xref: /netbsd-src/sys/arch/powerpc/oea/cpu_subr.c (revision 4fee23f98c45552038ad6b5bd05124a41302fb01)
1 /*	$NetBSD: cpu_subr.c,v 1.68 2011/06/20 16:31:28 pgoyette Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.68 2011/06/20 16:31:28 pgoyette Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_altivec.h"
42 #include "sysmon_envsys.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/device.h>
47 #include <sys/types.h>
48 #include <sys/lwp.h>
49 #include <sys/malloc.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61 
62 #include <dev/sysmon/sysmonvar.h>
63 
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75 
76 int cpu;
77 int ncpus;
78 
79 struct fmttab {
80 	register_t fmt_mask;
81 	register_t fmt_value;
82 	const char *fmt_string;
83 };
84 
85 /*
86  * This should be one per CPU but since we only support it on 750 variants it
87  * doesn't realy matter since none of them supports SMP
88  */
89 envsys_data_t sensor;
90 
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 	{ L2CR_L2E, 0, " disabled" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
97 	{ L2CR_L2PE, 0, " no parity" },
98 	{ L2CR_L2PE, ~0, " parity enabled" },
99 	{ 0, 0, NULL }
100 };
101 
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 	{ L2CR_L2E, 0, " disabled" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
108 	{ L2CR_L2PE, 0, " no parity" },
109 	{ L2CR_L2PE, ~0, " parity enabled" },
110 	{ 0, 0, NULL }
111 };
112 
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 	{ L2CR_L2E, 0, " disabled" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
119 	{ L2CR_L2PE, 0, " no parity" },
120 	{ L2CR_L2PE, ~0, " parity enabled" },
121 	{ 0, 0, NULL }
122 };
123 
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 	{ L3CR_L3CLK, ~0, " at" },
139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
146 	{ L3CR_L3CLK, ~0, " ratio" },
147 	{ 0, 0, NULL },
148 };
149 
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 	{ L2CR_L2E, 0, " disabled" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 	{ 0, ~0, " 512KB" },
156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
157 	{ L2CR_L2WT, 0, " WB" },
158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 	{ 0, ~0, " L2 cache" },
160 	{ 0, 0, NULL }
161 };
162 
163 static const struct fmttab cpu_l2cr_formats[] = {
164 	{ L2CR_L2E, 0, " disabled" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
169 	{ L2CR_L2PE, 0, " no-parity" },
170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
175 	{ L2CR_L2WT, 0, " WB" },
176 	{ L2CR_L2E, ~0, " L2 cache" },
177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 	{ L2CR_L2CLK, ~0, " at" },
181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
188 	{ L2CR_L2CLK, ~0, " ratio" },
189 	{ 0, 0, NULL }
190 };
191 
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193 
194 struct cputab {
195 	const char name[8];
196 	uint16_t version;
197 	uint16_t revfmt;
198 };
199 #define	REVFMT_MAJMIN	1		/* %u.%u */
200 #define	REVFMT_HEX	2		/* 0x%04x */
201 #define	REVFMT_DEC	3		/* %u */
202 static const struct cputab models[] = {
203 	{ "601",	MPC601,		REVFMT_DEC },
204 	{ "602",	MPC602,		REVFMT_DEC },
205 	{ "603",	MPC603,		REVFMT_MAJMIN },
206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
209 	{ "604",	MPC604,		REVFMT_MAJMIN },
210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
212 	{ "620",	MPC620,  	REVFMT_HEX },
213 	{ "750",	MPC750,		REVFMT_MAJMIN },
214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
225 	{ "970",	IBM970,		REVFMT_MAJMIN },
226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
229 	{ "",		0,		REVFMT_HEX }
230 };
231 
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234     [0] = {
235 	.ci_curlwp = &lwp0,
236     },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 extern int ticks_per_intr;
241 #include <powerpc/oea/bat.h>
242 #include <powerpc/pic/picvar.h>
