1 /* $NetBSD: pmap.c,v 1.76 2016/12/24 19:02:16 cherry Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 * Copyright (C) 1995, 1996 TooLs GmbH. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by TooLs GmbH. 54 * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.76 2016/12/24 19:02:16 cherry Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/cpu.h> 74 #include <sys/device.h> 75 #include <sys/kmem.h> 76 #include <sys/pool.h> 77 #include <sys/proc.h> 78 #include <sys/queue.h> 79 #include <sys/systm.h> 80 81 #include <uvm/uvm.h> 82 83 #include <machine/powerpc.h> 84 #include <machine/tlb.h> 85 86 #include <powerpc/pcb.h> 87 88 #include <powerpc/spr.h> 89 #include <powerpc/ibm4xx/spr.h> 90 91 #include <powerpc/ibm4xx/cpu.h> 92 93 /* 94 * kernmap is an array of PTEs large enough to map in 95 * 4GB. At 16KB/page it is 256K entries or 2MB. 96 */ 97 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) 98 void *kernmap; 99 100 #define MINCTX 2 101 #define NUMCTX 256 102 103 volatile struct pmap *ctxbusy[NUMCTX]; 104 105 #define TLBF_USED 0x1 106 #define TLBF_REF 0x2 107 #define TLBF_LOCKED 0x4 108 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 109 110 typedef struct tlb_info_s { 111 char ti_flags; 112 char ti_ctx; /* TLB_PID assiciated with the entry */ 113 u_int ti_va; 114 } tlb_info_t; 115 116 volatile tlb_info_t tlb_info[NTLB]; 117 /* We'll use a modified FIFO replacement policy cause it's cheap */ 118 volatile int tlbnext; 119 120 static int tlb_nreserved = 0; 121 static int pmap_bootstrap_done = 0; 122 123 /* Event counters */ 124 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 125 NULL, "cpu", "tlbmiss"); 126 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 127 NULL, "cpu", "tlbhit"); 128 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 129 NULL, "cpu", "tlbflush"); 130 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 131 NULL, "cpu", "tlbenter"); 132 EVCNT_ATTACH_STATIC(tlbmiss_ev); 133 EVCNT_ATTACH_STATIC(tlbhit_ev); 134 EVCNT_ATTACH_STATIC(tlbflush_ev); 135 EVCNT_ATTACH_STATIC(tlbenter_ev); 136 137 struct pmap kernel_pmap_; 138 struct pmap *const kernel_pmap_ptr = &kernel_pmap_; 139 140 static int npgs; 141 static u_int nextavail; 142 #ifndef MSGBUFADDR 143 extern paddr_t msgbuf_paddr; 144 #endif 145 146 static struct mem_region *mem, *avail; 147 148 /* 149 * This is a cache of referenced/modified bits. 150 * Bits herein are shifted by ATTRSHFT. 151 */ 152 static char *pmap_attrib; 153 154 #define PV_WIRED 0x1 155 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 156 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED) 157 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED) 158 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED))) 159 160 struct pv_entry { 161 struct pv_entry *pv_next; /* Linked list of mappings */ 162 struct pmap *pv_pm; 163 vaddr_t pv_va; /* virtual address of mapping */ 164 }; 165 166 /* Each index corresponds to TLB_SIZE_* value. */ 167 static size_t tlbsize[] = { 168 1024, /* TLB_SIZE_1K */ 169 4096, /* TLB_SIZE_4K */ 170 16384, /* TLB_SIZE_16K */ 171 65536, /* TLB_SIZE_64K */ 172 262144, /* TLB_SIZE_256K */ 173 1048576, /* TLB_SIZE_1M */ 174 4194304, /* TLB_SIZE_4M */ 175 16777216, /* TLB_SIZE_16M */ 176 }; 177 178 struct pv_entry *pv_table; 179 static struct pool pv_pool; 180 181 static int pmap_initialized; 182 183 static int ctx_flush(int); 184 185 struct pv_entry *pa_to_pv(paddr_t); 186 static inline char *pa_to_attr(paddr_t); 187 188 static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 189 static inline int pte_enter(struct pmap *, vaddr_t, u_int); 190 191 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int); 192 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 193 194 static int ppc4xx_tlb_size_mask(size_t, int *, int *); 195 196 197 struct pv_entry * 198 pa_to_pv(paddr_t pa) 199 { 200 uvm_physseg_t bank; 201 psize_t pg; 202 203 bank = uvm_physseg_find(atop(pa), &pg); 204 if (bank == UVM_PHYSSEG_TYPE_INVALID) 205 return NULL; 206 return &uvm_physseg_get_pmseg(bank)->pvent[pg]; 207 } 208 209 static inline char * 210 pa_to_attr(paddr_t pa) 211 { 212 uvm_physseg_t bank; 213 psize_t pg; 214 215 bank = uvm_physseg_find(atop(pa), &pg); 216 if (bank == UVM_PHYSSEG_TYPE_INVALID) 217 return NULL; 218 return &uvm_physseg_get_pmseg(bank)->attrs[pg]; 219 } 220 221 /* 222 * Insert PTE into page table. 223 */ 224 int 225 pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 226 { 227 int seg = STIDX(va); 228 int ptn = PTIDX(va); 229 u_int oldpte; 230 231 if (!pm->pm_ptbl[seg]) { 232 /* Don't allocate a page to clear a non-existent mapping. */ 233 if (!pte) 234 return (0); 235 /* Allocate a page XXXX this will sleep! */ 236 pm->pm_ptbl[seg] = 237 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 238 UVM_KMF_WIRED | UVM_KMF_ZERO); 239 } 240 oldpte = pm->pm_ptbl[seg][ptn]; 241 pm->pm_ptbl[seg][ptn] = pte; 242 243 /* Flush entry. */ 244 ppc4xx_tlb_flush(va, pm->pm_ctx); 245 if (oldpte != pte) { 246 if (pte == 0) 247 pm->pm_stats.resident_count--; 248 else 249 pm->pm_stats.resident_count++; 250 } 251 return (1); 252 } 253 254 /* 255 * Get a pointer to a PTE in a page table. 256 */ 257 volatile u_int * 258 pte_find(struct pmap *pm, vaddr_t va) 259 { 260 int seg = STIDX(va); 261 int ptn = PTIDX(va); 262 263 if (pm->pm_ptbl[seg]) 264 return (&pm->pm_ptbl[seg][ptn]); 265 266 return (NULL); 267 } 268 269 /* 270 * This is called during initppc, before the system is really initialized. 