L2CR.
968 	 */
969 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
970 		l2cr_config = l2cr;
971 	}
972 
973 	/*
974 	 * Configure L2 cache if not enabled.
975 	 */
976 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
977 		cpu_enable_l2cr(l2cr_config);
978 		l2cr = mfspr(SPR_L2CR);
979 	}
980 
981 	if ((l2cr & L2CR_L2E) == 0) {
982 		aprint_normal(" L2 cache present but not enabled ");
983 		return;
984 	}
985 	aprint_normal(",");
986 
987 	switch (vers) {
988 	case IBM750FX:
989 	case IBM750GX:
990 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
991 		break;
992 	case MPC750:
993 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
994 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
995 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
996 		else
997 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
998 		break;
999 	case MPC7447A:
1000 	case MPC7457:
1001 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1002 		return;
1003 	case MPC7448:
1004 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1005 		return;
1006 	case MPC7450:
1007 	case MPC7455:
1008 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1009 		break;
1010 	default:
1011 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1012 		break;
1013 	}
1014 }
1015 
1016 void
1017 cpu_config_l3cr(int vers)
1018 {
1019 	register_t l2cr;
1020 	register_t l3cr;
1021 
1022 	l2cr = mfspr(SPR_L2CR);
1023 
1024 	/*
1025 	 * For MP systems, the firmware may only configure the L2 cache
1026 	 * on the first CPU.  In this case, assume that the other CPUs
1027 	 * should use the same value for L2CR.
1028 	 */
1029 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
1030 		l2cr_config = l2cr;
1031 	}
1032 
1033 	/*
1034 	 * Configure L2 cache if not enabled.
1035 	 */
1036 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1037 		cpu_enable_l2cr(l2cr_config);
1038 		l2cr = mfspr(SPR_L2CR);
1039 	}
1040 
1041 	aprint_normal(",");
1042 	switch (vers) {
1043 	case MPC7447A:
1044 	case MPC7457:
1045 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1046 		return;
1047 	case MPC7448:
1048 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1049 		return;
1050 	default:
1051 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1052 		break;
1053 	}
1054 
1055 	l3cr = mfspr(SPR_L3CR);
1056 
1057 	/*
1058 	 * For MP systems, the firmware may only configure the L3 cache
1059 	 * on the first CPU.  In this case, assume that the other CPUs
1060 	 * should use the same value for L3CR.
1061 	 */
1062 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1063 		l3cr_config = l3cr;
1064 	}
1065 
1066 	/*
1067 	 * Configure L3 cache if not enabled.
1068 	 */
1069 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1070 		cpu_enable_l3cr(l3cr_config);
1071 		l3cr = mfspr(SPR_L3CR);
1072 	}
1073 
1074 	if (l3cr & L3CR_L3E) {
1075 		aprint_normal(",");
1076 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1077 	}
1078 }
1079 
1080 void
1081 cpu_probe_speed(struct cpu_info *ci)
1082 {
1083 	uint64_t cps;
1084 
1085 	mtspr(SPR_MMCR0, MMCR0_FC);
1086 	mtspr(SPR_PMC1, 0);
1087 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1088 	delay(100000);
1089 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1090 
1091 	mtspr(SPR_MMCR0, MMCR0_FC);
1092 
1093 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1094 }
1095 
1096 /*
1097  * Read the Dynamic Frequency Switching state and return a divisor for
1098  * the maximum frequency.
