xref: /netbsd-src/sys/arch/powerpc/oea/cpu_subr.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: cpu_subr.c,v 1.62 2011/02/12 01:02:12 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.62 2011/02/12 01:02:12 matt Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_altivec.h"
42 #include "sysmon_envsys.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/device.h>
47 #include <sys/types.h>
48 #include <sys/lwp.h>
49 #include <sys/malloc.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/spr.h>
56 #include <powerpc/oea/hid.h>
57 #include <powerpc/oea/hid_601.h>
58 #include <powerpc/oea/spr.h>
59 #include <powerpc/oea/cpufeat.h>
60 
61 #include <dev/sysmon/sysmonvar.h>
62 
63 static void cpu_enable_l2cr(register_t);
64 static void cpu_enable_l3cr(register_t);
65 static void cpu_config_l2cr(int);
66 static void cpu_config_l3cr(int);
67 static void cpu_probe_speed(struct cpu_info *);
68 static void cpu_idlespin(void);
69 static void cpu_set_dfs_xcall(void *, void *);
70 #if NSYSMON_ENVSYS > 0
71 static void cpu_tau_setup(struct cpu_info *);
72 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
73 #endif
74 
75 int cpu;
76 int ncpus;
77 
78 struct fmttab {
79 	register_t fmt_mask;
80 	register_t fmt_value;
81 	const char *fmt_string;
82 };
83 
84 /*
85  * This should be one per CPU but since we only support it on 750 variants it
86  * doesn't realy matter since none of them supports SMP
87  */
88 envsys_data_t sensor;
89 
90 static const struct fmttab cpu_7450_l2cr_formats[] = {
91 	{ L2CR_L2E, 0, " disabled" },
92 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
95 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
96 	{ L2CR_L2PE, 0, " no parity" },
97 	{ L2CR_L2PE, ~0, " parity enabled" },
98 	{ 0, 0, NULL }
99 };
100 
101 static const struct fmttab cpu_7448_l2cr_formats[] = {
102 	{ L2CR_L2E, 0, " disabled" },
103 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
106 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
107 	{ L2CR_L2PE, 0, " no parity" },
108 	{ L2CR_L2PE, ~0, " parity enabled" },
109 	{ 0, 0, NULL }
110 };
111 
112 static const struct fmttab cpu_7457_l2cr_formats[] = {
113 	{ L2CR_L2E, 0, " disabled" },
114 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
117 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
118 	{ L2CR_L2PE, 0, " no parity" },
119 	{ L2CR_L2PE, ~0, " parity enabled" },
120 	{ 0, 0, NULL }
121 };
122 
123 static const struct fmttab cpu_7450_l3cr_formats[] = {
124 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
127 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
128 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
129 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
133 	{ L3CR_L3SIZ, ~0, " L3 cache" },
134 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
135 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
136 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
137 	{ L3CR_L3CLK, ~0, " at" },
138 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
139 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
140 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
141 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
142 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
143 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
144 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
145 	{ L3CR_L3CLK, ~0, " ratio" },
146 	{ 0, 0, NULL },
147 };
148 
149 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
150 	{ L2CR_L2E, 0, " disabled" },
151 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
154 	{ 0, ~0, " 512KB" },
155 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
156 	{ L2CR_L2WT, 0, " WB" },
157 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
158 	{ 0, ~0, " L2 cache" },
159 	{ 0, 0, NULL }
160 };
161 
162 static const struct fmttab cpu_l2cr_formats[] = {
163 	{ L2CR_L2E, 0, " disabled" },
164 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
167 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
168 	{ L2CR_L2PE, 0, " no-parity" },
169 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
170 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
171 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
172 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
173 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
174 	{ L2CR_L2WT, 0, " WB" },
175 	{ L2CR_L2E, ~0, " L2 cache" },
176 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
177 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
179 	{ L2CR_L2CLK, ~0, " at" },
180 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
181 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
182 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
183 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
184 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
185 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
186 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
187 	{ L2CR_L2CLK, ~0, " ratio" },
188 	{ 0, 0, NULL }
189 };
190 
191 static void cpu_fmttab_print(const struct fmttab *, register_t);
192 
193 struct cputab {
194 	const char name[8];
195 	uint16_t version;
196 	uint16_t revfmt;
197 };
198 #define	REVFMT_MAJMIN	1		/* %u.%u */
199 #define	REVFMT_HEX	2		/* 0x%04x */