243 #include <powerpc/pic/ipivar.h>
244 extern struct bat battable[];
245 #else
246 struct cpu_info cpu_info[1] = {
247     [0] = {
248 	.ci_curlwp = &lwp0,
249     },
250 };
251 #endif /*MULTIPROCESSOR*/
252 
253 int cpu_altivec;
254 register_t cpu_psluserset;
255 register_t cpu_pslusermod;
256 register_t cpu_pslusermask = 0xffff;
257 char cpu_model[80];
258 
259 /* This is to be called from locore.S, and nowhere else. */
260 
261 void
262 cpu_model_init(void)
263 {
264 	u_int pvr, vers;
265 
266 	pvr = mfpvr();
267 	vers = pvr >> 16;
268 
269 	oeacpufeat = 0;
270 
271 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
272 		vers == IBMCELL || vers == IBMPOWER6P5)
273 		oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT;
274 
275 	else if (vers == MPC601)
276 		oeacpufeat |= OEACPU_601;
277 
278 	else if (MPC745X_P(vers) && vers != MPC7450)
279 		oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG;
280 
281 	else if (vers == IBM750FX || vers == IBM750GX)
282 		oeacpufeat |= OEACPU_HIGHBAT;
283 }
284 
285 void
286 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
287 {
288 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
289 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
290 		    (data & fmt->fmt_mask) == fmt->fmt_value)
291 			aprint_normal("%s", fmt->fmt_string);
292 	}
293 }
294 
295 void
296 cpu_idlespin(void)
297 {
298 	register_t msr;
299 
300 	if (powersave <= 0)
301 		return;
302 
303 	__asm volatile(
304 		"sync;"
305 		"mfmsr	%0;"
306 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
307 		"mtmsr	%0;"
308 		"isync;"
309 	    :	"=r"(msr)
310 	    :	"J"(PSL_POW));
311 }
312 
313 void
314 cpu_probe_cache(void)
315 {
316 	u_int assoc, pvr, vers;
317 
318 	pvr = mfpvr();
319 	vers = pvr >> 16;
320 
321 
322 	/* Presently common across almost all implementations. */
323 	curcpu()->ci_ci.dcache_line_size = 32;
324 	curcpu()->ci_ci.icache_line_size = 32;
325 
326 
327 	switch (vers) {
328 #define	K	*1024
329 	case IBM750FX:
330 	case IBM750GX:
331 	case MPC601:
332 	case MPC750:
333 	case MPC7400:
334 	case MPC7447A:
335 	case MPC7448:
336 	case MPC7450:
337 	case MPC7455:
338 	case MPC7457:
339 		curcpu()->ci_ci.dcache_size = 32 K;
340 		curcpu()->ci_ci.icache_size = 32 K;
341 		assoc = 8;
342 		break;
343 	case MPC603:
344 		curcpu()->ci_ci.dcache_size = 8 K;
345 		curcpu()->ci_ci.icache_size = 8 K;
346 		assoc = 2;
347 		break;
348 	case MPC603e:
349 	case MPC603ev:
350 	case MPC604:
351 	case MPC8240:
352 	case MPC8245:
353 	case MPCG2:
354 		curcpu()->ci_ci.dcache_size = 16 K;
355 		curcpu()->ci_ci.icache_size = 16 K;
356 		assoc = 4;
357 		break;
358 	case MPC604e:
359 	case MPC604ev:
360 		curcpu()->ci_ci.dcache_size = 32 K;
361 		curcpu()->ci_ci.icache_size = 32 K;
362 		assoc = 4;
363 		break;
364 	case IBMPOWER3II:
365 		curcpu()->ci_ci.dcache_size = 64 K;
366 		curcpu()->ci_ci.icache_size = 32 K;
367 		curcpu()->ci_ci.dcache_line_size = 128;
368 		curcpu()->ci_ci.icache_line_size = 128;
369 		assoc = 128; /* not a typo */
370 		break;
371 	case IBM970:
372 	case IBM970FX:
373 	case IBM970MP:
374 		curcpu()->ci_ci.dcache_size = 32 K;
375 		curcpu()->ci_ci.icache_size = 64 K;
376 		curcpu()->ci_ci.dcache_line_size = 128;
377 		curcpu()->ci_ci.icache_line_size = 128;
378 		assoc = 2;
379 		break;
380 
381 	default:
382 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
383 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
384 		assoc = 1;
385 #undef	K
386 	}
387 
388 	/*
389 	 * Possibly recolor.
390 	 */
391 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
392 }
393 
394 struct cpu_info *
395 cpu_attach_common(device_t self, int id)
396 {
397 	struct cpu_info *ci;
398 	u_int pvr, vers;
399 
400 	ci = &cpu_info[id];
401 #ifndef MULTIPROCESSOR
402 	/*
403 	 * If this isn't the primary CPU, print an error message
404 	 * and just bail out.