271 */ 272 void 273 pmap_bootstrap(u_int kernelstart, u_int kernelend) 274 { 275 struct mem_region *mp, *mp1; 276 int cnt, i; 277 u_int s, e, sz; 278 279 tlbnext = tlb_nreserved; 280 281 /* 282 * Allocate the kernel page table at the end of 283 * kernel space so it's in the locked TTE. 284 */ 285 kernmap = (void *)kernelend; 286 287 /* 288 * Initialize kernel page table. 289 */ 290 for (i = 0; i < STSZ; i++) { 291 pmap_kernel()->pm_ptbl[i] = 0; 292 } 293 ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 294 295 /* 296 * Announce page-size to the VM-system 297 */ 298 uvmexp.pagesize = NBPG; 299 uvm_md_init(); 300 301 /* 302 * Get memory. 303 */ 304 mem_regions(&mem, &avail); 305 for (mp = mem; mp->size; mp++) { 306 physmem += btoc(mp->size); 307 printf("+%lx,",mp->size); 308 } 309 printf("\n"); 310 ppc4xx_tlb_init(); 311 /* 312 * Count the number of available entries. 313 */ 314 for (cnt = 0, mp = avail; mp->size; mp++) 315 cnt++; 316 317 /* 318 * Page align all regions. 319 * Non-page aligned memory isn't very interesting to us. 320 * Also, sort the entries for ascending addresses. 321 */ 322 kernelstart &= ~PGOFSET; 323 kernelend = (kernelend + PGOFSET) & ~PGOFSET; 324 for (mp = avail; mp->size; mp++) { 325 s = mp->start; 326 e = mp->start + mp->size; 327 printf("%08x-%08x -> ",s,e); 328 /* 329 * Check whether this region holds all of the kernel. 330 */ 331 if (s < kernelstart && e > kernelend) { 332 avail[cnt].start = kernelend; 333 avail[cnt++].size = e - kernelend; 334 e = kernelstart; 335 } 336 /* 337 * Look whether this regions starts within the kernel. 338 */ 339 if (s >= kernelstart && s < kernelend) { 340 if (e <= kernelend) 341 goto empty; 342 s = kernelend; 343 } 344 /* 345 * Now look whether this region ends within the kernel. 346 */ 347 if (e > kernelstart && e <= kernelend) { 348 if (s >= kernelstart) 349 goto empty; 350 e = kernelstart; 351 } 352 /* 353 * Now page align the start and size of the region. 354 */ 355 s = round_page(s); 356 e = trunc_page(e); 357 if (e < s) 358 e = s; 359 sz = e - s; 360 printf("%08x-%08x = %x\n",s,e,sz); 361 /* 362 * Check whether some memory is left here. 363 */ 364 if (sz == 0) { 365 empty: 366 memmove(mp, mp + 1, 367 (cnt - (mp - avail)) * sizeof *mp); 368 cnt--; 369 mp--; 370 continue; 371 } 372 /* 373 * Do an insertion sort. 374 */ 375 npgs += btoc(sz); 376 for (mp1 = avail; mp1 < mp; mp1++) 377 if (s < mp1->start) 378 break; 379 if (mp1 < mp) { 380 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 381 mp1->start = s; 382 mp1->size = sz; 383 } else { 384 mp->start = s; 385 mp->size = sz; 386 } 387 } 388 389 /* 390 * We cannot do pmap_steal_memory here, 391 * since we don't run with translation enabled yet. 392 */ 393 #ifndef MSGBUFADDR 394 /* 395 * allow for msgbuf 396 */ 397 sz = round_page(MSGBUFSIZE); 398 mp = NULL; 399 for (mp1 = avail; mp1->size; mp1++) 400 if (mp1->size >= sz) 401 mp = mp1; 402 if (mp == NULL) 403 panic("not enough memory?"); 404 405 npgs -= btoc(sz); 406 msgbuf_paddr = mp->start + mp->size - sz; 407 mp->size -= sz; 408 if (mp->size <= 0) 409 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); 410 #endif 411 412 for (mp = avail; mp->size; mp++) 413 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 414 atop(mp->start), atop(mp->start + mp->size), 415 VM_FREELIST_DEFAULT); 416 417 /* 418 * Initialize kernel pmap and hardware. 419 */ 420 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 421 pmap_kernel()->pm_ctx = KERNEL_PID; 422 nextavail = avail->start; 423 424 pmap_bootstrap_done = 1; 425 } 426 427 /* 428 * Restrict given range to physical memory 429 * 430 * (Used by /dev/mem) 431 */ 432 void 433 pmap_real_memory(paddr_t *start, psize_t *size) 434 { 435 struct mem_region *mp; 436 437 for (mp = mem; mp->size; mp++) { 438 if (*start + *size > mp->start && 439 *start < mp->start + mp->size) { 440 if (*start < mp->start) { 441 *size -= mp->start - *start; 442 *start = mp->start; 443 } 444 if (*start + *size > mp->start + mp->size) 445 *size = mp->start + mp->size - *start; 446 return; 447 } 448 } 449 *size = 0; 450 } 451 452 /* 453 * Initialize anything else for pmap handling. 454 * Called during vm_init(). 455 */ 456 void 457 pmap_init(void) 458 { 459 struct pv_entry *pv; 460 vsize_t sz; 461 vaddr_t addr; 462 int i, s; 463 int bank; 464 char *attr; 465 466 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 467 sz = round_page(sz); 468 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); 469 s = splvm(); 470 pv = pv_table = (struct pv_entry *)addr; 471 for (i = npgs; --i >= 0;) 472 pv++->pv_pm = NULL; 473 pmap_attrib = (char *)pv; 474 memset(pv, 0, npgs); 475 476 pv = pv_table; 477 attr = pmap_attrib; 478 for (bank = uvm_physseg_get_first(); 479 uvm_physseg_valid_p(bank); 480 bank = uvm_physseg_get_next(bank)) { 481 sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank); 482 uvm_physseg_get_pmseg(bank)->pvent = pv; 483 uvm_physseg_get_pmseg(bank)->attrs = attr; 484 pv += sz; 485 attr += sz; 486 } 487 488 pmap_initialized = 1; 489 splx(s); 490 491 /* Setup a pool for additional pvlist structures */ 492 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL, 493 IPL_VM); 494 } 495 496 /* 497 * How much virtual space is available to the kernel? 498 */ 499 void 500 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 501 { 502 503 #if 0 504 /* 505 * Reserve one segment for kernel virtual memory 506 */ 507 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); 508 *end = *start + SEGMENT_LENGTH; 509 #else 510 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 511 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 512 #endif 513 } 514 515 #ifdef PMAP_GROWKERNEL 516 /* 517 * Preallocate kernel page tables to a specified VA. 518 * This simply loops through the first TTE for each 519 * page table from the beginning of the kernel pmap, 520 * reads the entry, and if the result is 521 * zero (either invalid entry or no page table) it stores 522 * a zero there, populating page tables in the process. 