xref: /netbsd-src/sys/arch/powerpc/oea/cpu_subr.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: cpu_subr.c,v 1.80 2013/11/03 22:27:27 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.80 2013/11/03 22:27:27 mrg Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61 
62 #include <dev/sysmon/sysmonvar.h>
63 
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75 
76 int cpu;
77 int ncpus;
78 
79 struct fmttab {
80 	register_t fmt_mask;
81 	register_t fmt_value;
82 	const char *fmt_string;
83 };
84 
85 /*
86  * This should be one per CPU but since we only support it on 750 variants it
87  * doesn't realy matter since none of them supports SMP
88  */
89 envsys_data_t sensor;
90 
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 	{ L2CR_L2E, 0, " disabled" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
97 	{ L2CR_L2PE, 0, " no parity" },
98 	{ L2CR_L2PE, ~0, " parity enabled" },
99 	{ 0, 0, NULL }
100 };
101 
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 	{ L2CR_L2E, 0, " disabled" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
108 	{ L2CR_L2PE, 0, " no parity" },
109 	{ L2CR_L2PE, ~0, " parity enabled" },
110 	{ 0, 0, NULL }
111 };
112 
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 	{ L2CR_L2E, 0, " disabled" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
119 	{ L2CR_L2PE, 0, " no parity" },
120 	{ L2CR_L2PE, ~0, " parity enabled" },
121 	{ 0, 0, NULL }
122 };
123 
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 	{ L3CR_L3CLK, ~0, " at" },
139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
146 	{ L3CR_L3CLK, ~0, " ratio" },
147 	{ 0, 0, NULL },
148 };
149 
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 	{ L2CR_L2E, 0, " disabled" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 	{ 0, ~0, " 512KB" },
156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
157 	{ L2CR_L2WT, 0, " WB" },
158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 	{ 0, ~0, " L2 cache" },
160 	{ 0, 0, NULL }
161 };
162 
163 static const struct fmttab cpu_l2cr_formats[] = {
164 	{ L2CR_L2E, 0, " disabled" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
169 	{ L2CR_L2PE, 0, " no-parity" },
170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
175 	{ L2CR_L2WT, 0, " WB" },
176 	{ L2CR_L2E, ~0, " L2 cache" },
177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 	{ L2CR_L2CLK, ~0, " at" },
181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
188 	{ L2CR_L2CLK, ~0, " ratio" },
189 	{ 0, 0, NULL }
190 };
191 
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193 
194 struct cputab {
195 	const char name[8];
196 	uint16_t version;
197 	uint16_t revfmt;
198 };
199 #define	REVFMT_MAJMIN	1		/* %u.%u */
200 #define	REVFMT_HEX	2		/* 0x%04x */
201 #define	REVFMT_DEC	3		/* %u */
202 static const struct cputab models[] = {
203 	{ "601",	MPC601,		REVFMT_DEC },
204 	{ "602",	MPC602,		REVFMT_DEC },
205 	{ "603",	MPC603,		REVFMT_MAJMIN },
206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
209 	{ "604",	MPC604,		REVFMT_MAJMIN },
210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
212 	{ "620",	MPC620,  	REVFMT_HEX },
213 	{ "750",	MPC750,		REVFMT_MAJMIN },
214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
225 	{ "970",	IBM970,		REVFMT_MAJMIN },
226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
229 	{ "",		0,		REVFMT_HEX }
230 };
231 
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234     [0] = {
235 	.ci_curlwp = &lwp0,
236     },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248     [0] = {
249 	.ci_curlwp = &lwp0,
250     },
251 };
252 #endif /*MULTIPROCESSOR*/
253 
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258 char cpu_model[80];
259 
260 /* This is to be called from locore.S, and nowhere else. */
261 
262 void
263 cpu_model_init(void)
264 {
265 	u_int pvr, vers;
266 
267 	pvr = mfpvr();
268 	vers = pvr >> 16;
269 
270 	oeacpufeat = 0;
271 