200 #define	REVFMT_DEC	3		/* %u */
201 static const struct cputab models[] = {
202 	{ "601",	MPC601,		REVFMT_DEC },
203 	{ "602",	MPC602,		REVFMT_DEC },
204 	{ "603",	MPC603,		REVFMT_MAJMIN },
205 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
206 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
207 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
208 	{ "604",	MPC604,		REVFMT_MAJMIN },
209 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
210 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
211 	{ "620",	MPC620,  	REVFMT_HEX },
212 	{ "750",	MPC750,		REVFMT_MAJMIN },
213 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
214 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
215 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
216 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
217 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
218 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
219 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
220 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
221 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
222 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
223 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
224 	{ "970",	IBM970,		REVFMT_MAJMIN },
225 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
226 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
227 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
228 	{ "",		0,		REVFMT_HEX }
229 };
230 
231 #ifdef MULTIPROCESSOR
232 struct cpu_info cpu_info[CPU_MAXNUM] = {
233     [0] = {
234 	.ci_curlwp = &lwp0,
235 	.ci_fpulwp = &lwp0,
236 	.ci_veclwp = &lwp0,
237     },
238 };
239 volatile struct cpu_hatch_data *cpu_hatch_data;
240 volatile int cpu_hatch_stack;
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <arch/powerpc/pic/picvar.h>
244 #include <arch/powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248     [0] = {
249 	.ci_curlwp = &lwp0,
250 	.ci_fpulwp = &lwp0,
251 	.ci_veclwp = &lwp0,
252     },
253 };
254 #endif /*MULTIPROCESSOR*/
255 
256 int cpu_altivec;
257 int cpu_psluserset, cpu_pslusermod;
258 char cpu_model[80];
259 
260 /* This is to be called from locore.S, and nowhere else. */
261 
262 void
263 cpu_model_init(void)
264 {
265 	u_int pvr, vers;
266 
267 	pvr = mfpvr();
268 	vers = pvr >> 16;
269 
270 	oeacpufeat = 0;
271 
272 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
273 		vers == IBMCELL || vers == IBMPOWER6P5)
274 		oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT;
275 
276 	else if (vers == MPC601)
277 		oeacpufeat |= OEACPU_601;
278 
279 	else if (MPC745X_P(vers) && vers != MPC7450)
280 		oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG;
281 
282 	else if (vers == IBM750FX || vers == IBM750GX)
283 		oeacpufeat |= OEACPU_HIGHBAT;
284 }
285 
286 void
287 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
288 {
289 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
290 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
291 		    (data & fmt->fmt_mask) == fmt->fmt_value)
292 			aprint_normal("%s", fmt->fmt_string);
293 	}
294 }
295 
296 void
297 cpu_idlespin(void)
298 {
299 	register_t msr;
300 
301 	if (powersave <= 0)
302 		return;
303 
304 	__asm volatile(
305 		"sync;"
306 		"mfmsr	%0;"
307 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
308 		"mtmsr	%0;"
309 		"isync;"
310 	    :	"=r"(msr)
311 	    :	"J"(PSL_POW));
312 }
313 
314 void
315 cpu_probe_cache(void)
316 {
317 	u_int assoc, pvr, vers;
318 
319 	pvr = mfpvr();
320 	vers = pvr >> 16;
321 
322 
323 	/* Presently common across almost all implementations. */
324 	curcpu()->ci_ci.dcache_line_size = 32;
325 	curcpu()->ci_ci.icache_line_size = 32;
326 
327 
328 	switch (vers) {
329 #define	K	*1024
330 	case IBM750FX:
331 	case IBM750GX:
332 	case MPC601:
333 	case MPC750:
334 	case MPC7400:
335 	case MPC7447A:
336 	case MPC7448:
337 	case MPC7450:
338 	case MPC7455:
339 	case MPC7457:
340 		curcpu()->ci_ci.dcache_size = 32 K;
341 		curcpu()->ci_ci.icache_size = 32 K;
342 		assoc = 8;
343 		break;
344 	case MPC603:
345 		curcpu()->ci_ci.dcache_size = 8 K;
346 		curcpu()->ci_ci.icache_size = 8 K;
347 		assoc = 2;
348 		break;
349 	case MPC603e:
350 	case MPC603ev:
351 	case MPC604:
352 	case MPC8240:
353 	case MPC8245:
354 	case MPCG2:
355 		curcpu()->ci_ci.dcache_size = 16 K;
356 		curcpu()->ci_ci.icache_size = 16 K;
357 		assoc = 4;
358 		break;
359 	case MPC604e:
360 	case MPC604ev:
361 		curcpu()->ci_ci.dcache_size = 32 K;
362 		curcpu()->ci_ci.icache_size = 32 K;
363 		assoc = 4;
364 		break;
365 	case IBMPOWER3II:
366 		curcpu()->ci_ci.dcache_size = 64 K;
367 		curcpu()->ci_ci.icache_size = 32 K;
368 		curcpu()->ci_ci.dcache_line_size = 128;
369 		curcpu()->ci_ci.icache_line_size = 128;
370 		assoc = 128; /* not a typo */
371 		break;
372 	case IBM970:
373 	case IBM970FX:
374 	case IBM970MP:
375 		curcpu()->ci_ci.dcache_size = 32 K;
376 		curcpu()->ci_ci.icache_size = 64 K;
377 		curcpu()->ci_ci.dcache_line_size = 128;
378 		curcpu()->ci_ci.icache_line_size = 128;
379 		assoc = 2;
380 		break;
381 
382 	default:
383 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
384 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
385 		assoc = 1;
386 #undef	K
387 	}
388 
389 	/*
390 	 * Possibly recolor.