523 * This is not the most efficient technique but i don't 524 * expect it to be called that often. 525 */ 526 extern struct vm_page *vm_page_alloc1(void); 527 extern void vm_page_free1(struct vm_page *); 528 529 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 530 531 vaddr_t 532 pmap_growkernel(vaddr_t maxkvaddr) 533 { 534 int s; 535 int seg; 536 paddr_t pg; 537 struct pmap *pm = pmap_kernel(); 538 539 s = splvm(); 540 541 /* Align with the start of a page table */ 542 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; 543 kbreak += PTMAP) { 544 seg = STIDX(kbreak); 545 546 if (pte_find(pm, kbreak)) 547 continue; 548 549 if (uvm.page_init_done) { 550 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 551 } else { 552 if (!uvm_page_physget(&pg)) 553 panic("pmap_growkernel: no memory"); 554 } 555 if (!pg) 556 panic("pmap_growkernel: no pages"); 557 pmap_zero_page((paddr_t)pg); 558 559 /* XXX This is based on all phymem being addressable */ 560 pm->pm_ptbl[seg] = (u_int *)pg; 561 } 562 splx(s); 563 return (kbreak); 564 } 565 566 /* 567 * vm_page_alloc1: 568 * 569 * Allocate and return a memory cell with no associated object. 570 */ 571 struct vm_page * 572 vm_page_alloc1(void) 573 { 574 struct vm_page *pg; 575 576 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 577 if (pg) { 578 pg->wire_count = 1; /* no mappings yet */ 579 pg->flags &= ~PG_BUSY; /* never busy */ 580 } 581 return pg; 582 } 583 584 /* 585 * vm_page_free1: 586 * 587 * Returns the given page to the free list, 588 * disassociating it with any VM object. 589 * 590 * Object and page must be locked prior to entry. 591 */ 592 void 593 vm_page_free1(struct vm_page *pg) 594 { 595 #ifdef DIAGNOSTIC 596 if (pg->flags != (PG_CLEAN|PG_FAKE)) { 597 printf("Freeing invalid page %p\n", pg); 598 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg)); 599 #ifdef DDB 600 Debugger(); 601 #endif 602 return; 603 } 604 #endif 605 pg->flags |= PG_BUSY; 606 pg->wire_count = 0; 607 uvm_pagefree(pg); 608 } 609 #endif 610 611 /* 612 * Create and return a physical map. 613 */ 614 struct pmap * 615 pmap_create(void) 616 { 617 struct pmap *pm; 618 619 pm = kmem_alloc(sizeof(*pm), KM_SLEEP); 620 memset(pm, 0, sizeof *pm); 621 pm->pm_refs = 1; 622 return pm; 623 } 624 625 /* 626 * Add a reference to the given pmap. 627 */ 628 void 629 pmap_reference(struct pmap *pm) 630 { 631 632 pm->pm_refs++; 633 } 634 635 /* 636 * Retire the given pmap from service. 637 * Should only be called if the map contains no valid mappings. 638 */ 639 void 640 pmap_destroy(struct pmap *pm) 641 { 642 int i; 643 644 if (--pm->pm_refs > 0) { 645 return; 646 } 647 KASSERT(pm->pm_stats.resident_count == 0); 648 KASSERT(pm->pm_stats.wired_count == 0); 649 for (i = 0; i < STSZ; i++) 650 if (pm->pm_ptbl[i]) { 651 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 652 PAGE_SIZE, UVM_KMF_WIRED); 653 pm->pm_ptbl[i] = NULL; 654 } 655 if (pm->pm_ctx) 656 ctx_free(pm); 657 kmem_free(pm, sizeof(*pm)); 658 } 659 660 /* 661 * Copy the range specified by src_addr/len 662 * from the source map to the range dst_addr/len 663 * in the destination map. 664 * 665 * This routine is only advisory and need not do anything. 666 */ 667 void 668 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 669 vsize_t len, vaddr_t src_addr) 670 { 671 } 672 673 /* 674 * Require that all active physical maps contain no 675 * incorrect entries NOW. 676 */ 677 void 678 pmap_update(struct pmap *pmap) 679 { 680 } 681 682 /* 683 * Fill the given physical page with zeroes. 684 */ 685 void 686 pmap_zero_page(paddr_t pa) 687 { 688 689 #ifdef PPC_4XX_NOCACHE 690 memset((void *)pa, 0, PAGE_SIZE); 691 #else 692 int i; 693 694 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 695 __asm volatile ("dcbz 0,%0" :: "r"(pa)); 696 pa += CACHELINESIZE; 697 } 698 #endif 699 } 700 701 /* 702 * Copy the given physical source page to its destination. 703 */ 704 void 705 pmap_copy_page(paddr_t src, paddr_t dst) 706 { 707 708 memcpy((void *)dst, (void *)src, PAGE_SIZE); 709 dcache_wbinv_page(dst); 710 } 711 712 /* 713 * This returns != 0 on success. 714 */ 715 static inline int 716 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags) 717 { 718 struct pv_entry *pv, *npv = NULL; 719 int s; 720 721 if (!pmap_initialized) 722 return 0; 723 724 s = splvm(); 725 pv = pa_to_pv(pa); 726 if (!pv->pv_pm) { 727 /* 728 * No entries yet, use header as the first entry. 729 */ 730 pv->pv_va = va; 731 pv->pv_pm = pm; 732 pv->pv_next = NULL; 733 } else { 734 /* 735 * There is at least one other VA mapping this page. 736 * Place this entry after the header. 737 */ 738 npv = pool_get(&pv_pool, PR_NOWAIT); 739 if (npv == NULL) { 740 if ((flags & PMAP_CANFAIL) == 0) 741 panic("pmap_enter_pv: failed"); 742 splx(s); 743 return 0; 744 } 745 npv->pv_va = va; 746 npv->pv_pm = pm; 747 npv->pv_next = pv->pv_next; 748 pv->pv_next = npv; 749 pv = npv; 750 } 751 if (flags & PMAP_WIRED) { 752 PV_WIRE(pv); 753 pm->pm_stats.wired_count++; 754 } 755 splx(s); 756 return (1); 757 } 758 759 static void 760 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 761 { 762 struct pv_entry *pv, *npv; 763 764 /* 765 * Remove from the PV table. 766 */ 767 pv = pa_to_pv(pa); 768 if (!pv) 769 return; 770 771 /* 772 * If it is the first entry on the list, it is actually 773 * in the header and we must copy the following entry up 774 * to the header. Otherwise we must search the list for 775 * the entry. In either case we free the now unused entry. 