272 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
273 		vers == IBMCELL || vers == IBMPOWER6P5) {
274 		oeacpufeat |= OEACPU_64;
275 		oeacpufeat |= OEACPU_64_BRIDGE;
276 		oeacpufeat |= OEACPU_NOBAT;
277 
278 	} else if (vers == MPC601) {
279 		oeacpufeat |= OEACPU_601;
280 
281 	} else if (MPC745X_P(vers)) {
282 		register_t hid1 = mfspr(SPR_HID1);
283 
284 		if (vers != MPC7450) {
285 			register_t hid0 = mfspr(SPR_HID0);
286 
287 			/* Enable more SPRG registers */
288 			oeacpufeat |= OEACPU_HIGHSPRG;
289 
290 			/* Enable more BAT registers */
291 			oeacpufeat |= OEACPU_HIGHBAT;
292 			hid0 |= HID0_HIGH_BAT_EN;
293 
294 			/* Enable larger BAT registers */
295 			oeacpufeat |= OEACPU_XBSEN;
296 			hid0 |= HID0_XBSEN;
297 
298 			mtspr(SPR_HID0, hid0);
299 			__asm volatile("sync;isync");
300 		}
301 
302 		/* Enable address broadcasting for MP systems */
303 		hid1 |= HID1_SYNCBE | HID1_ABE;
304 
305 		mtspr(SPR_HID1, hid1);
306 		__asm volatile("sync;isync");
307 
308 	} else if (vers == IBM750FX || vers == IBM750GX) {
309 		oeacpufeat |= OEACPU_HIGHBAT;
310 	}
311 }
312 
313 void
314 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
315 {
316 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
317 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
318 		    (data & fmt->fmt_mask) == fmt->fmt_value)
319 			aprint_normal("%s", fmt->fmt_string);
320 	}
321 }
322 
323 void
324 cpu_idlespin(void)
325 {
326 	register_t msr;
327 
328 	if (powersave <= 0)
329 		return;
330 
331 	__asm volatile(
332 		"sync;"
333 		"mfmsr	%0;"
334 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
335 		"mtmsr	%0;"
336 		"isync;"
337 	    :	"=r"(msr)
338 	    :	"J"(PSL_POW));
339 }
340 
341 void
342 cpu_probe_cache(void)
343 {
344 	u_int assoc, pvr, vers;
345 
346 	pvr = mfpvr();
347 	vers = pvr >> 16;
348 
349 
350 	/* Presently common across almost all implementations. */
351 	curcpu()->ci_ci.dcache_line_size = 32;
352 	curcpu()->ci_ci.icache_line_size = 32;
353 
354 
355 	switch (vers) {
356 #define	K	*1024
357 	case IBM750FX:
358 	case IBM750GX:
359 	case MPC601:
360 	case MPC750:
361 	case MPC7400:
362 	case MPC7447A:
363 	case MPC7448:
364 	case MPC7450:
365 	case MPC7455:
366 	case MPC7457:
367 		curcpu()->ci_ci.dcache_size = 32 K;
368 		curcpu()->ci_ci.icache_size = 32 K;
369 		assoc = 8;
370 		break;
371 	case MPC603:
372 		curcpu()->ci_ci.dcache_size = 8 K;
373 		curcpu()->ci_ci.icache_size = 8 K;
374 		assoc = 2;
375 		break;
376 	case MPC603e:
377 	case MPC603ev:
378 	case MPC604:
379 	case MPC8240:
380 	case MPC8245:
381 	case MPCG2:
382 		curcpu()->ci_ci.dcache_size = 16 K;
383 		curcpu()->ci_ci.icache_size = 16 K;
384 		assoc = 4;
385 		break;
386 	case MPC604e:
387 	case MPC604ev:
388 		curcpu()->ci_ci.dcache_size = 32 K;
389 		curcpu()->ci_ci.icache_size = 32 K;
390 		assoc = 4;
391 		break;
392 	case IBMPOWER3II:
393 		curcpu()->ci_ci.dcache_size = 64 K;
394 		curcpu()->ci_ci.icache_size = 32 K;
395 		curcpu()->ci_ci.dcache_line_size = 128;
396 		curcpu()->ci_ci.icache_line_size = 128;
397 		assoc = 128; /* not a typo */
398 		break;
399 	case IBM970:
400 	case IBM970FX:
401 	case IBM970MP:
402 		curcpu()->ci_ci.dcache_size = 32 K;
403 		curcpu()->ci_ci.icache_size = 64 K;
404 		curcpu()->ci_ci.dcache_line_size = 128;
405 		curcpu()->ci_ci.icache_line_size = 128;
406 		assoc = 2;
407 		break;
408 
409 	default:
410 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
411 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
412 		assoc = 1;
413 #undef	K
414 	}
415 
416 	/*
417 	 * Possibly recolor.
418 	 */
419 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
420 }
421 
422 struct cpu_info *
423 cpu_attach_common(device_t self, int id)
424 {
425 	struct cpu_info *ci;
426 	u_int pvr, vers;
427 
428 	ci = &cpu_info[id];
429 #ifndef MULTIPROCESSOR
430 	/*
431 	 * If this isn't the primary CPU, print an error message
432 	 * and just bail out.