405 	 */
406 	if (id != 0) {
407 		aprint_normal(": ID %d\n", id);
408 		aprint_normal_dev(self,
409 		    "processor off-line; "
410 		    "multiprocessor support not present in kernel\n");
411 		return (NULL);
412 	}
413 #endif
414 
415 	ci->ci_cpuid = id;
416 	ci->ci_idepth = -1;
417 	ci->ci_dev = self;
418 	ci->ci_idlespin = cpu_idlespin;
419 
420 	pvr = mfpvr();
421 	vers = (pvr >> 16) & 0xffff;
422 
423 	switch (id) {
424 	case 0:
425 		/* load my cpu_number to PIR */
426 		switch (vers) {
427 		case MPC601:
428 		case MPC604:
429 		case MPC604e:
430 		case MPC604ev:
431 		case MPC7400:
432 		case MPC7410:
433 		case MPC7447A:
434 		case MPC7448:
435 		case MPC7450:
436 		case MPC7455:
437 		case MPC7457:
438 			mtspr(SPR_PIR, id);
439 		}
440 		cpu_setup(self, ci);
441 		break;
442 	default:
443 		if (id >= CPU_MAXNUM) {
444 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
445 			panic("cpuattach");
446 		}
447 #ifndef MULTIPROCESSOR
448 		aprint_normal(" not configured\n");
449 		return NULL;
450 #else
451 		mi_cpu_attach(ci);
452 		break;
453 #endif
454 	}
455 	return (ci);
456 }
457 
458 void
459 cpu_setup(device_t self, struct cpu_info *ci)
460 {
461 	u_int hid0, hid0_save, pvr, vers;
462 	const char * const xname = device_xname(self);
463 	const char *bitmask;
464 	char hidbuf[128];
465 	char model[80];
466 
467 	pvr = mfpvr();
468 	vers = (pvr >> 16) & 0xffff;
469 
470 	cpu_identify(model, sizeof(model));
471 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
472 	    cpu_number() == 0 ? " (primary)" : "");
473 
474 	/* set the cpu number */
475 	ci->ci_cpuid = cpu_number();
476 	hid0_save = hid0 = mfspr(SPR_HID0);
477 
478 	cpu_probe_cache();
479 
480 	/*
481 	 * Configure power-saving mode.
482 	 */
483 	switch (vers) {
484 	case MPC604:
485 	case MPC604e:
486 	case MPC604ev:
487 		/*
488 		 * Do not have HID0 support settings, but can support
489 		 * MSR[POW] off
490 		 */
491 		powersave = 1;
492 		break;
493 
494 	case MPC603:
495 	case MPC603e:
496 	case MPC603ev:
497 	case MPC7400:
498 	case MPC7410:
499 	case MPC8240:
500 	case MPC8245:
501 	case MPCG2:
502 		/* Select DOZE mode. */
503 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
504 		hid0 |= HID0_DOZE | HID0_DPM;
505 		powersave = 1;
506 		break;
507 
508 	case MPC750:
509 	case IBM750FX:
510 	case IBM750GX:
511 		/* Select NAP mode. */
512 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
513 		hid0 |= HID0_NAP | HID0_DPM;
514 		powersave = 1;
515 		break;
516 
517 	case MPC7447A:
518 	case MPC7448:
519 	case MPC7457:
520 	case MPC7455:
521 	case MPC7450:
522 		/* Enable the 7450 branch caches */
523 		hid0 |= HID0_SGE | HID0_BTIC;
524 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
525 		/* Enable more and larger BAT registers */
526 		if (oeacpufeat & OEACPU_XBSEN)
527 			hid0 |= HID0_XBSEN;
528 		if (oeacpufeat & OEACPU_HIGHBAT)
529 			hid0 |= HID0_HIGH_BAT_EN;
530 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
531 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
532 			hid0 &= ~HID0_BTIC;
533 		/* Select NAP mode. */
534 		hid0 &= ~HID0_SLEEP;
535 		hid0 |= HID0_NAP | HID0_DPM;
536 		powersave = 1;
537 		break;
538 
539 	case IBM970:
540 	case IBM970FX:
541 	case IBM970MP:
542 	case IBMPOWER3II:
543 	default:
544 		/* No power-saving mode is available. */ ;
545 	}
546 
547 #ifdef NAPMODE
548 	switch (vers) {
549 	case IBM750FX:
550 	case IBM750GX:
551 	case MPC750:
552 	case MPC7400:
553 		/* Select NAP mode. */
554 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
555 		hid0 |= HID0_NAP;
556 		break;
557 	}
558 #endif
559 
560 	switch (vers) {
561 	case IBM750FX:
562 	case IBM750GX:
563 	case MPC750:
564 		hid0 &= ~HID0_DBP;		/* XXX correct? */
565 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
566 		break;
567 
568 	case MPC7400:
569 	case MPC7410:
570 		hid0 &= ~HID0_SPD;
571 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
572 		hid0 |= HID0_EIEC;
573 		break;
574 	}
575 
576 	if (hid0 != hid0_save) {
577 		mtspr(SPR_HID0, hid0);
578 		__asm volatile("sync;isync");
579 	}
580 
581 
582 	switch (vers) {
583 	case MPC601:
584 		bitmask = HID0_601_BITMASK;
585 		break;
586 	case MPC7450:
587 	case MPC7455:
588 	case MPC7457:
589 		bitmask = HID0_7450_BITMASK;
590 		break;
591 	case IBM970:
592 	case IBM970FX:
593 	case IBM970MP:
594 		bitmask = 0;
595 		break;
596 	default:
597 		bitmask = HID0_BITMASK;
598 		break;
599 	}
600 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
601 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
602 
603 	ci->ci_khz = 0;
604 
605 	/*
606 	 * Display speed and cache configuration.