391 	 */
392 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
393 }
394 
395 struct cpu_info *
396 cpu_attach_common(device_t self, int id)
397 {
398 	struct cpu_info *ci;
399 	u_int pvr, vers;
400 
401 	ci = &cpu_info[id];
402 #ifndef MULTIPROCESSOR
403 	/*
404 	 * If this isn't the primary CPU, print an error message
405 	 * and just bail out.
406 	 */
407 	if (id != 0) {
408 		aprint_normal(": ID %d\n", id);
409 		aprint_normal("%s: processor off-line; multiprocessor support "
410 		    "not present in kernel\n", self->dv_xname);
411 		return (NULL);
412 	}
413 #endif
414 
415 	ci->ci_cpuid = id;
416 	ci->ci_idepth = -1;
417 	ci->ci_dev = self;
418 	ci->ci_idlespin = cpu_idlespin;
419 
420 	pvr = mfpvr();
421 	vers = (pvr >> 16) & 0xffff;
422 
423 	switch (id) {
424 	case 0:
425 		/* load my cpu_number to PIR */
426 		switch (vers) {
427 		case MPC601:
428 		case MPC604:
429 		case MPC604e:
430 		case MPC604ev:
431 		case MPC7400:
432 		case MPC7410:
433 		case MPC7447A:
434 		case MPC7448:
435 		case MPC7450:
436 		case MPC7455:
437 		case MPC7457:
438 			mtspr(SPR_PIR, id);
439 		}
440 		cpu_setup(self, ci);
441 		break;
442 	default:
443 		if (id >= CPU_MAXNUM) {
444 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
445 			panic("cpuattach");
446 		}
447 #ifndef MULTIPROCESSOR
448 		aprint_normal(" not configured\n");
449 		return NULL;
450 #else
451 		mi_cpu_attach(ci);
452 		break;
453 #endif
454 	}
455 	return (ci);
456 }
457 
458 void
459 cpu_setup(device_t self, struct cpu_info *ci)
460 {
461 	u_int hid0, hid0_save, pvr, vers;
462 	const char *bitmask;
463 	char hidbuf[128];
464 	char model[80];
465 
466 	pvr = mfpvr();
467 	vers = (pvr >> 16) & 0xffff;
468 
469 	cpu_identify(model, sizeof(model));
470 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
471 	    cpu_number() == 0 ? " (primary)" : "");
472 
473 	/* set the cpu number */
474 	ci->ci_cpuid = cpu_number();
475 	hid0_save = hid0 = mfspr(SPR_HID0);
476 
477 	cpu_probe_cache();
478 
479 	/*
480 	 * Configure power-saving mode.
481 	 */
482 	switch (vers) {
483 	case MPC604:
484 	case MPC604e:
485 	case MPC604ev:
486 		/*
487 		 * Do not have HID0 support settings, but can support
488 		 * MSR[POW] off
489 		 */
490 		powersave = 1;
491 		break;
492 
493 	case MPC603:
494 	case MPC603e:
495 	case MPC603ev:
496 	case MPC7400:
497 	case MPC7410:
498 	case MPC8240:
499 	case MPC8245:
500 	case MPCG2:
501 		/* Select DOZE mode. */
502 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
503 		hid0 |= HID0_DOZE | HID0_DPM;
504 		powersave = 1;
505 		break;
506 
507 	case MPC750:
508 	case IBM750FX:
509 	case IBM750GX:
510 		/* Select NAP mode. */
511 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
512 		hid0 |= HID0_NAP | HID0_DPM;
513 		powersave = 1;
514 		break;
515 
516 	case MPC7447A:
517 	case MPC7448:
518 	case MPC7457:
519 	case MPC7455:
520 	case MPC7450:
521 		/* Enable the 7450 branch caches */
522 		hid0 |= HID0_SGE | HID0_BTIC;
523 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
524 		/* Enable more and larger BAT registers */
525 		if (oeacpufeat & OEACPU_XBSEN)
526 			hid0 |= HID0_XBSEN;
527 		if (oeacpufeat & OEACPU_HIGHBAT)
528 			hid0 |= HID0_HIGH_BAT_EN;
529 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
530 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
531 			hid0 &= ~HID0_BTIC;
532 		/* Select NAP mode. */
533 		hid0 &= ~HID0_SLEEP;
534 		hid0 |= HID0_NAP | HID0_DPM;
535 		powersave = 1;
536 		break;
537 
538 	case IBM970:
539 	case IBM970FX:
540 	case IBM970MP:
541 	case IBMPOWER3II:
542 	default:
543 		/* No power-saving mode is available. */ ;
544 	}
545 
546 #ifdef NAPMODE
547 	switch (vers) {
548 	case IBM750FX:
549 	case IBM750GX:
550 	case MPC750:
551 	case MPC7400:
552 		/* Select NAP mode. */
553 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
554 		hid0 |= HID0_NAP;
555 		break;
556 	}
557 #endif
558 
559 	switch (vers) {
560 	case IBM750FX:
561 	case IBM750GX:
562 	case MPC750:
563 		hid0 &= ~HID0_DBP;		/* XXX correct? */
564 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
565 		break;
566 
567 	case MPC7400:
568 	case MPC7410:
569 		hid0 &= ~HID0_SPD;
570 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
571 		hid0 |= HID0_EIEC;
572 		break;
573 	}
574 
575 	if (hid0 != hid0_save) {
576 		mtspr(SPR_HID0, hid0);
577 		__asm volatile("sync;isync");
578 	}
579 
580 
581 	switch (vers) {
582 	case MPC601:
583 		bitmask = HID0_601_BITMASK;
584 		break;
585 	case MPC7450:
586 	case MPC7455:
587 	case MPC7457:
588 		bitmask = HID0_7450_BITMASK;
589 		break;
590 	case IBM970:
591 	case IBM970FX:
592 	case IBM970MP:
593 		bitmask = 0;
594 		break;
595 	default:
596 		bitmask = HID0_BITMASK;
597 		break;
598 	}
599 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
600 	aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf,
601 	    powersave);
602 
603 	ci->ci_khz = 0;
604 
605 	/*
606 	 * Display speed and cache configuration.
