1 /* $NetBSD: pmap.c,v 1.36 2005/06/03 11:42:44 scw Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 * Copyright (C) 1995, 1996 TooLs GmbH. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by TooLs GmbH. 54 * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.36 2005/06/03 11:42:44 scw Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/user.h> 76 #include <sys/queue.h> 77 #include <sys/systm.h> 78 #include <sys/pool.h> 79 #include <sys/device.h> 80 81 #include <uvm/uvm.h> 82 83 #include <machine/cpu.h> 84 #include <machine/pcb.h> 85 #include <machine/powerpc.h> 86 87 #include <powerpc/spr.h> 88 #include <machine/tlb.h> 89 90 /* 91 * kernmap is an array of PTEs large enough to map in 92 * 4GB. At 16KB/page it is 256K entries or 2MB. 93 */ 94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) 95 caddr_t kernmap; 96 97 #define MINCTX 2 98 #define NUMCTX 256 99 volatile struct pmap *ctxbusy[NUMCTX]; 100 101 #define TLBF_USED 0x1 102 #define TLBF_REF 0x2 103 #define TLBF_LOCKED 0x4 104 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 105 typedef struct tlb_info_s { 106 char ti_flags; 107 char ti_ctx; /* TLB_PID assiciated with the entry */ 108 u_int ti_va; 109 } tlb_info_t; 110 111 volatile tlb_info_t tlb_info[NTLB]; 112 /* We'll use a modified FIFO replacement policy cause it's cheap */ 113 volatile int tlbnext = TLB_NRESERVED; 114 115 u_long dtlb_miss_count = 0; 116 u_long itlb_miss_count = 0; 117 u_long ktlb_miss_count = 0; 118 u_long utlb_miss_count = 0; 119 120 /* Event counters */ 121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 122 NULL, "cpu", "tlbmiss"); 123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 124 NULL, "cpu", "tlbhit"); 125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 126 NULL, "cpu", "tlbflush"); 127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 128 NULL, "cpu", "tlbenter"); 129 130 struct pmap kernel_pmap_; 131 132 int physmem; 133 static int npgs; 134 static u_int nextavail; 135 #ifndef MSGBUFADDR 136 extern paddr_t msgbuf_paddr; 137 #endif 138 139 static struct mem_region *mem, *avail; 140 141 /* 142 * This is a cache of referenced/modified bits. 143 * Bits herein are shifted by ATTRSHFT. 144 */ 145 static char *pmap_attrib; 146 147 #define PV_WIRED 0x1 148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED) 150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED) 151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED))) 152 153 struct pv_entry { 154 struct pv_entry *pv_next; /* Linked list of mappings */ 155 vaddr_t pv_va; /* virtual address of mapping */ 156 struct pmap *pv_pm; 157 }; 158 159 struct pv_entry *pv_table; 160 static struct pool pv_pool; 161 162 static int pmap_initialized; 163 164 static int ctx_flush(int); 165 166 inline struct pv_entry *pa_to_pv(paddr_t); 167 static inline char *pa_to_attr(paddr_t); 168 169 static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 170 static inline int pte_enter(struct pmap *, vaddr_t, u_int); 171 172 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, boolean_t); 173 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 174 175 176 inline struct pv_entry * 177 pa_to_pv(paddr_t pa) 178 { 179 int bank, pg; 180 181 bank = vm_physseg_find(atop(pa), &pg); 182 if (bank == -1) 183 return NULL; 184 return &vm_physmem[bank].pmseg.pvent[pg]; 185 } 186 187 static inline char * 188 pa_to_attr(paddr_t pa) 189 { 190 int bank, pg; 191 192 bank = vm_physseg_find(atop(pa), &pg); 193 if (bank == -1) 194 return NULL; 195 return &vm_physmem[bank].pmseg.attrs[pg]; 196 } 197 198 /* 199 * Insert PTE into page table. 200 */ 201 int 202 pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 203 { 204 int seg = STIDX(va); 205 int ptn = PTIDX(va); 206 u_int oldpte; 207 208 if (!pm->pm_ptbl[seg]) { 209 /* Don't allocate a page to clear a non-existent mapping. */ 210 if (!pte) 211 return (0); 212 /* Allocate a page XXXX this will sleep! */ 213 pm->pm_ptbl[seg] = 214 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 215 UVM_KMF_WIRED | UVM_KMF_ZERO); 216 } 217 oldpte = pm->pm_ptbl[seg][ptn]; 218 pm->pm_ptbl[seg][ptn] = pte; 219 220 /* Flush entry. */ 221 ppc4xx_tlb_flush(va, pm->pm_ctx); 222 if (oldpte != pte) { 223 if (pte == 0) 224 pm->pm_stats.resident_count--; 225 else 226 pm->pm_stats.resident_count++; 227 } 228 return (1); 229 } 230 231 /* 232 * Get a pointer to a PTE in a page table. 