607 	 */
608 	switch (vers) {
609 	case MPC604:
610 	case MPC604e:
611 	case MPC604ev:
612 	case MPC750:
613 	case IBM750FX:
614 	case IBM750GX:
615 	case MPC7400:
616 	case MPC7410:
617 	case MPC7447A:
618 	case MPC7448:
619 	case MPC7450:
620 	case MPC7455:
621 	case MPC7457:
622 		aprint_normal_dev(self, "");
623 		cpu_probe_speed(ci);
624 		aprint_normal("%u.%02u MHz",
625 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
626 		switch (vers) {
627 		case MPC7450: /* 7441 does not have L3! */
628 		case MPC7455: /* 7445 does not have L3! */
629 		case MPC7457: /* 7447 does not have L3! */
630 			cpu_config_l3cr(vers);
631 			break;
632 		case IBM750FX:
633 		case IBM750GX:
634 		case MPC750:
635 		case MPC7400:
636 		case MPC7410:
637 		case MPC7447A:
638 		case MPC7448:
639 			cpu_config_l2cr(pvr);
640 			break;
641 		default:
642 			break;
643 		}
644 		aprint_normal("\n");
645 		break;
646 	}
647 
648 #if NSYSMON_ENVSYS > 0
649 	/*
650 	 * Attach MPC750 temperature sensor to the envsys subsystem.
651 	 * XXX the 74xx series also has this sensor, but it is not
652 	 * XXX supported by Motorola and may return values that are off by
653 	 * XXX 35-55 degrees C.
654 	 */
655 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
656 		cpu_tau_setup(ci);
657 #endif
658 
659 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
660 		NULL, xname, "clock");
661 	evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
662 		NULL, xname, "soft clock");
663 	evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
664 		NULL, xname, "soft net");
665 	evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
666 		NULL, xname, "soft serial");
667 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
668 		NULL, xname, "traps");
669 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
670 		&ci->ci_ev_traps, xname, "kernel DSI traps");
671 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
672 		&ci->ci_ev_traps, xname, "user DSI traps");
673 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
674 		&ci->ci_ev_udsi, xname, "user DSI failures");
675 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
676 		&ci->ci_ev_traps, xname, "kernel ISI traps");
677 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
678 		&ci->ci_ev_traps, xname, "user ISI traps");
679 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
680 		&ci->ci_ev_isi, xname, "user ISI failures");
681 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
682 		&ci->ci_ev_traps, xname, "system call traps");
683 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
684 		&ci->ci_ev_traps, xname, "PGM traps");
685 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
686 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
687 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
688 		&ci->ci_ev_fpu, xname, "FPU context switches");
689 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
690 		&ci->ci_ev_traps, xname, "user alignment traps");
691 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
692 		&ci->ci_ev_ali, xname, "user alignment traps");
693 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
694 		&ci->ci_ev_umchk, xname, "user MCHK failures");
695 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
696 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
697 #ifdef ALTIVEC
698 	if (cpu_altivec) {
699 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
700 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
701 	}
702 #endif
703 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
704 		NULL, xname, "IPIs");
705 }
706 
707 /*
708  * According to a document labeled "PVR Register Settings":
709  ** For integrated microprocessors the PVR register inside the device
710  ** will identify the version of the microprocessor core. You must also
711  ** read the Device ID, PCI register 02, to identify the part and the
712  ** Revision ID, PCI register 08, to identify the revision of the
713  ** integrated microprocessor.