433 	 */
434 	if (id != 0) {
435 		aprint_naive("\n");
436 		aprint_normal(": ID %d\n", id);
437 		aprint_normal_dev(self,
438 		    "processor off-line; "
439 		    "multiprocessor support not present in kernel\n");
440 		return (NULL);
441 	}
442 #endif
443 
444 	ci->ci_cpuid = id;
445 	ci->ci_idepth = -1;
446 	ci->ci_dev = self;
447 	ci->ci_idlespin = cpu_idlespin;
448 
449 	pvr = mfpvr();
450 	vers = (pvr >> 16) & 0xffff;
451 
452 	switch (id) {
453 	case 0:
454 		/* load my cpu_number to PIR */
455 		switch (vers) {
456 		case MPC601:
457 		case MPC604:
458 		case MPC604e:
459 		case MPC604ev:
460 		case MPC7400:
461 		case MPC7410:
462 		case MPC7447A:
463 		case MPC7448:
464 		case MPC7450:
465 		case MPC7455:
466 		case MPC7457:
467 			mtspr(SPR_PIR, id);
468 		}
469 		cpu_setup(self, ci);
470 		break;
471 	default:
472 		aprint_naive("\n");
473 		if (id >= CPU_MAXNUM) {
474 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
475 			panic("cpuattach");
476 		}
477 #ifndef MULTIPROCESSOR
478 		aprint_normal(" not configured\n");
479 		return NULL;
480 #else
481 		mi_cpu_attach(ci);
482 		break;
483 #endif
484 	}
485 	return (ci);
486 }
487 
488 void
489 cpu_setup(device_t self, struct cpu_info *ci)
490 {
491 	u_int hid0, hid0_save, pvr, vers;
492 	const char * const xname = device_xname(self);
493 	const char *bitmask;
494 	char hidbuf[128];
495 	char model[80];
496 
497 	pvr = mfpvr();
498 	vers = (pvr >> 16) & 0xffff;
499 
500 	cpu_identify(model, sizeof(model));
501 	aprint_naive("\n");
502 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
503 	    cpu_number() == 0 ? " (primary)" : "");
504 
505 	/* set the cpu number */
506 	ci->ci_cpuid = cpu_number();
507 	hid0_save = hid0 = mfspr(SPR_HID0);
508 
509 	cpu_probe_cache();
510 
511 	/*
512 	 * Configure power-saving mode.
513 	 */
514 	switch (vers) {
515 	case MPC604:
516 	case MPC604e:
517 	case MPC604ev:
518 		/*
519 		 * Do not have HID0 support settings, but can support
520 		 * MSR[POW] off
521 		 */
522 		powersave = 1;
523 		break;
524 
525 	case MPC603:
526 	case MPC603e:
527 	case MPC603ev:
528 	case MPC7400:
529 	case MPC7410:
530 	case MPC8240:
531 	case MPC8245:
532 	case MPCG2:
533 		/* Select DOZE mode. */
534 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
535 		hid0 |= HID0_DOZE | HID0_DPM;
536 		powersave = 1;
537 		break;
538 
539 	case MPC750:
540 	case IBM750FX:
541 	case IBM750GX:
542 		/* Select NAP mode. */
543 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
544 		hid0 |= HID0_NAP | HID0_DPM;
545 		powersave = 1;
546 		break;
547 
548 	case MPC7447A:
549 	case MPC7448:
550 	case MPC7457:
551 	case MPC7455:
552 	case MPC7450:
553 		/* Enable the 7450 branch caches */
554 		hid0 |= HID0_SGE | HID0_BTIC;
555 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
556 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
557 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
558 			hid0 &= ~HID0_BTIC;
559 		/* Select NAP mode. */
560 		hid0 &= ~HID0_SLEEP;
561 		hid0 |= HID0_NAP | HID0_DPM;
562 		powersave = 1;
563 		break;
564 
565 	case IBM970:
566 	case IBM970FX:
567 	case IBM970MP:
568 	case IBMPOWER3II:
569 	default:
570 		/* No power-saving mode is available. */ ;
571 	}
572 
573 #ifdef NAPMODE
574 	switch (vers) {
575 	case IBM750FX:
576 	case IBM750GX:
577 	case MPC750:
578 	case MPC7400:
579 		/* Select NAP mode. */
580 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
581 		hid0 |= HID0_NAP;
582 		break;
583 	}
584 #endif
585 
586 	switch (vers) {
587 	case IBM750FX:
588 	case IBM750GX:
589 	case MPC750:
590 		hid0 &= ~HID0_DBP;		/* XXX correct? */
591 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
592 		break;
593 
594 	case MPC7400:
595 	case MPC7410:
596 		hid0 &= ~HID0_SPD;
597 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
598 		hid0 |= HID0_EIEC;
599 		break;
600 	}
601 
602 #ifdef MULTIPROCESSOR
603 	switch (vers) {
604 	case MPC603e:
605 		hid0 |= HID0_ABE;
606 	}
607 #endif
608 
609 	if (hid0 != hid0_save) {
610 		mtspr(SPR_HID0, hid0);
611 		__asm volatile("sync;isync");
612 	}
613 
614 
615 	switch (vers) {
616 	case MPC601:
617 		bitmask = HID0_601_BITMASK;
618 		break;
619 	case MPC7450:
620 	case MPC7455:
621 	case MPC7457:
622 		bitmask = HID0_7450_BITMASK;
623 		break;
624 	case IBM970:
625 	case IBM970FX:
626 	case IBM970MP:
627 		bitmask = 0;
628 		break;
629 	default:
630 		bitmask = HID0_BITMASK;
631 		break;
632 	}
633 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
634 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
635 
636 	ci->ci_khz = 0;
637 
638 	/*
639 	 * Display speed and cache configuration.