776 */ 777 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 778 if (PV_ISWIRED(pv)) { 779 pm->pm_stats.wired_count--; 780 } 781 if ((npv = pv->pv_next)) { 782 *pv = *npv; 783 pool_put(&pv_pool, npv); 784 } else 785 pv->pv_pm = NULL; 786 } else { 787 for (; (npv = pv->pv_next) != NULL; pv = npv) 788 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 789 break; 790 if (npv) { 791 pv->pv_next = npv->pv_next; 792 if (PV_ISWIRED(npv)) { 793 pm->pm_stats.wired_count--; 794 } 795 pool_put(&pv_pool, npv); 796 } 797 } 798 } 799 800 /* 801 * Insert physical page at pa into the given pmap at virtual address va. 802 */ 803 int 804 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 805 { 806 int s; 807 u_int tte; 808 bool managed; 809 810 /* 811 * Have to remove any existing mapping first. 812 */ 813 pmap_remove(pm, va, va + PAGE_SIZE); 814 815 if (flags & PMAP_WIRED) 816 flags |= prot; 817 818 managed = uvm_pageismanaged(pa); 819 820 /* 821 * Generate TTE. 822 */ 823 tte = TTE_PA(pa); 824 /* XXXX -- need to support multiple page sizes. */ 825 tte |= TTE_SZ_16K; 826 #ifdef DIAGNOSTIC 827 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) == 828 (PMAP_NOCACHE | PME_WRITETHROUG)) 829 panic("pmap_enter: uncached & writethrough"); 830 #endif 831 if (flags & PMAP_NOCACHE) 832 /* Must be I/O mapping */ 833 tte |= TTE_I | TTE_G; 834 #ifdef PPC_4XX_NOCACHE 835 tte |= TTE_I; 836 #else 837 else if (flags & PME_WRITETHROUG) 838 /* Uncached and writethrough are not compatible */ 839 tte |= TTE_W; 840 #endif 841 if (pm == pmap_kernel()) 842 tte |= TTE_ZONE(ZONE_PRIV); 843 else 844 tte |= TTE_ZONE(ZONE_USER); 845 846 if (flags & VM_PROT_WRITE) 847 tte |= TTE_WR; 848 849 if (flags & VM_PROT_EXECUTE) 850 tte |= TTE_EX; 851 852 /* 853 * Now record mapping for later back-translation. 854 */ 855 if (pmap_initialized && managed) { 856 char *attr; 857 858 if (!pmap_enter_pv(pm, va, pa, flags)) { 859 /* Could not enter pv on a managed page */ 860 return 1; 861 } 862 863 /* Now set attributes. */ 864 attr = pa_to_attr(pa); 865 #ifdef DIAGNOSTIC 866 if (!attr) 867 panic("managed but no attr"); 868 #endif 869 if (flags & VM_PROT_ALL) 870 *attr |= PMAP_ATTR_REF; 871 if (flags & VM_PROT_WRITE) 872 *attr |= PMAP_ATTR_CHG; 873 } 874 875 s = splvm(); 876 877 /* Insert page into page table. */ 878 pte_enter(pm, va, tte); 879 880 /* If this is a real fault, enter it in the tlb */ 881 if (tte && ((flags & PMAP_WIRED) == 0)) { 882 int s2 = splhigh(); 883 ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 884 splx(s2); 885 } 886 splx(s); 887 888 /* Flush the real memory from the instruction cache. */ 889 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 890 __syncicache((void *)pa, PAGE_SIZE); 891 892 return 0; 893 } 894 895 void 896 pmap_unwire(struct pmap *pm, vaddr_t va) 897 { 898 struct pv_entry *pv; 899 paddr_t pa; 900 int s; 901 902 if (!pmap_extract(pm, va, &pa)) { 903 return; 904 } 905 906 pv = pa_to_pv(pa); 907 if (!pv) 908 return; 909 910 s = splvm(); 911 while (pv != NULL) { 912 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 913 if (PV_ISWIRED(pv)) { 914 PV_UNWIRE(pv); 915 pm->pm_stats.wired_count--; 916 } 917 break; 918 } 919 pv = pv->pv_next; 920 } 921 splx(s); 922 } 923 924 void 925 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 926 { 927 int s; 928 u_int tte; 929 struct pmap *pm = pmap_kernel(); 930 931 /* 932 * Have to remove any existing mapping first. 933 */ 934 935 /* 936 * Generate TTE. 937 * 938 * XXXX 939 * 940 * Since the kernel does not handle execution privileges properly, 941 * we will handle read and execute permissions together. 942 */ 943 tte = 0; 944 if (prot & VM_PROT_ALL) { 945 946 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 947 /* XXXX -- need to support multiple page sizes. */ 948 tte |= TTE_SZ_16K; 949 #ifdef DIAGNOSTIC 950 if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) == 951 (PMAP_NOCACHE | PME_WRITETHROUG)) 952 panic("pmap_kenter_pa: uncached & writethrough"); 953 #endif 954 if (flags & PMAP_NOCACHE) 955 /* Must be I/O mapping */ 956 tte |= TTE_I | TTE_G; 957 #ifdef PPC_4XX_NOCACHE 958 tte |= TTE_I; 959 #else 960 else if (prot & PME_WRITETHROUG) 961 /* Uncached and writethrough are not compatible */ 962 tte |= TTE_W; 963 #endif 964 if (prot & VM_PROT_WRITE) 965 tte |= TTE_WR; 966 } 967 968 s = splvm(); 969 970 /* Insert page into page table. */ 971 pte_enter(pm, va, tte); 972 splx(s); 973 } 974 975 void 976 pmap_kremove(vaddr_t va, vsize_t len) 977 { 978 979 while (len > 0) { 980 pte_enter(pmap_kernel(), va, 0); 981 va += PAGE_SIZE; 982 len -= PAGE_SIZE; 983 } 984 } 985 986 /* 987 * Remove the given range of mapping entries. 988 */ 989 void 990 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 991 { 992 int s; 993 paddr_t pa; 994 volatile u_int *ptp; 995 996 s = splvm(); 997 while (va < endva) { 998 999 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 1000 pa = TTE_PA(pa); 1001 pmap_remove_pv(pm, va, pa); 1002 *ptp = 0; 1003 ppc4xx_tlb_flush(va, pm->pm_ctx); 1004 pm->pm_stats.resident_count--; 1005 } 1006 va += PAGE_SIZE; 1007 } 1008 1009 splx(s); 1010 } 1011 1012 /* 1013 * Get the physical page address for the given pmap/virtual address. 