714  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
715  */
716 
717 void
718 cpu_identify(char *str, size_t len)
719 {
720 	u_int pvr, major, minor;
721 	uint16_t vers, rev, revfmt;
722 	const struct cputab *cp;
723 	const char *name;
724 	size_t n;
725 
726 	pvr = mfpvr();
727 	vers = pvr >> 16;
728 	rev = pvr;
729 
730 	switch (vers) {
731 	case MPC7410:
732 		minor = (pvr >> 0) & 0xff;
733 		major = minor <= 4 ? 1 : 2;
734 		break;
735 	case MPCG2: /*XXX see note above */
736 		major = (pvr >> 4) & 0xf;
737 		minor = (pvr >> 0) & 0xf;
738 		break;
739 	default:
740 		major = (pvr >>  8) & 0xf;
741 		minor = (pvr >>  0) & 0xf;
742 	}
743 
744 	for (cp = models; cp->name[0] != '\0'; cp++) {
745 		if (cp->version == vers)
746 			break;
747 	}
748 
749 	if (str == NULL) {
750 		str = cpu_model;
751 		len = sizeof(cpu_model);
752 		cpu = vers;
753 	}
754 
755 	revfmt = cp->revfmt;
756 	name = cp->name;
757 	if (rev == MPC750 && pvr == 15) {
758 		name = "755";
759 		revfmt = REVFMT_HEX;
760 	}
761 
762 	if (cp->name[0] != '\0') {
763 		n = snprintf(str, len, "%s (Revision ", cp->name);
764 	} else {
765 		n = snprintf(str, len, "Version %#x (Revision ", vers);
766 	}
767 	if (len > n) {
768 		switch (revfmt) {
769 		case REVFMT_MAJMIN:
770 			snprintf(str + n, len - n, "%u.%u)", major, minor);
771 			break;
772 		case REVFMT_HEX:
773 			snprintf(str + n, len - n, "0x%04x)", rev);
774 			break;
775 		case REVFMT_DEC:
776 			snprintf(str + n, len - n, "%u)", rev);
777 			break;
778 		}
779 	}
780 }
781 
782 #ifdef L2CR_CONFIG
783 u_int l2cr_config = L2CR_CONFIG;
784 #else
785 u_int l2cr_config = 0;
786 #endif
787 
788 #ifdef L3CR_CONFIG
789 u_int l3cr_config = L3CR_CONFIG;
790 #else
791 u_int l3cr_config = 0;
792 #endif
793 
794 void
795 cpu_enable_l2cr(register_t l2cr)
796 {
797 	register_t msr, x;
798 	uint16_t vers;
799 
800 	vers = mfpvr() >> 16;
801 
802 	/* Disable interrupts and set the cache config bits. */
803 	msr = mfmsr();
804 	mtmsr(msr & ~PSL_EE);
805 #ifdef ALTIVEC
806 	if (cpu_altivec)
807 		__asm volatile("dssall");
808 #endif
809 	__asm volatile("sync");
810 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
811 	__asm volatile("sync");
812 
813 	/* Wait for L2 clock to be stable (640 L2 clocks). */
814 	delay(100);
815 
816 	/* Invalidate all L2 contents. */
817 	if (MPC745X_P(vers)) {
818 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
819 		do {
820 			x = mfspr(SPR_L2CR);
821 		} while (x & L2CR_L2I);
822 	} else {
823 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
824 		do {
825 			x = mfspr(SPR_L2CR);
826 		} while (x & L2CR_L2IP);
827 	}
828 	/* Enable L2 cache. */
829 	l2cr |= L2CR_L2E;
830 	mtspr(SPR_L2CR, l2cr);
831 	mtmsr(msr);
832 }
833 
834 void
835 cpu_enable_l3cr(register_t l3cr)
836 {
837 	register_t x;
838 
839 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
840 
841 	/*
842 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
843 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
844 	 *    in L3CR_CONFIG)
845 	 */
846 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
847 	mtspr(SPR_L3CR, l3cr);
848 
849 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
850 	l3cr |= 0x04000000;
851 	mtspr(SPR_L3CR, l3cr);
852 
853 	/* 3: Set L3CLKEN to 1*/
854 	l3cr |= L3CR_L3CLKEN;
855 	mtspr(SPR_L3CR, l3cr);
856 
857 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
858 	__asm volatile("dssall;sync");
859 	/* L3 cache is already disabled, no need to clear L3E */
860 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
861 	do {
862 		x = mfspr(SPR_L3CR);
863 	} while (x & L3CR_L3I);
864 
865 	/* 6: Clear L3CLKEN to 0 */
866 	l3cr &= ~L3CR_L3CLKEN;
867 	mtspr(SPR_L3CR, l3cr);
868 
869 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
870 	__asm volatile("sync");
871 	delay(100);
872 
873 	/* 8: Set L3E and L3CLKEN */
874 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
875 	mtspr(SPR_L3CR, l3cr);
876 
877 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
878 	__asm volatile("sync");
879 	delay(100);
880 }
881 
882 void
883 cpu_config_l2cr(int pvr)
884 {
885 	register_t l2cr;
886 	u_int vers = (pvr >> 16) & 0xffff;
887 
888 	l2cr = mfspr(SPR_L2CR);
889 
890 	/*
891 	 * For MP systems, the firmware may only configure the L2 cache
892 	 * on the first CPU.  In this case, assume that the other CPUs
893 	 * should use the same value for L2CR.
894 	 */
895 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
896 		l2cr_config = l2cr;
897 	}
898 
899 	/*
900 	 * Configure L2 cache if not enabled.