640 	 */
641 	switch (vers) {
642 	case MPC604:
643 	case MPC604e:
644 	case MPC604ev:
645 	case MPC750:
646 	case IBM750FX:
647 	case IBM750GX:
648 	case MPC7400:
649 	case MPC7410:
650 	case MPC7447A:
651 	case MPC7448:
652 	case MPC7450:
653 	case MPC7455:
654 	case MPC7457:
655 		aprint_normal_dev(self, "");
656 		cpu_probe_speed(ci);
657 		aprint_normal("%u.%02u MHz",
658 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
659 		switch (vers) {
660 		case MPC7450: /* 7441 does not have L3! */
661 		case MPC7455: /* 7445 does not have L3! */
662 		case MPC7457: /* 7447 does not have L3! */
663 			cpu_config_l3cr(vers);
664 			break;
665 		case IBM750FX:
666 		case IBM750GX:
667 		case MPC750:
668 		case MPC7400:
669 		case MPC7410:
670 		case MPC7447A:
671 		case MPC7448:
672 			cpu_config_l2cr(pvr);
673 			break;
674 		default:
675 			break;
676 		}
677 		aprint_normal("\n");
678 		break;
679 	}
680 
681 #if NSYSMON_ENVSYS > 0
682 	/*
683 	 * Attach MPC750 temperature sensor to the envsys subsystem.
684 	 * XXX the 74xx series also has this sensor, but it is not
685 	 * XXX supported by Motorola and may return values that are off by
686 	 * XXX 35-55 degrees C.
687 	 */
688 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
689 		cpu_tau_setup(ci);
690 #endif
691 
692 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
693 		NULL, xname, "clock");
694 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
695 		NULL, xname, "traps");
696 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
697 		&ci->ci_ev_traps, xname, "kernel DSI traps");
698 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
699 		&ci->ci_ev_traps, xname, "user DSI traps");
700 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
701 		&ci->ci_ev_udsi, xname, "user DSI failures");
702 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
703 		&ci->ci_ev_traps, xname, "kernel ISI traps");
704 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
705 		&ci->ci_ev_traps, xname, "user ISI traps");
706 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
707 		&ci->ci_ev_isi, xname, "user ISI failures");
708 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
709 		&ci->ci_ev_traps, xname, "system call traps");
710 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
711 		&ci->ci_ev_traps, xname, "PGM traps");
712 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
713 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
714 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
715 		&ci->ci_ev_fpu, xname, "FPU context switches");
716 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
717 		&ci->ci_ev_traps, xname, "user alignment traps");
718 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
719 		&ci->ci_ev_ali, xname, "user alignment traps");
720 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
721 		&ci->ci_ev_umchk, xname, "user MCHK failures");
722 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
723 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
724 #ifdef ALTIVEC
725 	if (cpu_altivec) {
726 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
727 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
728 	}
729 #endif
730 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
731 		NULL, xname, "IPIs");
732 }
733 
734 /*
735  * According to a document labeled "PVR Register Settings":
736  ** For integrated microprocessors the PVR register inside the device
737  ** will identify the version of the microprocessor core. You must also
738  ** read the Device ID, PCI register 02, to identify the part and the
739  ** Revision ID, PCI register 08, to identify the revision of the
740  ** integrated microprocessor.