607 	 */
608 	switch (vers) {
609 	case MPC604:
610 	case MPC604e:
611 	case MPC604ev:
612 	case MPC750:
613 	case IBM750FX:
614 	case IBM750GX:
615 	case MPC7400:
616 	case MPC7410:
617 	case MPC7447A:
618 	case MPC7448:
619 	case MPC7450:
620 	case MPC7455:
621 	case MPC7457:
622 		aprint_normal("%s: ", self->dv_xname);
623 		cpu_probe_speed(ci);
624 		aprint_normal("%u.%02u MHz",
625 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
626 		switch (vers) {
627 		case MPC7450: /* 7441 does not have L3! */
628 		case MPC7455: /* 7445 does not have L3! */
629 		case MPC7457: /* 7447 does not have L3! */
630 			cpu_config_l3cr(vers);
631 			break;
632 		case IBM750FX:
633 		case IBM750GX:
634 		case MPC750:
635 		case MPC7400:
636 		case MPC7410:
637 		case MPC7447A:
638 		case MPC7448:
639 			cpu_config_l2cr(pvr);
640 			break;
641 		default:
642 			break;
643 		}
644 		aprint_normal("\n");
645 		break;
646 	}
647 
648 #if NSYSMON_ENVSYS > 0
649 	/*
650 	 * Attach MPC750 temperature sensor to the envsys subsystem.
651 	 * XXX the 74xx series also has this sensor, but it is not
652 	 * XXX supported by Motorola and may return values that are off by
653 	 * XXX 35-55 degrees C.
654 	 */
655 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
656 		cpu_tau_setup(ci);
657 #endif
658 
659 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
660 		NULL, self->dv_xname, "clock");
661 	evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
662 		NULL, self->dv_xname, "soft clock");
663 	evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
664 		NULL, self->dv_xname, "soft net");
665 	evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
666 		NULL, self->dv_xname, "soft serial");
667 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
668 		NULL, self->dv_xname, "traps");
669 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
670 		&ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
671 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
672 		&ci->ci_ev_traps, self->dv_xname, "user DSI traps");
673 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
674 		&ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
675 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
676 		&ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
677 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
678 		&ci->ci_ev_traps, self->dv_xname, "user ISI traps");
679 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
680 		&ci->ci_ev_isi, self->dv_xname, "user ISI failures");
681 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
682 		&ci->ci_ev_traps, self->dv_xname, "system call traps");
683 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
684 		&ci->ci_ev_traps, self->dv_xname, "PGM traps");
685 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
686 		&ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
687 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
688 		&ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
689 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
690 		&ci->ci_ev_traps, self->dv_xname, "user alignment traps");
691 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
692 		&ci->ci_ev_ali, self->dv_xname, "user alignment traps");
693 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
694 		&ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
695 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
696 		&ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
697 #ifdef ALTIVEC
698 	if (cpu_altivec) {
699 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
700 		    &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
701 	}
702 #endif
703 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
704 		NULL, self->dv_xname, "IPIs");
705 }
706 
707 /*
708  * According to a document labeled "PVR Register Settings":
709  ** For integrated microprocessors the PVR register inside the device
710  ** will identify the version of the microprocessor core. You must also
711  ** read the Device ID, PCI register 02, to identify the part and the
712  ** Revision ID, PCI register 08, to identify the revision of the
713  ** integrated microprocessor.