901 	 */
902 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
903 		cpu_enable_l2cr(l2cr_config);
904 		l2cr = mfspr(SPR_L2CR);
905 	}
906 
907 	if ((l2cr & L2CR_L2E) == 0) {
908 		aprint_normal(" L2 cache present but not enabled ");
909 		return;
910 	}
911 	aprint_normal(",");
912 
913 	switch (vers) {
914 	case IBM750FX:
915 	case IBM750GX:
916 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
917 		break;
918 	case MPC750:
919 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
920 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
921 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
922 		else
923 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
924 		break;
925 	case MPC7447A:
926 	case MPC7457:
927 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
928 		return;
929 	case MPC7448:
930 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
931 		return;
932 	case MPC7450:
933 	case MPC7455:
934 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
935 		break;
936 	default:
937 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
938 		break;
939 	}
940 }
941 
942 void
943 cpu_config_l3cr(int vers)
944 {
945 	register_t l2cr;
946 	register_t l3cr;
947 
948 	l2cr = mfspr(SPR_L2CR);
949 
950 	/*
951 	 * For MP systems, the firmware may only configure the L2 cache
952 	 * on the first CPU.  In this case, assume that the other CPUs
953 	 * should use the same value for L2CR.
954 	 */
955 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
956 		l2cr_config = l2cr;
957 	}
958 
959 	/*
960 	 * Configure L2 cache if not enabled.
961 	 */
962 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
963 		cpu_enable_l2cr(l2cr_config);
964 		l2cr = mfspr(SPR_L2CR);
965 	}
966 
967 	aprint_normal(",");
968 	switch (vers) {
969 	case MPC7447A:
970 	case MPC7457:
971 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
972 		return;
973 	case MPC7448:
974 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
975 		return;
976 	default:
977 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
978 		break;
979 	}
980 
981 	l3cr = mfspr(SPR_L3CR);
982 
983 	/*
984 	 * For MP systems, the firmware may only configure the L3 cache
985 	 * on the first CPU.  In this case, assume that the other CPUs
986 	 * should use the same value for L3CR.
987 	 */
988 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
989 		l3cr_config = l3cr;
990 	}
991 
992 	/*
993 	 * Configure L3 cache if not enabled.
994 	 */
995 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
996 		cpu_enable_l3cr(l3cr_config);
997 		l3cr = mfspr(SPR_L3CR);
998 	}
999 
1000 	if (l3cr & L3CR_L3E) {
1001 		aprint_normal(",");
1002 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1003 	}
1004 }
1005 
1006 void
1007 cpu_probe_speed(struct cpu_info *ci)
1008 {
1009 	uint64_t cps;
1010 
1011 	mtspr(SPR_MMCR0, MMCR0_FC);
1012 	mtspr(SPR_PMC1, 0);
1013 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1014 	delay(100000);
1015 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1016 
1017 	mtspr(SPR_MMCR0, MMCR0_FC);
1018 
1019 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1020 }
1021 
1022 /*
1023  * Read the Dynamic Frequency Switching state and return a divisor for
1024  * the maximum frequency.
1025  */
1026 int
1027 cpu_get_dfs(void)
1028 {
1029 	u_int pvr, vers;
1030 
1031 	pvr = mfpvr();
1032 	vers = pvr >> 16;
1033 
1034 	switch (vers) {
1035 	case MPC7448:
1036 		if (mfspr(SPR_HID1) & HID1_DFS4)
1037 			return 4;
1038 	case MPC7447A:
1039 		if (mfspr(SPR_HID1) & HID1_DFS2)
1040 			return 2;
1041 	}
1042 	return 1;
1043 }
1044 
1045 /*
1046  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1047  */
1048 void
1049 cpu_set_dfs(int div)
1050 {
1051 	uint64_t where;
1052 	u_int dfs_mask, pvr, vers;
1053 
1054 	pvr = mfpvr();
1055 	vers = pvr >> 16;
1056 	dfs_mask = 0;
1057 
1058 	switch (vers) {
1059 	case MPC7448:
1060 		dfs_mask |= HID1_DFS4;
1061 	case MPC7447A:
1062 		dfs_mask |= HID1_DFS2;
1063 		break;
1064 	default:
1065 		printf("cpu_set_dfs: DFS not supported\n");
1066 		return;
1067 
1068 	}
1069 
1070 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1071 	xc_wait(where);
1072 }
1073 
1074 static void
1075 cpu_set_dfs_xcall(void *arg1, void *arg2)
1076 {
1077 	u_int dfs_mask, hid1, old_hid1;