741  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
742  */
743 
744 void
745 cpu_identify(char *str, size_t len)
746 {
747 	u_int pvr, major, minor;
748 	uint16_t vers, rev, revfmt;
749 	const struct cputab *cp;
750 	size_t n;
751 
752 	pvr = mfpvr();
753 	vers = pvr >> 16;
754 	rev = pvr;
755 
756 	switch (vers) {
757 	case MPC7410:
758 		minor = (pvr >> 0) & 0xff;
759 		major = minor <= 4 ? 1 : 2;
760 		break;
761 	case MPCG2: /*XXX see note above */
762 		major = (pvr >> 4) & 0xf;
763 		minor = (pvr >> 0) & 0xf;
764 		break;
765 	default:
766 		major = (pvr >>  8) & 0xf;
767 		minor = (pvr >>  0) & 0xf;
768 	}
769 
770 	for (cp = models; cp->name[0] != '\0'; cp++) {
771 		if (cp->version == vers)
772 			break;
773 	}
774 
775 	if (str == NULL) {
776 		str = cpu_model;
777 		len = sizeof(cpu_model);
778 		cpu = vers;
779 	}
780 
781 	revfmt = cp->revfmt;
782 	if (rev == MPC750 && pvr == 15) {
783 		revfmt = REVFMT_HEX;
784 	}
785 
786 	if (cp->name[0] != '\0') {
787 		n = snprintf(str, len, "%s (Revision ", cp->name);
788 	} else {
789 		n = snprintf(str, len, "Version %#x (Revision ", vers);
790 	}
791 	if (len > n) {
792 		switch (revfmt) {
793 		case REVFMT_MAJMIN:
794 			snprintf(str + n, len - n, "%u.%u)", major, minor);
795 			break;
796 		case REVFMT_HEX:
797 			snprintf(str + n, len - n, "0x%04x)", rev);
798 			break;
799 		case REVFMT_DEC:
800 			snprintf(str + n, len - n, "%u)", rev);
801 			break;
802 		}
803 	}
804 }
805 
806 #ifdef L2CR_CONFIG
807 u_int l2cr_config = L2CR_CONFIG;
808 #else
809 u_int l2cr_config = 0;
810 #endif
811 
812 #ifdef L3CR_CONFIG
813 u_int l3cr_config = L3CR_CONFIG;
814 #else
815 u_int l3cr_config = 0;
816 #endif
817 
818 void
819 cpu_enable_l2cr(register_t l2cr)
820 {
821 	register_t msr, x;
822 	uint16_t vers;
823 
824 	vers = mfpvr() >> 16;
825 
826 	/* Disable interrupts and set the cache config bits. */
827 	msr = mfmsr();
828 	mtmsr(msr & ~PSL_EE);
829 #ifdef ALTIVEC
830 	if (cpu_altivec)
831 		__asm volatile("dssall");
832 #endif
833 	__asm volatile("sync");
834 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
835 	__asm volatile("sync");
836 
837 	/* Wait for L2 clock to be stable (640 L2 clocks). */
838 	delay(100);
839 
840 	/* Invalidate all L2 contents. */
841 	if (MPC745X_P(vers)) {
842 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
843 		do {
844 			x = mfspr(SPR_L2CR);
845 		} while (x & L2CR_L2I);
846 	} else {
847 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
848 		do {
849 			x = mfspr(SPR_L2CR);
850 		} while (x & L2CR_L2IP);
851 	}
852 	/* Enable L2 cache. */
853 	l2cr |= L2CR_L2E;
854 	mtspr(SPR_L2CR, l2cr);
855 	mtmsr(msr);
856 }
857 
858 void
859 cpu_enable_l3cr(register_t l3cr)
860 {
861 	register_t x;
862 
863 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
864 
865 	/*
866 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
867 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
868 	 *    in L3CR_CONFIG)
869 	 */
870 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
871 	mtspr(SPR_L3CR, l3cr);
872 
873 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
874 	l3cr |= 0x04000000;
875 	mtspr(SPR_L3CR, l3cr);
876 
877 	/* 3: Set L3CLKEN to 1*/
878 	l3cr |= L3CR_L3CLKEN;
879 	mtspr(SPR_L3CR, l3cr);
880 
881 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
882 	__asm volatile("dssall;sync");
883 	/* L3 cache is already disabled, no need to clear L3E */
884 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
885 	do {
886 		x = mfspr(SPR_L3CR);
887 	} while (x & L3CR_L3I);
888 
889 	/* 6: Clear L3CLKEN to 0 */
890 	l3cr &= ~L3CR_L3CLKEN;
891 	mtspr(SPR_L3CR, l3cr);
892 
893 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
894 	__asm volatile("sync");
895 	delay(100);
896 
897 	/* 8: Set L3E and L3CLKEN */
898 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
899 	mtspr(SPR_L3CR, l3cr);
900 
901 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
902 	__asm volatile("sync");
903 	delay(100);
904 }
905 
906 void
907 cpu_config_l2cr(int pvr)
908 {
909 	register_t l2cr;
910 	u_int vers = (pvr >> 16) & 0xffff;
911 
912 	l2cr = mfspr(SPR_L2CR);
913 
914 	/*
915 	 * For MP systems, the firmware may only configure the L2 cache
916 	 * on the first CPU.  In this case, assume that the other CPUs
917 	 * should use the same value for L2CR.