714  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
715  */
716 
717 void
718 cpu_identify(char *str, size_t len)
719 {
720 	u_int pvr, major, minor;
721 	uint16_t vers, rev, revfmt;
722 	const struct cputab *cp;
723 	const char *name;
724 	size_t n;
725 
726 	pvr = mfpvr();
727 	vers = pvr >> 16;
728 	rev = pvr;
729 
730 	switch (vers) {
731 	case MPC7410:
732 		minor = (pvr >> 0) & 0xff;
733 		major = minor <= 4 ? 1 : 2;
734 		break;
735 	case MPCG2: /*XXX see note above */
736 		major = (pvr >> 4) & 0xf;
737 		minor = (pvr >> 0) & 0xf;
738 		break;
739 	default:
740 		major = (pvr >>  8) & 0xf;
741 		minor = (pvr >>  0) & 0xf;
742 	}
743 
744 	for (cp = models; cp->name[0] != '\0'; cp++) {
745 		if (cp->version == vers)
746 			break;
747 	}
748 
749 	if (str == NULL) {
750 		str = cpu_model;
751 		len = sizeof(cpu_model);
752 		cpu = vers;
753 	}
754 
755 	revfmt = cp->revfmt;
756 	name = cp->name;
757 	if (rev == MPC750 && pvr == 15) {
758 		name = "755";
759 		revfmt = REVFMT_HEX;
760 	}
761 
762 	if (cp->name[0] != '\0') {
763 		n = snprintf(str, len, "%s (Revision ", cp->name);
764 	} else {
765 		n = snprintf(str, len, "Version %#x (Revision ", vers);
766 	}
767 	if (len > n) {
768 		switch (revfmt) {
769 		case REVFMT_MAJMIN:
770 			snprintf(str + n, len - n, "%u.%u)", major, minor);
771 			break;
772 		case REVFMT_HEX:
773 			snprintf(str + n, len - n, "0x%04x)", rev);
774 			break;
775 		case REVFMT_DEC:
776 			snprintf(str + n, len - n, "%u)", rev);
777 			break;
778 		}
779 	}
780 }
781 
782 #ifdef L2CR_CONFIG
783 u_int l2cr_config = L2CR_CONFIG;
784 #else
785 u_int l2cr_config = 0;
786 #endif
787 
788 #ifdef L3CR_CONFIG
789 u_int l3cr_config = L3CR_CONFIG;
790 #else
791 u_int l3cr_config = 0;
792 #endif
793 
794 void
795 cpu_enable_l2cr(register_t l2cr)
796 {
797 	register_t msr, x;
798 	uint16_t vers;
799 
800 	vers = mfpvr() >> 16;
801 
802 	/* Disable interrupts and set the cache config bits. */
803 	msr = mfmsr();
804 	mtmsr(msr & ~PSL_EE);
805 #ifdef ALTIVEC
806 	if (cpu_altivec)
807 		__asm volatile("dssall");
808 #endif
809 	__asm volatile("sync");
810 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
811 	__asm volatile("sync");
812 
813 	/* Wait for L2 clock to be stable (640 L2 clocks). */
814 	delay(100);
815 
816 	/* Invalidate all L2 contents. */
817 	if (MPC745X_P(vers)) {
818 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
819 		do {
820 			x = mfspr(SPR_L2CR);
821 		} while (x & L2CR_L2I);
822 	} else {
823 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
824 		do {
825 			x = mfspr(SPR_L2CR);
826 		} while (x & L2CR_L2IP);
827 	}
828 	/* Enable L2 cache. */
829 	l2cr |= L2CR_L2E;
830 	mtspr(SPR_L2CR, l2cr);
831 	mtmsr(msr);
832 }
833 
834 void
835 cpu_enable_l3cr(register_t l3cr)
836 {
837 	register_t x;
838 
839 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
840 
841 	/*
842 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
843 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
844 	 *    in L3CR_CONFIG)
845 	 */
846 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
847 	mtspr(SPR_L3CR, l3cr);
848 
849 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
850 	l3cr |= 0x04000000;
851 	mtspr(SPR_L3CR, l3cr);
852 
853 	/* 3: Set L3CLKEN to 1*/
854 	l3cr |= L3CR_L3CLKEN;
855 	mtspr(SPR_L3CR, l3cr);
856 
857 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
858 	__asm volatile("dssall;sync");
859 	/* L3 cache is already disabled, no need to clear L3E */
860 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
861 	do {
862 		x = mfspr(SPR_L3CR);
863 	} while (x & L3CR_L3I);
864 
865 	/* 6: Clear L3CLKEN to 0 */
866 	l3cr &= ~L3CR_L3CLKEN;
867 	mtspr(SPR_L3CR, l3cr);
868 
869 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
870 	__asm volatile("sync");
871 	delay(100);
872 
873 	/* 8: Set L3E and L3CLKEN */
874 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
875 	mtspr(SPR_L3CR, l3cr);
876 
877 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
878 	__asm volatile("sync");
879 	delay(100);
880 }
881 
882 void
883 cpu_config_l2cr(int pvr)
884 {
885 	register_t l2cr;
886 	u_int vers = (pvr >> 16) & 0xffff;
887 
888 	l2cr = mfspr(SPR_L2CR);
889 
890 	/*
891 	 * For MP systems, the firmware may only configure the L2 cache
892 	 * on the first CPU.  In this case, assume that the other CPUs
893 	 * should use the same value for L2CR.