1078 	int *divisor, s;
1079 
1080 	divisor = arg1;
1081 	dfs_mask = *(u_int *)arg2;
1082 
1083 	s = splhigh();
1084 	hid1 = old_hid1 = mfspr(SPR_HID1);
1085 
1086 	switch (*divisor) {
1087 	case 1:
1088 		hid1 &= ~dfs_mask;
1089 		break;
1090 	case 2:
1091 		hid1 &= ~(dfs_mask & HID1_DFS4);
1092 		hid1 |= dfs_mask & HID1_DFS2;
1093 		break;
1094 	case 4:
1095 		hid1 &= ~(dfs_mask & HID1_DFS2);
1096 		hid1 |= dfs_mask & HID1_DFS4;
1097 		break;
1098 	}
1099 
1100 	if (hid1 != old_hid1) {
1101 		__asm volatile("sync");
1102 		mtspr(SPR_HID1, hid1);
1103 		__asm volatile("sync;isync");
1104 	}
1105 
1106 	splx(s);
1107 }
1108 
1109 #if NSYSMON_ENVSYS > 0
1110 void
1111 cpu_tau_setup(struct cpu_info *ci)
1112 {
1113 	struct sysmon_envsys *sme;
1114 	int error, therm_delay;
1115 
1116 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1117 	mtspr(SPR_THRM2, 0);
1118 
1119 	/*
1120 	 * we need to figure out how much 20+us in units of CPU clock cycles
1121 	 * are
1122 	 */
1123 
1124 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1125 
1126         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1127 
1128 	sme = sysmon_envsys_create();
1129 
1130 	sensor.units = ENVSYS_STEMP;
1131 	sensor.state = ENVSYS_SINVALID;
1132 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1133 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1134 		sysmon_envsys_destroy(sme);
1135 		return;
1136 	}
1137 
1138 	sme->sme_name = device_xname(ci->ci_dev);
1139 	sme->sme_cookie = ci;
1140 	sme->sme_refresh = cpu_tau_refresh;
1141 
1142 	if ((error = sysmon_envsys_register(sme)) != 0) {
1143 		aprint_error_dev(ci->ci_dev,
1144 		    " unable to register with sysmon (%d)\n", error);
1145 		sysmon_envsys_destroy(sme);
1146 	}
1147 }
1148 
1149 
1150 /* Find the temperature of the CPU. */
1151 void
1152 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1153 {
1154 	int i, threshold, count;
1155 
1156 	threshold = 64; /* Half of the 7-bit sensor range */
1157 
1158 	/* Successive-approximation code adapted from Motorola
1159 	 * application note AN1800/D, "Programming the Thermal Assist
1160 	 * Unit in the MPC750 Microprocessor".
1161 	 */
1162 	for (i = 5; i >= 0 ; i--) {
1163 		mtspr(SPR_THRM1,
1164 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1165 		count = 0;
1166 		while ((count < 100000) &&
1167 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1168 			count++;
1169 			delay(1);
1170 		}
1171 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1172 			/* The interrupt bit was set, meaning the
1173 			 * temperature was above the threshold
1174 			 */
1175 			threshold += 1 << i;
1176 		} else {
1177 			/* Temperature was below the threshold */
1178 			threshold -= 1 << i;
1179 		}
1180 
1181 	}
1182 	threshold += 2;
1183 
1184 	/* Convert the temperature in degrees C to microkelvin */
1185 	edata->value_cur = (threshold * 1000000) + 273150000;
1186 	edata->state = ENVSYS_SVALID;
1187 }
1188 #endif /* NSYSMON_ENVSYS > 0 */
1189 
1190 #ifdef MULTIPROCESSOR
1191 extern volatile u_int cpu_spinstart_ack;
1192 
1193 int
1194 cpu_spinup(device_t self, struct cpu_info *ci)
1195 {
1196 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1197 	struct pglist mlist;
1198 	int i, error, pvr, vers;
1199 	char *hp;
1200 
1201 	pvr = mfpvr();
1202 	vers = pvr >> 16;
1203 	KASSERT(ci != curcpu());
1204 
1205 	/* Now allocate a hatch stack */
1206 	error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
1207 	    &mlist, 1, 1);
1208 	if (error) {
1209 		aprint_error(": unable to allocate hatch stack\n");
1210 		return -1;
1211 	}
1212 
1213 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1214 	memset(hp, 0, 0x1000);
1215 
1216 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1217 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1218 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1219 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1220 
1221 	cpu_hatch_data = h;
1222 	h->running = 0;
1223 	h->self = self;
1224 	h->ci = ci;
1225 	h->pir = ci->ci_cpuid;
1226 
1227 	cpu_hatch_stack = (uint32_t)hp;
1228 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1229 
1230 	/* copy special registers */
1231 
1232 	h->hid0 = mfspr(SPR_HID0);
1233 