918 	 */
919 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
920 		l2cr_config = l2cr;
921 	}
922 
923 	/*
924 	 * Configure L2 cache if not enabled.
925 	 */
926 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
927 		cpu_enable_l2cr(l2cr_config);
928 		l2cr = mfspr(SPR_L2CR);
929 	}
930 
931 	if ((l2cr & L2CR_L2E) == 0) {
932 		aprint_normal(" L2 cache present but not enabled ");
933 		return;
934 	}
935 	aprint_normal(",");
936 
937 	switch (vers) {
938 	case IBM750FX:
939 	case IBM750GX:
940 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
941 		break;
942 	case MPC750:
943 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
944 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
945 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
946 		else
947 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
948 		break;
949 	case MPC7447A:
950 	case MPC7457:
951 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
952 		return;
953 	case MPC7448:
954 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
955 		return;
956 	case MPC7450:
957 	case MPC7455:
958 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
959 		break;
960 	default:
961 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
962 		break;
963 	}
964 }
965 
966 void
967 cpu_config_l3cr(int vers)
968 {
969 	register_t l2cr;
970 	register_t l3cr;
971 
972 	l2cr = mfspr(SPR_L2CR);
973 
974 	/*
975 	 * For MP systems, the firmware may only configure the L2 cache
976 	 * on the first CPU.  In this case, assume that the other CPUs
977 	 * should use the same value for L2CR.
978 	 */
979 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
980 		l2cr_config = l2cr;
981 	}
982 
983 	/*
984 	 * Configure L2 cache if not enabled.
985 	 */
986 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
987 		cpu_enable_l2cr(l2cr_config);
988 		l2cr = mfspr(SPR_L2CR);
989 	}
990 
991 	aprint_normal(",");
992 	switch (vers) {
993 	case MPC7447A:
994 	case MPC7457:
995 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
996 		return;
997 	case MPC7448:
998 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
999 		return;
1000 	default:
1001 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1002 		break;
1003 	}
1004 
1005 	l3cr = mfspr(SPR_L3CR);
1006 
1007 	/*
1008 	 * For MP systems, the firmware may only configure the L3 cache
1009 	 * on the first CPU.  In this case, assume that the other CPUs
1010 	 * should use the same value for L3CR.
1011 	 */
1012 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1013 		l3cr_config = l3cr;
1014 	}
1015 
1016 	/*
1017 	 * Configure L3 cache if not enabled.
1018 	 */
1019 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1020 		cpu_enable_l3cr(l3cr_config);
1021 		l3cr = mfspr(SPR_L3CR);
1022 	}
1023 
1024 	if (l3cr & L3CR_L3E) {
1025 		aprint_normal(",");
1026 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1027 	}
1028 }
1029 
1030 void
1031 cpu_probe_speed(struct cpu_info *ci)
1032 {
1033 	uint64_t cps;
1034 
1035 	mtspr(SPR_MMCR0, MMCR0_FC);
1036 	mtspr(SPR_PMC1, 0);
1037 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1038 	delay(100000);
1039 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1040 
1041 	mtspr(SPR_MMCR0, MMCR0_FC);
1042 
1043 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1044 }
1045 
1046 /*
1047  * Read the Dynamic Frequency Switching state and return a divisor for
1048  * the maximum frequency.
1049  */
1050 int
1051 cpu_get_dfs(void)
1052 {
1053 	u_int pvr, vers;
1054 
1055 	pvr = mfpvr();
1056 	vers = pvr >> 16;
1057 
1058 	switch (vers) {
1059 	case MPC7448:
1060 		if (mfspr(SPR_HID1) & HID1_DFS4)
1061 			return 4;
1062 	case MPC7447A:
1063 		if (mfspr(SPR_HID1) & HID1_DFS2)
1064 			return 2;
1065 	}
1066 	return 1;
1067 }
1068 
1069 /*
1070  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1071  */
1072 void
1073 cpu_set_dfs(int div)
1074 {
1075 	uint64_t where;
1076 	u_int dfs_mask, pvr, vers;
1077 
1078 	pvr = mfpvr();
1079 	vers = pvr >> 16;
1080 	dfs_mask = 0;
1081 
1082 	switch (vers) {
1083 	case MPC7448:
1084 		dfs_mask |= HID1_DFS4;
1085 	case MPC7447A:
1086 		dfs_mask |= HID1_DFS2;
1087 		break;
1088 	default:
1089 		printf("cpu_set_dfs: DFS not supported\n");
1090 		return;
1091 
1092 	}
1093 
1094 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1095 	xc_wait(where);
1096 }
1097 
1098 static void
1099 cpu_set_dfs_xcall(void *arg1, void *arg2)
1100 {
1101 	u_int dfs_mask, hid1, old_hid1;
1102 	int *divisor, s;
1103 
1104 	divisor = arg1;
1105 	dfs_mask = *(u_int *)arg2;
1106 
1107 	s = splhigh();
1108 	hid1 = old_hid1 = mfspr(SPR_HID1);
1109 
1110 	switch (*divisor) {
1111 	case 1:
1112 		hid1 &= ~dfs_mask;
1113 		break;
1114 	case 2:
1115 		hid1 &= ~(dfs_mask & HID1_DFS4);
1116 		hid1 |= dfs_mask & HID1_DFS2;
1117 		break;
1118 	case 4:
1119 		hid1 &= ~(dfs_mask & HID1_DFS2);