894 	 */
895 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
896 		l2cr_config = l2cr;
897 	}
898 
899 	/*
900 	 * Configure L2 cache if not enabled.
901 	 */
902 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
903 		cpu_enable_l2cr(l2cr_config);
904 		l2cr = mfspr(SPR_L2CR);
905 	}
906 
907 	if ((l2cr & L2CR_L2E) == 0) {
908 		aprint_normal(" L2 cache present but not enabled ");
909 		return;
910 	}
911 	aprint_normal(",");
912 
913 	switch (vers) {
914 	case IBM750FX:
915 	case IBM750GX:
916 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
917 		break;
918 	case MPC750:
919 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
920 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
921 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
922 		else
923 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
924 		break;
925 	case MPC7447A:
926 	case MPC7457:
927 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
928 		return;
929 	case MPC7448:
930 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
931 		return;
932 	case MPC7450:
933 	case MPC7455:
934 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
935 		break;
936 	default:
937 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
938 		break;
939 	}
940 }
941 
942 void
943 cpu_config_l3cr(int vers)
944 {
945 	register_t l2cr;
946 	register_t l3cr;
947 
948 	l2cr = mfspr(SPR_L2CR);
949 
950 	/*
951 	 * For MP systems, the firmware may only configure the L2 cache
952 	 * on the first CPU.  In this case, assume that the other CPUs
953 	 * should use the same value for L2CR.
954 	 */
955 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
956 		l2cr_config = l2cr;
957 	}
958 
959 	/*
960 	 * Configure L2 cache if not enabled.
961 	 */
962 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
963 		cpu_enable_l2cr(l2cr_config);
964 		l2cr = mfspr(SPR_L2CR);
965 	}
966 
967 	aprint_normal(",");
968 	switch (vers) {
969 	case MPC7447A:
970 	case MPC7457:
971 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
972 		return;
973 	case MPC7448:
974 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
975 		return;
976 	default:
977 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
978 		break;
979 	}
980 
981 	l3cr = mfspr(SPR_L3CR);
982 
983 	/*
984 	 * For MP systems, the firmware may only configure the L3 cache
985 	 * on the first CPU.  In this case, assume that the other CPUs
986 	 * should use the same value for L3CR.
987 	 */
988 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
989 		l3cr_config = l3cr;
990 	}
991 
992 	/*
993 	 * Configure L3 cache if not enabled.
994 	 */
995 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
996 		cpu_enable_l3cr(l3cr_config);
997 		l3cr = mfspr(SPR_L3CR);
998 	}
999 
1000 	if (l3cr & L3CR_L3E) {
1001 		aprint_normal(",");
1002 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1003 	}
1004 }
1005 
1006 void
1007 cpu_probe_speed(struct cpu_info *ci)
1008 {
1009 	uint64_t cps;
1010 
1011 	mtspr(SPR_MMCR0, MMCR0_FC);
1012 	mtspr(SPR_PMC1, 0);
1013 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1014 	delay(100000);
1015 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1016 
1017 	mtspr(SPR_MMCR0, MMCR0_FC);
1018 
1019 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1020 }
1021 
1022 /*
1023  * Read the Dynamic Frequency Switching state and return a divisor for
1024  * the maximum frequency.
1025  */
1026 int
1027 cpu_get_dfs(void)
1028 {
1029 	u_int pvr, vers;
1030 
1031 	pvr = mfpvr();
1032 	vers = pvr >> 16;
1033 
1034 	switch (vers) {
1035 	case MPC7448:
1036 		if (mfspr(SPR_HID1) & HID1_DFS4)
1037 			return 4;
1038 	case MPC7447A:
1039 		if (mfspr(SPR_HID1) & HID1_DFS2)
1040 			return 2;
1041 	}
1042 	return 1;
1043 }
1044 
1045 /*
1046  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1047  */
1048 void
1049 cpu_set_dfs(int div)
1050 {
1051 	uint64_t where;
1052 	u_int dfs_mask, pvr, vers;
1053 
1054 	pvr = mfpvr();
1055 	vers = pvr >> 16;
1056 	dfs_mask = 0;
1057 
1058 	switch (vers) {
1059 	case MPC7448:
1060 		dfs_mask |= HID1_DFS4;
1061 	case MPC7447A:
1062 		dfs_mask |= HID1_DFS2;
1063 		break;
1064 	default:
1065 		printf("cpu_set_dfs: DFS not supported\n");
1066 		return;
1067 
1068 	}
1069 
1070 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1071 	xc_wait(where);