1014 */ 1015 bool 1016 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1017 { 1018 int seg = STIDX(va); 1019 int ptn = PTIDX(va); 1020 u_int pa = 0; 1021 int s; 1022 1023 s = splvm(); 1024 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) { 1025 *pap = TTE_PA(pa) | (va & PGOFSET); 1026 } 1027 splx(s); 1028 return (pa != 0); 1029 } 1030 1031 /* 1032 * Lower the protection on the specified range of this pmap. 1033 * 1034 * There are only two cases: either the protection is going to 0, 1035 * or it is going to read-only. 1036 */ 1037 void 1038 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1039 { 1040 volatile u_int *ptp; 1041 int s, bic; 1042 1043 if ((prot & VM_PROT_READ) == 0) { 1044 pmap_remove(pm, sva, eva); 1045 return; 1046 } 1047 bic = 0; 1048 if ((prot & VM_PROT_WRITE) == 0) { 1049 bic |= TTE_WR; 1050 } 1051 if ((prot & VM_PROT_EXECUTE) == 0) { 1052 bic |= TTE_EX; 1053 } 1054 if (bic == 0) { 1055 return; 1056 } 1057 s = splvm(); 1058 while (sva < eva) { 1059 if ((ptp = pte_find(pm, sva)) != NULL) { 1060 *ptp &= ~bic; 1061 ppc4xx_tlb_flush(sva, pm->pm_ctx); 1062 } 1063 sva += PAGE_SIZE; 1064 } 1065 splx(s); 1066 } 1067 1068 bool 1069 pmap_check_attr(struct vm_page *pg, u_int mask, int clear) 1070 { 1071 paddr_t pa; 1072 char *attr; 1073 int s, rv; 1074 1075 /* 1076 * First modify bits in cache. 1077 */ 1078 pa = VM_PAGE_TO_PHYS(pg); 1079 attr = pa_to_attr(pa); 1080 if (attr == NULL) 1081 return false; 1082 1083 s = splvm(); 1084 rv = ((*attr & mask) != 0); 1085 if (clear) { 1086 *attr &= ~mask; 1087 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0); 1088 } 1089 splx(s); 1090 return rv; 1091 } 1092 1093 1094 /* 1095 * Lower the protection on the specified physical page. 1096 * 1097 * There are only two cases: either the protection is going to 0, 1098 * or it is going to read-only. 1099 */ 1100 void 1101 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1102 { 1103 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1104 vaddr_t va; 1105 struct pv_entry *pvh, *pv, *npv; 1106 struct pmap *pm; 1107 1108 pvh = pa_to_pv(pa); 1109 if (pvh == NULL) 1110 return; 1111 1112 /* Handle extra pvs which may be deleted in the operation */ 1113 for (pv = pvh->pv_next; pv; pv = npv) { 1114 npv = pv->pv_next; 1115 1116 pm = pv->pv_pm; 1117 va = pv->pv_va; 1118 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1119 } 1120 /* Now check the head pv */ 1121 if (pvh->pv_pm) { 1122 pv = pvh; 1123 pm = pv->pv_pm; 1124 va = pv->pv_va; 1125 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1126 } 1127 } 1128 1129 /* 1130 * Activate the address space for the specified process. If the process 1131 * is the current process, load the new MMU context. 1132 */ 1133 void 1134 pmap_activate(struct lwp *l) 1135 { 1136 #if 0 1137 struct pcb *pcb = lwp_getpcb(l); 1138 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1139 1140 /* 1141 * XXX Normally performed in cpu_lwp_fork(). 1142 */ 1143 printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1144 pcb->pcb_pm = pmap; 1145 #endif 1146 } 1147 1148 /* 1149 * Deactivate the specified process's address space. 1150 */ 1151 void 1152 pmap_deactivate(struct lwp *l) 1153 { 1154 } 1155 1156 /* 1157 * Synchronize caches corresponding to [addr, addr+len) in p. 1158 */ 1159 void 1160 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1161 { 1162 struct pmap *pm = p->p_vmspace->vm_map.pmap; 1163 int msr, ctx, opid, step; 1164 1165 step = CACHELINESIZE; 1166 1167 /* 1168 * Need to turn off IMMU and switch to user context. 1169 * (icbi uses DMMU). 1170 */ 1171 if (!(ctx = pm->pm_ctx)) { 1172 /* No context -- assign it one */ 1173 ctx_alloc(pm); 1174 ctx = pm->pm_ctx; 1175 } 1176 __asm volatile("mfmsr %0;" 1177 "li %1, %7;" 1178 "andc %1,%0,%1;" 1179 "mtmsr %1;" 1180 "sync;isync;" 1181 "mfpid %1;" 1182 "mtpid %2;" 1183 "sync; isync;" 1184 "1:" 1185 "dcbf 0,%3;" 1186 "icbi 0,%3;" 1187 "add %3,%3,%5;" 1188 "addc. %4,%4,%6;" 1189 "bge 1b;" 1190 "mtpid %1;" 1191 "mtmsr %0;" 1192 "sync; isync" 1193 : "=&r" (msr), "=&r" (opid) 1194 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step), 1195 "K" (PSL_IR | PSL_DR)); 1196 } 1197 1198 1199 /* This has to be done in real mode !!! */ 1200 void 1201 ppc4xx_tlb_flush(vaddr_t va, int pid) 1202 { 1203 u_long i, found; 1204 u_long msr; 1205 1206 /* If there's no context then it can't be mapped. */ 1207 if (!pid) 1208 return; 1209 1210 __asm( "mfpid %1;" /* Save PID */ 1211 "mfmsr %2;" /* Save MSR */ 1212 "li %0,0;" /* Now clear MSR */ 1213 "mtmsr %0;" 1214 "mtpid %4;" /* Set PID */ 1215 "sync;" 1216 "tlbsx. %0,0,%3;" /* Search TLB */ 1217 "sync;" 1218 "mtpid %1;" /* Restore PID */ 1219 "mtmsr %2;" /* Restore MSR */ 1220 "sync;isync;" 1221 "li %1,1;" 1222 "beq 1f;" 1223 "li %1,0;" 1224 "1:" 1225 : "=&r" (i), "=&r" (found), "=&r" (msr) 1226 : "r" (va), "r" (pid)); 1227 if (found && !TLB_LOCKED(i)) { 1228 1229 /* Now flush translation */ 1230 __asm volatile( 1231 "tlbwe %0,%1,0;" 1232 "sync;isync;" 1233 : : "r" (0), "r" (i)); 1234 1235 tlb_info[i].ti_ctx = 0; 1236 tlb_info[i].ti_flags = 0; 1237 tlbnext = i; 1238 /* Successful flushes */ 1239 tlbflush_ev.ev_count++; 1240 } 1241 } 1242 1243 void 1244 ppc4xx_tlb_flush_all(void) 1245 { 1246 u_long i; 1247 1248 for (i = 0; i < NTLB; i++) 1249 if (!TLB_LOCKED(i)) { 1250 __asm volatile( 1251 "tlbwe %0,%1,0;" 1252 "sync;isync;" 1253 : : "r" (0), "r" (i)); 1254 tlb_info[i].ti_ctx = 0; 1255 tlb_info[i].ti_flags = 0; 1256 } 1257 1258 __asm volatile("sync;isync"); 1259 } 1260 1261 /* Find a TLB entry to evict. */ 1262 static int 1263 ppc4xx_tlb_find_victim(void) 1264 { 1265 int flags; 1266 1267 for (;;) { 1268 if (++tlbnext >= NTLB) 1269 tlbnext = tlb_nreserved; 1270 flags = tlb_info[tlbnext].ti_flags; 1271 if (!