1120 		hid1 |= dfs_mask & HID1_DFS4;
1121 		break;
1122 	}
1123 
1124 	if (hid1 != old_hid1) {
1125 		__asm volatile("sync");
1126 		mtspr(SPR_HID1, hid1);
1127 		__asm volatile("sync;isync");
1128 	}
1129 
1130 	splx(s);
1131 }
1132 
1133 #if NSYSMON_ENVSYS > 0
1134 void
1135 cpu_tau_setup(struct cpu_info *ci)
1136 {
1137 	struct sysmon_envsys *sme;
1138 	int error, therm_delay;
1139 
1140 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1141 	mtspr(SPR_THRM2, 0);
1142 
1143 	/*
1144 	 * we need to figure out how much 20+us in units of CPU clock cycles
1145 	 * are
1146 	 */
1147 
1148 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1149 
1150         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1151 
1152 	sme = sysmon_envsys_create();
1153 
1154 	sensor.units = ENVSYS_STEMP;
1155 	sensor.state = ENVSYS_SINVALID;
1156 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1157 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1158 		sysmon_envsys_destroy(sme);
1159 		return;
1160 	}
1161 
1162 	sme->sme_name = device_xname(ci->ci_dev);
1163 	sme->sme_cookie = ci;
1164 	sme->sme_refresh = cpu_tau_refresh;
1165 
1166 	if ((error = sysmon_envsys_register(sme)) != 0) {
1167 		aprint_error_dev(ci->ci_dev,
1168 		    " unable to register with sysmon (%d)\n", error);
1169 		sysmon_envsys_destroy(sme);
1170 	}
1171 }
1172 
1173 
1174 /* Find the temperature of the CPU. */
1175 void
1176 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1177 {
1178 	int i, threshold, count;
1179 
1180 	threshold = 64; /* Half of the 7-bit sensor range */
1181 
1182 	/* Successive-approximation code adapted from Motorola
1183 	 * application note AN1800/D, "Programming the Thermal Assist
1184 	 * Unit in the MPC750 Microprocessor".
1185 	 */
1186 	for (i = 5; i >= 0 ; i--) {
1187 		mtspr(SPR_THRM1,
1188 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1189 		count = 0;
1190 		while ((count < 100000) &&
1191 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1192 			count++;
1193 			delay(1);
1194 		}
1195 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1196 			/* The interrupt bit was set, meaning the
1197 			 * temperature was above the threshold
1198 			 */
1199 			threshold += 1 << i;
1200 		} else {
1201 			/* Temperature was below the threshold */
1202 			threshold -= 1 << i;
1203 		}
1204 	}
1205 	threshold += 2;
1206 
1207 	/* Convert the temperature in degrees C to microkelvin */
1208 	edata->value_cur = (threshold * 1000000) + 273150000;
1209 	edata->state = ENVSYS_SVALID;
1210 }
1211 #endif /* NSYSMON_ENVSYS > 0 */
1212 
1213 #ifdef MULTIPROCESSOR
1214 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1215 
1216 int
1217 cpu_spinup(device_t self, struct cpu_info *ci)
1218 {
1219 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1220 	struct pglist mlist;
1221 	int i, error, pvr, vers;
1222 	char *hp;
1223 
1224 	pvr = mfpvr();
1225 	vers = pvr >> 16;
1226 	KASSERT(ci != curcpu());
1227 
1228 	/* Now allocate a hatch stack */
1229 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1230 	    &mlist, 1, 1);
1231 	if (error) {
1232 		aprint_error(": unable to allocate hatch stack\n");
1233 		return -1;
1234 	}
1235 
1236 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1237 	memset(hp, 0, HATCH_STACK_SIZE);
1238 
1239 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1240 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1241 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1242 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1243 
1244 	cpu_hatch_data = h;
1245 	h->hatch_running = 0;
1246 	h->hatch_self = self;
1247 	h->hatch_ci = ci;
1248 	h->hatch_pir = ci->ci_cpuid;
1249 
1250 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1251 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1252 
1253 	/* copy special registers */
1254 
1255 	h->hatch_hid0 = mfspr(SPR_HID0);
1256 
1257 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1258 	for (i = 0; i < 16; i++) {
1259 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1260 		       "r"(i << ADDR_SR_SHFT));
1261 	}
1262 	if (oeacpufeat & OEACPU_64)
1263 		h->hatch_asr = mfspr(SPR_ASR);
1264 	else
1265 		h->hatch_asr = 0;
1266 
1267 	/* copy the bat regs */
1268 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1269 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1270 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1271 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1272 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1273 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1274 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1275 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1276 	__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1277 	__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1278 	__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1279 	__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1280 	__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1281 	__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1282 	__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1283 	__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1284 	__asm volatile ("sync; isync");