1099  */
1100 int
1101 cpu_get_dfs(void)
1102 {
1103 	u_int pvr, vers;
1104 
1105 	pvr = mfpvr();
1106 	vers = pvr >> 16;
1107 
1108 	switch (vers) {
1109 	case MPC7448:
1110 		if (mfspr(SPR_HID1) & HID1_DFS4)
1111 			return 4;
1112 	case MPC7447A:
1113 		if (mfspr(SPR_HID1) & HID1_DFS2)
1114 			return 2;
1115 	}
1116 	return 1;
1117 }
1118 
1119 /*
1120  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1121  */
1122 void
1123 cpu_set_dfs(int div)
1124 {
1125 	uint64_t where;
1126 	u_int dfs_mask, pvr, vers;
1127 
1128 	pvr = mfpvr();
1129 	vers = pvr >> 16;
1130 	dfs_mask = 0;
1131 
1132 	switch (vers) {
1133 	case MPC7448:
1134 		dfs_mask |= HID1_DFS4;
1135 	case MPC7447A:
1136 		dfs_mask |= HID1_DFS2;
1137 		break;
1138 	default:
1139 		printf("cpu_set_dfs: DFS not supported\n");
1140 		return;
1141 
1142 	}
1143 
1144 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1145 	xc_wait(where);
1146 }
1147 
1148 static void
1149 cpu_set_dfs_xcall(void *arg1, void *arg2)
1150 {
1151 	u_int dfs_mask, hid1, old_hid1;
1152 	int *divisor, s;
1153 
1154 	divisor = arg1;
1155 	dfs_mask = *(u_int *)arg2;
1156 
1157 	s = splhigh();
1158 	hid1 = old_hid1 = mfspr(SPR_HID1);
1159 
1160 	switch (*divisor) {
1161 	case 1:
1162 		hid1 &= ~dfs_mask;
1163 		break;
1164 	case 2:
1165 		hid1 &= ~(dfs_mask & HID1_DFS4);
1166 		hid1 |= dfs_mask & HID1_DFS2;
1167 		break;
1168 	case 4:
1169 		hid1 &= ~(dfs_mask & HID1_DFS2);
1170 		hid1 |= dfs_mask & HID1_DFS4;
1171 		break;
1172 	}
1173 
1174 	if (hid1 != old_hid1) {
1175 		__asm volatile("sync");
1176 		mtspr(SPR_HID1, hid1);
1177 		__asm volatile("sync;isync");
1178 	}
1179 
1180 	splx(s);
1181 }
1182 
1183 #if NSYSMON_ENVSYS > 0
1184 void
1185 cpu_tau_setup(struct cpu_info *ci)
1186 {
1187 	struct sysmon_envsys *sme;
1188 	int error, therm_delay;
1189 
1190 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1191 	mtspr(SPR_THRM2, 0);
1192 
1193 	/*
1194 	 * we need to figure out how much 20+us in units of CPU clock cycles
1195 	 * are
1196 	 */
1197 
1198 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1199 
1200         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1201 
1202 	sme = sysmon_envsys_create();
1203 
1204 	sensor.units = ENVSYS_STEMP;
1205 	sensor.state = ENVSYS_SINVALID;
1206 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1207 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1208 		sysmon_envsys_destroy(sme);
1209 		return;
1210 	}
1211 
1212 	sme->sme_name = device_xname(ci->ci_dev);
1213 	sme->sme_cookie = ci;
1214 	sme->sme_refresh = cpu_tau_refresh;
1215 
1216 	if ((error = sysmon_envsys_register(sme)) != 0) {
1217 		aprint_error_dev(ci->ci_dev,
1218 		    " unable to register with sysmon (%d)\n", error);
1219 		sysmon_envsys_destroy(sme);
1220 	}
1221 }
1222 
1223 /* Find the temperature of the CPU. */
1224 void
1225 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1226 {
1227 	int i, threshold, count;
1228 
1229 	threshold = 64; /* Half of the 7-bit sensor range */
1230 
1231 	/* Successive-approximation code adapted from Motorola
1232 	 * application note AN1800/D, "Programming the Thermal Assist
1233 	 * Unit in the MPC750 Microprocessor".
1234 	 */
1235 	for (i = 5; i >= 0 ; i--) {
1236 		mtspr(SPR_THRM1,
1237 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1238 		count = 0;
1239 		while ((count < 100000) &&
1240 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1241 			count++;
1242 			delay(1);
1243 		}
1244 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1245 			/* The interrupt bit was set, meaning the
1246 			 * temperature was above the threshold
1247 			 */
1248 			threshold += 1 << i;
1249 		} else {
1250 			/* Temperature was below the threshold */
1251 			threshold -= 1 << i;
1252 		}
1253 	}
1254 	threshold += 2;
1255 
1256 	/* Convert the temperature in degrees C to microkelvin */
1257 	edata->value_cur = (threshold * 1000000) + 273150000;
1258 	edata->state = ENVSYS_SVALID;
1259 }
1260 #endif /* NSYSMON_ENVSYS > 0 */
1261 
1262 #ifdef MULTIPROCESSOR
1263 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1264 
1265 int
1266 cpu_spinup(device_t self, struct cpu_info *ci)
1267 {
1268 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1269 	struct pglist mlist;
1270 	int i, error;
1271 	char *hp;
1272 
1273 	KASSERT(ci != curcpu());
1274 
1275 	/* Now allocate a hatch stack */
1276 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1277 	    &mlist, 1, 1);
1278 	if (error) {
1279 		aprint_error(": unable to allocate hatch stack\n");
1280 		return -1;
1281 	}
1282 
1283 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1284 	memset(hp, 0, HATCH_STACK_SIZE);
1285 
1286 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1287 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1288 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1289 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1290 
1291 	cpu_hatch_data = h;
1292 	h->hatch_running = 0;
1293 	h->hatch_self = self;
1294 	h->hatch_ci = ci;
1295 	h->hatch_pir = ci->ci_cpuid;
1296 
1297 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1298 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1299 
1300 	/* copy special registers */
1301 
1302 	h->hatch_hid0 = mfspr(SPR_HID0);
1303 
1304 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1305 	for (i = 0; i < 16; i++) {
1306 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1307 		       "r"(i << ADDR_SR_SHFT));
1308 	}
1309 	if (oeacpufeat & OEACPU_64)
1310 		h->hatch_asr = mfspr(SPR_ASR);
1311 	else