(flags & TLBF_USED) || 1272 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1273 u_long va, stack = (u_long)&va; 1274 1275 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && 1276 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1277 (flags & TLBF_USED)) { 1278 /* Kernel stack page */ 1279 flags |= TLBF_USED; 1280 tlb_info[tlbnext].ti_flags = flags; 1281 } else { 1282 /* Found it! */ 1283 return (tlbnext); 1284 } 1285 } else { 1286 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1287 } 1288 } 1289 } 1290 1291 void 1292 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1293 { 1294 u_long th, tl, idx; 1295 tlbpid_t pid; 1296 u_short msr; 1297 paddr_t pa; 1298 int sz; 1299 1300 tlbenter_ev.ev_count++; 1301 1302 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1303 pa = (pte & TTE_RPN_MASK(sz)); 1304 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1305 tl = (pte & ~TLB_RPN_MASK) | pa; 1306 tl |= ppc4xx_tlbflags(va, pa); 1307 1308 idx = ppc4xx_tlb_find_victim(); 1309 1310 #ifdef DIAGNOSTIC 1311 if ((idx < tlb_nreserved) || (idx >= NTLB)) { 1312 panic("ppc4xx_tlb_enter: replacing entry %ld", idx); 1313 } 1314 #endif 1315 1316 tlb_info[idx].ti_va = (va & TLB_EPN_MASK); 1317 tlb_info[idx].ti_ctx = ctx; 1318 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; 1319 1320 __asm volatile( 1321 "mfmsr %0;" /* Save MSR */ 1322 "li %1,0;" 1323 "tlbwe %1,%3,0;" /* Invalidate old entry. */ 1324 "mtmsr %1;" /* Clear MSR */ 1325 "mfpid %1;" /* Save old PID */ 1326 "mtpid %2;" /* Load translation ctx */ 1327 "sync; isync;" 1328 #ifdef DEBUG 1329 "andi. %3,%3,63;" 1330 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */ 1331 #endif 1332 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ 1333 "sync; isync;" 1334 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ 1335 "sync; isync;" 1336 : "=&r" (msr), "=&r" (pid) 1337 : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); 1338 } 1339 1340 void 1341 ppc4xx_tlb_init(void) 1342 { 1343 int i; 1344 1345 /* Mark reserved TLB entries */ 1346 for (i = 0; i < tlb_nreserved; i++) { 1347 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1348 tlb_info[i].ti_ctx = KERNEL_PID; 1349 } 1350 1351 /* Setup security zones */ 1352 /* Z0 - accessible by kernel only if TLB entry permissions allow 1353 * Z1,Z2 - access is controlled by TLB entry permissions 1354 * Z3 - full access regardless of TLB entry permissions 1355 */ 1356 1357 __asm volatile( 1358 "mtspr %0,%1;" 1359 "sync;" 1360 :: "K"(SPR_ZPR), "r" (0x1b000000)); 1361 } 1362 1363 /* 1364 * ppc4xx_tlb_size_mask: 1365 * 1366 * Roundup size to supported page size, return TLBHI mask and real size. 1367 */ 1368 static int 1369 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz) 1370 { 1371 int i; 1372 1373 for (i = 0; i < __arraycount(tlbsize); i++) 1374 if (size <= tlbsize[i]) { 1375 *mask = (i << TLB_SIZE_SHFT); 1376 *rsiz = tlbsize[i]; 1377 return (0); 1378 } 1379 return (EINVAL); 1380 } 1381 1382 /* 1383 * ppc4xx_tlb_mapiodev: 1384 * 1385 * Lookup virtual address of mapping previously entered via 1386 * ppc4xx_tlb_reserve. Search TLB directly so that we don't 1387 * need to waste extra storage for reserved mappings. Note 1388 * that reading TLBHI also sets PID, but all reserved mappings 1389 * use KERNEL_PID, so the side effect is nil. 1390 */ 1391 void * 1392 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len) 1393 { 1394 paddr_t pa; 1395 vaddr_t va; 1396 u_int lo, hi, sz; 1397 int i; 1398 1399 /* tlb_nreserved is only allowed to grow, so this is safe. */ 1400 for (i = 0; i < tlb_nreserved; i++) { 1401 __asm volatile ( 1402 " tlbre %0,%2,1 \n" /* TLBLO */ 1403 " tlbre %1,%2,0 \n" /* TLBHI */ 1404 : "=&r" (lo), "=&r" (hi) 1405 : "r" (i)); 1406 1407 KASSERT(hi & TLB_VALID); 1408 KASSERT(mfspr(SPR_PID) == KERNEL_PID); 1409 1410 pa = (lo & TLB_RPN_MASK); 1411 if (base < pa) 1412 continue; 1413 1414 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT]; 1415 if ((base + len) > (pa + sz)) 1416 continue; 1417 1418 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */ 1419 return (void *)(va); 1420 } 1421 1422 return (NULL); 1423 } 1424 1425 /* 1426 * ppc4xx_tlb_reserve: 1427 * 1428 * Map physical range to kernel virtual chunk via reserved TLB entry. 1429 */ 1430 void 1431 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags) 1432 { 1433 u_int lo, hi; 1434 int szmask, rsize; 1435 1436 /* Called before pmap_bootstrap(), va outside kernel space. */ 1437 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS); 1438 KASSERT(! pmap_bootstrap_done); 1439 KASSERT(tlb_nreserved < NTLB); 1440 1441 /* Resolve size. */ 1442 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0) 1443 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large", 1444 size, tlb_nreserved); 1445 1446 /* Real size will be power of two >= 1024, so this is OK. */ 1447 pa &= ~(rsize - 1); /* RPN */ 1448 va &= ~(rsize - 1); /* EPN */ 1449 1450 lo = pa | TLB_WR | flags; 1451 hi = va | TLB_VALID | szmask; 1452 1453 #ifdef PPC_4XX_NOCACHE 1454 lo |= TLB_I; 1455 #endif 1456 1457 __asm volatile( 1458 " tlbwe %1,%0,1 \n" /* write TLBLO */ 1459 " tlbwe %2,%0,0 \n" /* write TLBHI */ 1460 " sync \n" 1461 " isync \n" 1462 : : "r" (tlb_nreserved), "r" (lo), "r" (hi)); 1463 1464 tlb_nreserved++; 1465 } 1466 1467 /* 1468 * We should pass the ctx in from trap code. 1469 */ 1470 int 1471 pmap_tlbmiss(vaddr_t va, int ctx) 1472 { 1473 volatile u_int *pte; 1474 u_long tte; 1475 1476 tlbmiss_ev.ev_count++; 1477 1478 /* 1479 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings. 1480 * Physical RAM is expected to live in this range, care must be taken 1481 * to not clobber 0 upto ${physmem} with device mappings in machdep 1482 * code. 1483 */ 1484 if (ctx != KERNEL_PID || 1485 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) { 