1285 
1286 	if (md_setup_trampoline(h, ci) == -1)
1287 		return -1;
1288 	md_presync_timebase(h);
1289 	md_start_timebase(h);
1290 
1291 	/* wait for secondary printf */
1292 
1293 	delay(200000);
1294 
1295 #ifdef CACHE_PROTO_MEI
1296 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1297 	__asm volatile ("sync; isync");
1298 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1299 	__asm volatile ("sync; isync");
1300 #endif
1301 	if (h->hatch_running < 1) {
1302 #ifdef CACHE_PROTO_MEI
1303 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1304 		__asm volatile ("sync; isync");
1305 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1306 		__asm volatile ("sync; isync");
1307 #endif
1308 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1309 		    ci->ci_cpuid, cpu_spinstart_ack);
1310 		Debugger();
1311 		return -1;
1312 	}
1313 
1314 	/* Register IPI Interrupt */
1315 	if (ipiops.ppc_establish_ipi)
1316 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1317 
1318 	return 0;
1319 }
1320 
1321 static volatile int start_secondary_cpu;
1322 
1323 register_t
1324 cpu_hatch(void)
1325 {
1326 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1327 	struct cpu_info * const ci = h->hatch_ci;
1328 	struct pcb *pcb;
1329 	u_int msr;
1330 	int i;
1331 
1332 	/* Initialize timebase. */
1333 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1334 
1335 	/*
1336 	 * Set PIR (Processor Identification Register).  i.e. whoami
1337 	 * Note that PIR is read-only on some CPU versions, so we write to it
1338 	 * only if it has a different value than we need.
1339 	 */
1340 
1341 	msr = mfspr(SPR_PIR);
1342 	if (msr != h->hatch_pir)
1343 		mtspr(SPR_PIR, h->hatch_pir);
1344 
1345 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
1346 	curlwp = ci->ci_curlwp;
1347 	cpu_spinstart_ack = 0;
1348 
1349 	/* Initialize MMU. */
1350 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1351 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1352 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1353 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1354 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1355 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1356 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1357 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1358 	__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1359 	__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1360 	__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1361 	__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1362 	__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1363 	__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1364 	__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1365 	__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1366 
1367 	mtspr(SPR_HID0, h->hatch_hid0);
1368 
1369 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1370 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
1371 
1372 	__asm volatile ("sync");
1373 	for (i = 0; i < 16; i++)
1374 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1375 	__asm volatile ("sync; isync");
1376 
1377 	if (oeacpufeat & OEACPU_64)
1378 		mtspr(SPR_ASR, h->hatch_asr);
1379 
1380 	cpu_spinstart_ack = 1;
1381 	__asm ("ptesync");
1382 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1383 	__asm volatile ("sync; isync");
1384 
1385 	cpu_spinstart_ack = 5;
1386 	for (i = 0; i < 16; i++)
1387 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1388 		       "r"(i << ADDR_SR_SHFT));
1389 
1390 	/* Enable I/D address translations. */
1391 	msr = mfmsr();
1392 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1393 	mtmsr(msr);
1394 	__asm volatile ("sync; isync");
1395 	cpu_spinstart_ack = 2;
1396 
1397 	md_sync_timebase(h);
1398 
1399 	cpu_setup(h->hatch_self, ci);
1400 
1401 	h->hatch_running = 1;
1402 	__asm volatile ("sync; isync");
1403 
1404 	while (start_secondary_cpu == 0)
1405 		;
1406 
1407 	__asm volatile ("sync; isync");
1408 
1409 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1410 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1411 
1412 	md_setup_interrupts();
1413 
1414 	ci->ci_ipending = 0;
1415 	ci->ci_cpl = 0;
1416 
1417 	mtmsr(mfmsr() | PSL_EE);
1418 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1419 	return pcb->pcb_sp;
1420 }
1421 
1422 void
1423 cpu_boot_secondary_processors(void)
1424 {
1425 	start_secondary_cpu = 1;
1426 	__asm volatile ("sync");
1427 }
1428 
1429 #endif /*MULTIPROCESSOR*/
1430