1234 	__asm volatile ("mfsdr1 %0" : "=r"(h->sdr1));
1235 	for (i = 0; i < 16; i++) {
1236 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1237 		       "r"(i << ADDR_SR_SHFT));
1238 	}
1239 	if (oeacpufeat & OEACPU_64)
1240 		h->asr = mfspr(SPR_ASR);
1241 	else
1242 		h->asr = 0;
1243 
1244 	/* copy the bat regs */
1245 	__asm volatile ("mfibatu %0,0" : "=r"(h->batu[0]));
1246 	__asm volatile ("mfibatl %0,0" : "=r"(h->batl[0]));
1247 	__asm volatile ("mfibatu %0,1" : "=r"(h->batu[1]));
1248 	__asm volatile ("mfibatl %0,1" : "=r"(h->batl[1]));
1249 	__asm volatile ("mfibatu %0,2" : "=r"(h->batu[2]));
1250 	__asm volatile ("mfibatl %0,2" : "=r"(h->batl[2]));
1251 	__asm volatile ("mfibatu %0,3" : "=r"(h->batu[3]));
1252 	__asm volatile ("mfibatl %0,3" : "=r"(h->batl[3]));
1253 	__asm volatile ("sync; isync");
1254 
1255 	if (md_setup_trampoline(h, ci) == -1)
1256 		return -1;
1257 	md_presync_timebase(h);
1258 	md_start_timebase(h);
1259 
1260 	/* wait for secondary printf */
1261 
1262 	delay(200000);
1263 
1264 	if (h->running < 1) {
1265 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1266 		    ci->ci_cpuid, cpu_spinstart_ack);
1267 		Debugger();
1268 		return -1;
1269 	}
1270 
1271 	/* Register IPI Interrupt */
1272 	if (ipiops.ppc_establish_ipi)
1273 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1274 
1275 	return 0;
1276 }
1277 
1278 static volatile int start_secondary_cpu;
1279 extern void tlbia(void);
1280 
1281 register_t
1282 cpu_hatch(void)
1283 {
1284 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1285 	struct cpu_info * const ci = h->ci;
1286 	struct pcb *pcb;
1287 	u_int msr;
1288 	int i;
1289 
1290 	/* Initialize timebase. */
1291 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1292 
1293 	/*
1294 	 * Set PIR (Processor Identification Register).  i.e. whoami
1295 	 * Note that PIR is read-only on some CPU versions, so we write to it
1296 	 * only if it has a different value than we need.
1297 	 */
1298 
1299 	msr = mfspr(SPR_PIR);
1300 	if (msr != h->pir)
1301 		mtspr(SPR_PIR, h->pir);
1302 
1303 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
1304 	curlwp = ci->ci_curlwp;
1305 	cpu_spinstart_ack = 0;
1306 
1307 	/* Initialize MMU. */
1308 	__asm ("mtibatu 0,%0" :: "r"(h->batu[0]));
1309 	__asm ("mtibatl 0,%0" :: "r"(h->batl[0]));
1310 	__asm ("mtibatu 1,%0" :: "r"(h->batu[1]));
1311 	__asm ("mtibatl 1,%0" :: "r"(h->batl[1]));
1312 	__asm ("mtibatu 2,%0" :: "r"(h->batu[2]));
1313 	__asm ("mtibatl 2,%0" :: "r"(h->batl[2]));
1314 	__asm ("mtibatu 3,%0" :: "r"(h->batu[3]));
1315 	__asm ("mtibatl 3,%0" :: "r"(h->batl[3]));
1316 
1317 	mtspr(SPR_HID0, h->hid0);
1318 
1319 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1320 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
1321 
1322 	__asm volatile ("sync");
1323 	for (i = 0; i < 16; i++)
1324 		__asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT));
1325 	__asm volatile ("sync; isync");
1326 
1327 	if (oeacpufeat & OEACPU_64)
1328 		mtspr(SPR_ASR, h->asr);
1329 
1330 	cpu_spinstart_ack = 1;
1331 	__asm ("ptesync");
1332 	__asm ("mtsdr1 %0" :: "r"(h->sdr1));
1333 	__asm volatile ("sync; isync");
1334 
1335 	cpu_spinstart_ack = 5;
1336 	for (i = 0; i < 16; i++)
1337 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1338 		       "r"(i << ADDR_SR_SHFT));
1339 
1340 	/* Enable I/D address translations. */
1341 	msr = mfmsr();
1342 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1343 	mtmsr(msr);
1344 	__asm volatile ("sync; isync");
1345 	cpu_spinstart_ack = 2;
1346 
1347 	md_sync_timebase(h);
1348 
1349 	cpu_setup(h->self, ci);
1350 
1351 	h->running = 1;
1352 	__asm volatile ("sync; isync");
1353 
1354 	while (start_secondary_cpu == 0)
1355 		;
1356 
1357 	__asm volatile ("sync; isync");
1358 
1359 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1360 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1361 
1362 	md_setup_interrupts();
1363 
1364 	ci->ci_ipending = 0;
1365 	ci->ci_cpl = 0;
1366 
1367 	mtmsr(mfmsr() | PSL_EE);
1368 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1369 	return pcb->pcb_sp;
1370 }
1371 
1372 void
1373 cpu_boot_secondary_processors(void)
1374 {
1375 	start_secondary_cpu = 1;
1376 	__asm volatile ("sync");
1377 }
1378 
1379 #endif /*MULTIPROCESSOR*/
1380