1486 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va); 1487 if (pte == NULL) { 1488 /* Map unmanaged addresses directly for kernel access */ 1489 return 1; 1490 } 1491 tte = *pte; 1492 if (tte == 0) { 1493 return 1; 1494 } 1495 } else { 1496 /* Create a 16MB writable mapping. */ 1497 #ifdef PPC_4XX_NOCACHE 1498 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR; 1499 #else 1500 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1501 #endif 1502 } 1503 tlbhit_ev.ev_count++; 1504 ppc4xx_tlb_enter(ctx, va, tte); 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * Flush all the entries matching a context from the TLB. 1511 */ 1512 static int 1513 ctx_flush(int cnum) 1514 { 1515 int i; 1516 1517 /* We gotta steal this context */ 1518 for (i = tlb_nreserved; i < NTLB; i++) { 1519 if (tlb_info[i].ti_ctx == cnum) { 1520 /* Can't steal ctx if it has a locked entry. */ 1521 if (TLB_LOCKED(i)) { 1522 #ifdef DIAGNOSTIC 1523 printf("ctx_flush: can't invalidate " 1524 "locked mapping %d " 1525 "for context %d\n", i, cnum); 1526 #ifdef DDB 1527 Debugger(); 1528 #endif 1529 #endif 1530 return (1); 1531 } 1532 #ifdef DIAGNOSTIC 1533 if (i < tlb_nreserved) 1534 panic("TLB entry %d not locked", i); 1535 #endif 1536 /* Invalidate particular TLB entry regardless of locked status */ 1537 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); 1538 tlb_info[i].ti_flags = 0; 1539 } 1540 } 1541 return (0); 1542 } 1543 1544 /* 1545 * Allocate a context. If necessary, steal one from someone else. 1546 * 1547 * The new context is flushed from the TLB before returning. 1548 */ 1549 int 1550 ctx_alloc(struct pmap *pm) 1551 { 1552 int s, cnum; 1553 static int next = MINCTX; 1554 1555 if (pm == pmap_kernel()) { 1556 #ifdef DIAGNOSTIC 1557 printf("ctx_alloc: kernel pmap!\n"); 1558 #endif 1559 return (0); 1560 } 1561 s = splvm(); 1562 1563 /* Find a likely context. */ 1564 cnum = next; 1565 do { 1566 if ((++cnum) > NUMCTX) 1567 cnum = MINCTX; 1568 } while (ctxbusy[cnum] != NULL && cnum != next); 1569 1570 /* Now clean it out */ 1571 oops: 1572 if (cnum < MINCTX) 1573 cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1574 if (ctx_flush(cnum)) { 1575 /* oops -- something's wired. */ 1576 if ((++cnum) > NUMCTX) 1577 cnum = MINCTX; 1578 goto oops; 1579 } 1580 1581 if (ctxbusy[cnum]) { 1582 #ifdef DEBUG 1583 /* We should identify this pmap and clear it */ 1584 printf("Warning: stealing context %d\n", cnum); 1585 #endif 1586 ctxbusy[cnum]->pm_ctx = 0; 1587 } 1588 ctxbusy[cnum] = pm; 1589 next = cnum; 1590 splx(s); 1591 pm->pm_ctx = cnum; 1592 1593 return cnum; 1594 } 1595 1596 /* 1597 * Give away a context. 1598 */ 1599 void 1600 ctx_free(struct pmap *pm) 1601 { 1602 int oldctx; 1603 1604 oldctx = pm->pm_ctx; 1605 1606 if (oldctx == 0) 1607 panic("ctx_free: freeing kernel context"); 1608 #ifdef DIAGNOSTIC 1609 if (ctxbusy[oldctx] == 0) 1610 printf("ctx_free: freeing free context %d\n", oldctx); 1611 if (ctxbusy[oldctx] != pm) { 1612 printf("ctx_free: freeing someone esle's context\n " 1613 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", 1614 oldctx, (void *)(u_long)ctxbusy[oldctx], pm); 1615 #ifdef DDB 1616 Debugger(); 1617 #endif 1618 } 1619 #endif 1620 /* We should verify it has not been stolen and reallocated... */ 1621 ctxbusy[oldctx] = NULL; 1622 ctx_flush(oldctx); 1623 } 1624 1625 1626 #ifdef DEBUG 1627 /* 1628 * Test ref/modify handling. 1629 */ 1630 void pmap_testout(void); 1631 void 1632 pmap_testout(void) 1633 { 1634 vaddr_t va; 1635 volatile int *loc; 1636 int val = 0; 1637 paddr_t pa; 1638 struct vm_page *pg; 1639 int ref, mod; 1640 1641 /* Allocate a page */ 1642 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 1643 UVM_KMF_WIRED | UVM_KMF_ZERO); 1644 loc = (int*)va; 1645 1646 pmap_extract(pmap_kernel(), va, &pa); 1647 pg = PHYS_TO_VM_PAGE(pa); 1648 pmap_unwire(pmap_kernel(), va); 1649 1650 pmap_kremove(va, PAGE_SIZE); 1651 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1652 pmap_update(pmap_kernel()); 1653 1654 /* Now clear reference and modify */ 1655 ref = pmap_clear_reference(pg); 1656 mod = pmap_clear_modify(pg); 1657 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1658 (void *)(u_long)va, (long)pa, 1659 ref, mod); 1660 1661 /* Check it's properly cleared */ 1662 ref = pmap_is_referenced(pg); 1663 mod = pmap_is_modified(pg); 1664 printf("Checking cleared page: ref %d, mod %d\n", 1665 ref, mod); 1666 1667 /* Reference page */ 1668 val = *loc; 1669 1670 ref = pmap_is_referenced(pg); 1671 mod = pmap_is_modified(pg); 1672 printf("Referenced page: ref %d, mod %d val %x\n", 1673 ref, mod, val); 1674 1675 /* Now clear reference and modify */ 1676 ref = pmap_clear_reference(pg); 1677 mod = pmap_clear_modify(pg); 1678 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1679 (void *)(u_long)va, (long)pa, 1680 ref, mod); 1681 1682 /* Modify page */ 1683 *loc = 1; 1684 1685 ref = pmap_is_referenced(pg); 1686 mod = pmap_is_modified(pg); 1687 printf("Modified page: ref %d, mod %d\n", 1688 ref, mod); 1689 1690 /* Now clear reference and modify */ 1691 ref = pmap_clear_reference(pg); 1692 mod = pmap_clear_modify(pg); 1693 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1694 (void *)(u_long)va, (long)pa, 1695 ref, mod); 1696 1697 /* Check it's properly cleared */ 1698 ref = pmap_is_referenced(pg); 1699 mod = pmap_is_modified(pg); 1700 printf("Checking cleared page: ref %d, mod %d\n", 1701 ref, mod); 1702 1703 /* Modify page */ 1704 *loc = 1; 1705 1706 ref = pmap_is_referenced(pg); 1707 mod = pmap_is_modified(pg); 1708 printf("Modified page: ref %d, mod %d\n", 1709 ref, mod); 1710 1711 /* Check pmap_protect() */ 1712 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); 1713 pmap_update(pmap_kernel()); 1714 ref = pmap_is_referenced(pg); 1715 mod = pmap_is_modified(pg); 1716 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", 1717 ref, mod); 1718 1719 /* Now clear reference and modify */ 1720 ref = pmap_clear_reference(pg); 1721 mod = pmap_clear_modify(pg); 1722 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1723 (void *)(u_long)va, (long)pa, 1724 ref, mod); 1725 1726 /* Reference page */ 1727 val = *loc; 1728 1729 ref = pmap_is_referenced(pg); 1730 mod = pmap_is_modified(pg); 1731 printf("Referenced page: ref %d, mod %d val %x\n", 1732 ref, mod, val); 1733 1734 /* Now clear reference and modify */ 1735 ref = pmap_clear_reference(pg); 1736 mod = pmap_clear_modify(pg); 1737 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1738 (void *)(u_long)va, (long)pa, 1739 ref, mod); 1740 1741 /* Modify page */ 1742 #if 0 1743 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1744 pmap_update(pmap_kernel()); 1745 #endif 1746 *loc = 1; 1747 1748 ref = pmap_is_referenced(pg); 1749 mod = pmap_is_modified(pg); 1750 printf("Modified page: ref %d, mod %d\n", 1751 ref, mod); 1752 1753 /* Check pmap_protect() */ 1754 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); 1755 pmap_update(pmap_kernel()); 1756 ref = pmap_is_referenced(pg); 1757 mod = pmap_is_modified(pg); 1758 printf("pmap_protect(): ref %d, mod %d\n", 1759 ref, mod); 1760 1761 /* Now clear reference and modify */ 1762 ref = pmap_clear_reference(pg); 1763 mod = pmap_clear_modify(pg); 1764 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1765 (void *)(u_long)va, (long)pa, 1766 ref, mod); 1767 1768 /* Reference page */ 1769 val = *loc; 1770 1771 ref = pmap_is_referenced(pg); 1772 mod = pmap_is_modified(pg); 1773 printf("Referenced page: ref %d, mod %d val %x\n", 1774 ref, mod, val); 1775 1776 /* Now clear reference and modify */ 1777 ref = pmap_clear_reference(pg); 1778 mod = pmap_clear_modify(pg); 1779 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1780 (void *)(u_long)va, (long)pa, 1781 ref, mod); 1782 1783 /* Modify page */ 1784 #if 0 1785 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1786 pmap_update(pmap_kernel()); 1787 #endif 1788 *loc = 1; 1789 1790 ref = pmap_is_referenced(pg); 1791 mod = pmap_is_modified(pg); 1792 printf("Modified page: ref %d, mod %d\n", 1793 ref, mod); 1794 1795 /* Check pmap_pag_protect() */ 1796 pmap_page_protect(pg, VM_PROT_READ); 1797 ref = pmap_is_referenced(pg); 1798 mod = pmap_is_modified(pg); 1799 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", 1800 ref, mod); 1801 1802 /* Now clear reference and modify */ 1803 ref = pmap_clear_reference(pg); 1804 mod = pmap_clear_modify(pg); 1805 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1806 (void *)(u_long)va, (long)pa, 1807 ref, mod); 1808 1809 /* Reference page */ 1810 val = *loc; 1811 1812 ref = pmap_is_referenced(pg); 1813 mod = pmap_is_modified(pg); 1814 printf("Referenced page: ref %d, mod %d val %x\n", 1815 ref, mod, val); 1816 1817 /* Now clear reference and modify */ 1818 ref = pmap_clear_reference(pg); 1819 mod = pmap_clear_modify(pg); 1820 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1821 (void *)(u_long)va, (long)pa, 1822 ref, mod); 1823 1824 /* Modify page */ 1825 #if 0 1826 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1827 pmap_update(pmap_kernel()); 1828 #endif 1829 *loc = 1; 1830 1831 ref = pmap_is_referenced(pg); 1832 mod = pmap_is_modified(pg); 1833 printf("Modified page: ref %d, mod %d\n", 1834 ref, mod); 1835 1836 /* Check pmap_pag_protect() */ 1837 pmap_page_protect(pg, VM_PROT_NONE); 1838 ref = pmap_is_referenced(pg); 1839 mod = pmap_is_modified(pg); 1840 printf("pmap_page_protect(): ref %d, mod %d\n", 1841 ref, mod); 1842 1843 /* Now clear reference and modify */ 1844 ref = pmap_clear_reference(pg); 1845 mod = pmap_clear_modify(pg); 1846 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1847 (void *)(u_long)va, (long)pa, 1848 ref, mod); 1849 1850 1851 /* Reference page */ 1852 val = *loc; 1853 1854 ref = pmap_is_referenced(pg); 1855 mod = pmap_is_modified(pg); 1856 printf("Referenced page: ref %d, mod %d val %x\n", 1857 ref, mod, val); 1858 1859 /* Now clear reference and modify */ 1860 ref = pmap_clear_reference(pg); 1861 mod = pmap_clear_modify(pg); 1862 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1863 (void *)(u_long)va, (long)pa, 1864 ref, mod); 1865 1866 /* Modify page */ 1867 #if 0 1868 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1869 pmap_update(pmap_kernel()); 1870 #endif 1871 *loc = 1; 1872 1873 ref = pmap_is_referenced(pg); 1874 mod = pmap_is_modified(pg); 1875 printf("Modified page: ref %d, mod %d\n", 1876 ref, mod); 1877 1878 /* Unmap page */ 1879 pmap_remove(pmap_kernel(), va, va+1); 1880 pmap_update(pmap_kernel()); 1881 ref = pmap_is_referenced(pg); 1882 mod = pmap_is_modified(pg); 1883 printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1884 1885 /* Now clear reference and modify */ 1886 ref = pmap_clear_reference(pg); 1887 mod = pmap_clear_modify(pg); 1888 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1889 (void *)(u_long)va, (long)pa, ref, mod); 1890 1891 /* Check it's properly cleared */ 1892 ref = pmap_is_referenced(pg); 1893 mod = pmap_is_modified(pg); 1894 printf("Checking cleared page: ref %d, mod %d\n", 1895 ref, mod); 1896 1897 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); 1898 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0); 1899 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED); 1900 } 1901 #endif 1902