1312 		h->hatch_asr = 0;
1313 
1314 	/* copy the bat regs */
1315 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1316 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1317 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1318 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1319 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1320 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1321 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1322 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1323 	__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1324 	__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1325 	__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1326 	__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1327 	__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1328 	__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1329 	__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1330 	__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1331 	__asm volatile ("sync; isync");
1332 
1333 	if (md_setup_trampoline(h, ci) == -1)
1334 		return -1;
1335 	md_presync_timebase(h);
1336 	md_start_timebase(h);
1337 
1338 	/* wait for secondary printf */
1339 
1340 	delay(200000);
1341 
1342 #ifdef CACHE_PROTO_MEI
1343 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1344 	__asm volatile ("sync; isync");
1345 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1346 	__asm volatile ("sync; isync");
1347 #endif
1348 	if (h->hatch_running < 1) {
1349 #ifdef CACHE_PROTO_MEI
1350 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1351 		__asm volatile ("sync; isync");
1352 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1353 		__asm volatile ("sync; isync");
1354 #endif
1355 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1356 		    ci->ci_cpuid, cpu_spinstart_ack);
1357 		Debugger();
1358 		return -1;
1359 	}
1360 
1361 	/* Register IPI Interrupt */
1362 	if (ipiops.ppc_establish_ipi)
1363 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1364 
1365 	return 0;
1366 }
1367 
1368 static volatile int start_secondary_cpu;
1369 
1370 register_t
1371 cpu_hatch(void)
1372 {
1373 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1374 	struct cpu_info * const ci = h->hatch_ci;
1375 	struct pcb *pcb;
1376 	u_int msr;
1377 	int i;
1378 
1379 	/* Initialize timebase. */
1380 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1381 
1382 	/*
1383 	 * Set PIR (Processor Identification Register).  i.e. whoami
1384 	 * Note that PIR is read-only on some CPU versions, so we write to it
1385 	 * only if it has a different value than we need.
1386 	 */
1387 
1388 	msr = mfspr(SPR_PIR);
1389 	if (msr != h->hatch_pir)
1390 		mtspr(SPR_PIR, h->hatch_pir);
1391 
1392 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
1393 	curlwp = ci->ci_curlwp;
1394 	cpu_spinstart_ack = 0;
1395 
1396 	/* Initialize MMU. */
1397 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1398 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1399 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1400 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1401 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1402 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1403 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1404 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1405 	__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1406 	__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1407 	__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1408 	__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1409 	__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1410 	__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1411 	__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1412 	__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1413 
1414 	mtspr(SPR_HID0, h->hatch_hid0);
1415 
1416 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1417 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
1418 
1419 	__asm volatile ("sync");
1420 	for (i = 0; i < 16; i++)
1421 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1422 	__asm volatile ("sync; isync");
1423 
1424 	if (oeacpufeat & OEACPU_64)
1425 		mtspr(SPR_ASR, h->hatch_asr);
1426 
1427 	cpu_spinstart_ack = 1;
1428 	__asm ("ptesync");
1429 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1430 	__asm volatile ("sync; isync");
1431 
1432 	cpu_spinstart_ack = 5;
1433 	for (i = 0; i < 16; i++)
1434 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1435 		       "r"(i << ADDR_SR_SHFT));
1436 
1437 	/* Enable I/D address translations. */
1438 	msr = mfmsr();
1439 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1440 	mtmsr(msr);
1441 	__asm volatile ("sync; isync");
1442 	cpu_spinstart_ack = 2;
1443 
1444 	md_sync_timebase(h);
1445 
1446 	cpu_setup(h->hatch_self, ci);
1447 
1448 	h->hatch_running = 1;
1449 	__asm volatile ("sync; isync");
1450 
1451 	while (start_secondary_cpu == 0)
1452 		;
1453 
1454 	__asm volatile ("sync; isync");
1455 
1456 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1457 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1458 
1459 	md_setup_interrupts();
1460 
1461 	ci->ci_ipending = 0;
1462 	ci->ci_cpl = 0;
1463 
1464 	mtmsr(mfmsr() | PSL_EE);
1465 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1466 	return pcb->pcb_sp;
1467 }
1468 
1469 void
1470 cpu_boot_secondary_processors(void)
1471 {
1472 	start_secondary_cpu = 1;
1473 	__asm volatile ("sync");
1474 }
1475 
1476 #endif /*MULTIPROCESSOR*/
1477