1072 }
1073 
1074 static void
1075 cpu_set_dfs_xcall(void *arg1, void *arg2)
1076 {
1077 	u_int dfs_mask, hid1, old_hid1;
1078 	int *divisor, s;
1079 
1080 	divisor = arg1;
1081 	dfs_mask = *(u_int *)arg2;
1082 
1083 	s = splhigh();
1084 	hid1 = old_hid1 = mfspr(SPR_HID1);
1085 
1086 	switch (*divisor) {
1087 	case 1:
1088 		hid1 &= ~dfs_mask;
1089 		break;
1090 	case 2:
1091 		hid1 &= ~(dfs_mask & HID1_DFS4);
1092 		hid1 |= dfs_mask & HID1_DFS2;
1093 		break;
1094 	case 4:
1095 		hid1 &= ~(dfs_mask & HID1_DFS2);
1096 		hid1 |= dfs_mask & HID1_DFS4;
1097 		break;
1098 	}
1099 
1100 	if (hid1 != old_hid1) {
1101 		__asm volatile("sync");
1102 		mtspr(SPR_HID1, hid1);
1103 		__asm volatile("sync;isync");
1104 	}
1105 
1106 	splx(s);
1107 }
1108 
1109 #if NSYSMON_ENVSYS > 0
1110 void
1111 cpu_tau_setup(struct cpu_info *ci)
1112 {
1113 	struct sysmon_envsys *sme;
1114 	int error, therm_delay;
1115 
1116 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1117 	mtspr(SPR_THRM2, 0);
1118 
1119 	/*
1120 	 * we need to figure out how much 20+us in units of CPU clock cycles
1121 	 * are
1122 	 */
1123 
1124 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1125 
1126         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1127 
1128 	sme = sysmon_envsys_create();
1129 
1130 	sensor.units = ENVSYS_STEMP;
1131 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1132 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1133 		sysmon_envsys_destroy(sme);
1134 		return;
1135 	}
1136 
1137 	sme->sme_name = ci->ci_dev->dv_xname;
1138 	sme->sme_cookie = ci;
1139 	sme->sme_refresh = cpu_tau_refresh;
1140 
1141 	if ((error = sysmon_envsys_register(sme)) != 0) {
1142 		aprint_error("%s: unable to register with sysmon (%d)\n",
1143 		    ci->ci_dev->dv_xname, error);
1144 		sysmon_envsys_destroy(sme);
1145 	}
1146 }
1147 
1148 
1149 /* Find the temperature of the CPU. */
1150 void
1151 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1152 {
1153 	int i, threshold, count;
1154 
1155 	threshold = 64; /* Half of the 7-bit sensor range */
1156 
1157 	/* Successive-approximation code adapted from Motorola
1158 	 * application note AN1800/D, "Programming the Thermal Assist
1159 	 * Unit in the MPC750 Microprocessor".
1160 	 */
1161 	for (i = 5; i >= 0 ; i--) {
1162 		mtspr(SPR_THRM1,
1163 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1164 		count = 0;
1165 		while ((count < 100000) &&
1166 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1167 			count++;
1168 			delay(1);
1169 		}
1170 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1171 			/* The interrupt bit was set, meaning the
1172 			 * temperature was above the threshold
1173 			 */
1174 			threshold += 1 << i;
1175 		} else {
1176 			/* Temperature was below the threshold */
1177 			threshold -= 1 << i;
1178 		}
1179 
1180 	}
1181 	threshold += 2;
1182 
1183 	/* Convert the temperature in degrees C to microkelvin */
1184 	edata->value_cur = (threshold * 1000000) + 273150000;
1185 	edata->state = ENVSYS_SVALID;
1186 }
1187 #endif /* NSYSMON_ENVSYS > 0 */
1188 
1189 #ifdef MULTIPROCESSOR
1190 extern volatile u_int cpu_spinstart_ack;
1191 
1192 int
1193 cpu_spinup(device_t self, struct cpu_info *ci)
1194 {
1195 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1196 	struct pglist mlist;
1197 	int i, error, pvr, vers;
1198 	char *hp;
1199 
1200 	pvr = mfpvr();
1201 	vers = pvr >> 16;
1202 	KASSERT(ci != curcpu());
1203 
1204 	/* Now allocate a hatch stack */
1205 	error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
1206 	    &mlist, 1, 1);
1207 	if (error) {
1208 		aprint_error(": unable to allocate hatch stack\n");
1209 		return -1;
1210 	}
1211 
1212 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1213 	memset(hp, 0, 0x1000);
1214 
1215 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1216 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1217 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1218 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1219 
1220 	cpu_hatch_data = h;
1221 	h->running = 0;
1222 	h->self = self;
1223 	h->ci = ci;
1224 	h->pir = ci->ci_cpuid;
1225 
1226 	cpu_hatch_stack = (uint32_t)hp;
1227 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1228 
1229 	/* copy special registers */
1230 
1231 	h->hid0 = mfspr(SPR_HID0);
1232 
1233 	__asm volatile ("mfsdr1 %0" : "=r"(h->sdr1));
1234 	for (i = 0; i < 16; i++) {
1235 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1236 		       "r"(i << ADDR_SR_SHFT));
1237 	}
1238 	if (oeacpufeat & OEACPU_64)
1239 		h->asr = mfspr(SPR_ASR);
1240 	else
1241 		h->asr = 0;
1242 
1243 	/* copy the bat regs */
1244 	__asm volatile ("mfibatu %0,0" : "=r"(h->batu[0]));
1245 	__asm volatile ("mfibatl %0,0" : "=r"(h->batl[0]));
1246 	__asm volatile ("mfibatu %0,1" : "=r"(h->batu[1]));
1247 	__asm volatile ("mfibatl %0,1" : "=r"(h->batl[1]));
1248 	__asm volatile ("mfibatu %0,2" : "=r"(h->batu[2]));
1249 	__asm volatile ("mfibatl %0,2" : "=r"(h->batl[2]));
1250 	__asm volatile ("mfibatu %0,3" : "=r"(h->batu[3]));
1251 	__asm volatile ("mfibatl %0,3" : "=r"(h->batl[3]));
1252 	__asm volatile ("sync; isync");
1253 
1254 	if (md_setup_trampoline(h, ci) == -1)
1255 		return -1;
1256 	md_presync_timebase(h);
1257 	md_start_timebase(h);
1258 
1259 	/* wait for secondary printf */
1260 
1261 	delay(200000);
1262 
1263 	if (h->running < 1) {
1264 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1265 		    ci->ci_cpuid, cpu_spinstart_ack);
1266 		Debugger();
1267 		return -1;
1268 	}
1269 
1270 	/* Register IPI Interrupt */
1271 	if (ipiops.ppc_establish_ipi)
1272 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1273 
1274 	return 0;
1275 }
1276 
1277 static volatile int start_secondary_cpu;
1278 extern void tlbia(void);
1279 
1280 register_t
1281 cpu_hatch(void)
1282 {
1283 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1284 	struct cpu_info * const ci = h->ci;
1285 	struct pcb *pcb;
1286 	u_int msr;
1287 	int i;
1288 
1289 	/* Initialize timebase. */
1290 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1291 
1292 	/*
1293 	 * Set PIR (Processor Identification Register).  i.e. whoami
1294 	 * Note that PIR is read-only on some CPU versions, so we write to it
1295 	 * only if it has a different value than we need.
1296 	 */
1297 
1298 	msr = mfspr(SPR_PIR);
1299 	if (msr != h->pir)
1300 		mtspr(SPR_PIR, h->pir);
1301 
1302 	__asm volatile ("mtsprg 0,%0" :: "r"(ci));
1303 	cpu_spinstart_ack = 0;
1304 
1305 	/* Initialize MMU. */
1306 	__asm ("mtibatu 0,%0" :: "r"(h->batu[0]));
1307 	__asm ("mtibatl 0,%0" :: "r"(h->batl[0]));
1308 	__asm ("mtibatu 1,%0" :: "r"(h->batu[1]));
1309 	__asm ("mtibatl 1,%0" :: "r"(h->batl[1]));
1310 	__asm ("mtibatu 2,%0" :: "r"(h->batu[2]));
1311 	__asm ("mtibatl 2,%0" :: "r"(h->batl[2]));
1312 	__asm ("mtibatu 3,%0" :: "r"(h->batu[3]));
1313 	__asm ("mtibatl 3,%0" :: "r"(h->batl[3]));
1314 
1315 	mtspr(SPR_HID0, h->hid0);
1316 
1317 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1318 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
1319 
1320 	__asm volatile ("sync");
1321 	for (i = 0; i < 16; i++)
1322 		__asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT));
1323 	__asm volatile ("sync; isync");
1324 
1325 	if (oeacpufeat & OEACPU_64)
1326 		mtspr(SPR_ASR, h->asr);
1327 
1328 	cpu_spinstart_ack = 1;
1329 	__asm ("ptesync");
1330 	__asm ("mtsdr1 %0" :: "r"(h->sdr1));
1331 	__asm volatile ("sync; isync");
1332 
1333 	cpu_spinstart_ack = 5;
1334 	for (i = 0; i < 16; i++)
1335 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1336 		       "r"(i << ADDR_SR_SHFT));
1337 
1338 	/* Enable I/D address translations. */
1339 	msr = mfmsr();
1340 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1341 	mtmsr(msr);
1342 	__asm volatile ("sync; isync");
1343 	cpu_spinstart_ack = 2;
1344 
1345 	md_sync_timebase(h);
1346 
1347 	cpu_setup(h->self, ci);
1348 
1349 	h->running = 1;
1350 	__asm volatile ("sync; isync");
1351 
1352 	while (start_secondary_cpu == 0)
1353 		;
1354 
1355 	__asm volatile ("sync; isync");
1356 
1357 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1358 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1359 
1360 	md_setup_interrupts();
1361 
1362 	ci->ci_ipending = 0;
1363 	ci->ci_cpl = 0;
1364 
1365 	mtmsr(mfmsr() | PSL_EE);
1366 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1367 	return pcb->pcb_sp;
1368 }
1369 
1370 void
1371 cpu_boot_secondary_processors(void)
1372 {
1373 	start_secondary_cpu = 1;
1374 	__asm volatile ("sync");
1375 }
1376 
1377 #endif /*MULTIPROCESSOR*/
1378