233 */ 234 volatile u_int * 235 pte_find(struct pmap *pm, vaddr_t va) 236 { 237 int seg = STIDX(va); 238 int ptn = PTIDX(va); 239 240 if (pm->pm_ptbl[seg]) 241 return (&pm->pm_ptbl[seg][ptn]); 242 243 return (NULL); 244 } 245 246 /* 247 * This is called during initppc, before the system is really initialized. 248 */ 249 void 250 pmap_bootstrap(u_int kernelstart, u_int kernelend) 251 { 252 struct mem_region *mp, *mp1; 253 int cnt, i; 254 u_int s, e, sz; 255 256 /* 257 * Allocate the kernel page table at the end of 258 * kernel space so it's in the locked TTE. 259 */ 260 kernmap = (caddr_t)kernelend; 261 262 /* 263 * Initialize kernel page table. 264 */ 265 for (i = 0; i < STSZ; i++) { 266 pmap_kernel()->pm_ptbl[i] = 0; 267 } 268 ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 269 270 /* 271 * Announce page-size to the VM-system 272 */ 273 uvmexp.pagesize = NBPG; 274 uvm_setpagesize(); 275 276 /* 277 * Get memory. 278 */ 279 mem_regions(&mem, &avail); 280 for (mp = mem; mp->size; mp++) { 281 physmem += btoc(mp->size); 282 printf("+%lx,",mp->size); 283 } 284 printf("\n"); 285 ppc4xx_tlb_init(); 286 /* 287 * Count the number of available entries. 288 */ 289 for (cnt = 0, mp = avail; mp->size; mp++) 290 cnt++; 291 292 /* 293 * Page align all regions. 294 * Non-page aligned memory isn't very interesting to us. 295 * Also, sort the entries for ascending addresses. 296 */ 297 kernelstart &= ~PGOFSET; 298 kernelend = (kernelend + PGOFSET) & ~PGOFSET; 299 for (mp = avail; mp->size; mp++) { 300 s = mp->start; 301 e = mp->start + mp->size; 302 printf("%08x-%08x -> ",s,e); 303 /* 304 * Check whether this region holds all of the kernel. 305 */ 306 if (s < kernelstart && e > kernelend) { 307 avail[cnt].start = kernelend; 308 avail[cnt++].size = e - kernelend; 309 e = kernelstart; 310 } 311 /* 312 * Look whether this regions starts within the kernel. 313 */ 314 if (s >= kernelstart && s < kernelend) { 315 if (e <= kernelend) 316 goto empty; 317 s = kernelend; 318 } 319 /* 320 * Now look whether this region ends within the kernel. 321 */ 322 if (e > kernelstart && e <= kernelend) { 323 if (s >= kernelstart) 324 goto empty; 325 e = kernelstart; 326 } 327 /* 328 * Now page align the start and size of the region. 329 */ 330 s = round_page(s); 331 e = trunc_page(e); 332 if (e < s) 333 e = s; 334 sz = e - s; 335 printf("%08x-%08x = %x\n",s,e,sz); 336 /* 337 * Check whether some memory is left here. 338 */ 339 if (sz == 0) { 340 empty: 341 memmove(mp, mp + 1, 342 (cnt - (mp - avail)) * sizeof *mp); 343 cnt--; 344 mp--; 345 continue; 346 } 347 /* 348 * Do an insertion sort. 349 */ 350 npgs += btoc(sz); 351 for (mp1 = avail; mp1 < mp; mp1++) 352 if (s < mp1->start) 353 break; 354 if (mp1 < mp) { 355 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 356 mp1->start = s; 357 mp1->size = sz; 358 } else { 359 mp->start = s; 360 mp->size = sz; 361 } 362 } 363 364 /* 365 * We cannot do pmap_steal_memory here, 366 * since we don't run with translation enabled yet. 367 */ 368 #ifndef MSGBUFADDR 369 /* 370 * allow for msgbuf 371 */ 372 sz = round_page(MSGBUFSIZE); 373 mp = NULL; 374 for (mp1 = avail; mp1->size; mp1++) 375 if (mp1->size >= sz) 376 mp = mp1; 377 if (mp == NULL) 378 panic("not enough memory?"); 379 380 npgs -= btoc(sz); 381 msgbuf_paddr = mp->start + mp->size - sz; 382 mp->size -= sz; 383 if (mp->size <= 0) 384 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); 385 #endif 386 387 for (mp = avail; mp->size; mp++) 388 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 389 atop(mp->start), atop(mp->start + mp->size), 390 VM_FREELIST_DEFAULT); 391 392 /* 393 * Initialize kernel pmap and hardware. 394 */ 395 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 396 pmap_kernel()->pm_ctx = KERNEL_PID; 397 nextavail = avail->start; 398 399 400 evcnt_attach_static(&tlbmiss_ev); 401 evcnt_attach_static(&tlbhit_ev); 402 evcnt_attach_static(&tlbflush_ev); 403 evcnt_attach_static(&tlbenter_ev); 404 } 405 406 /* 407 * Restrict given range to physical memory 408 * 409 * (Used by /dev/mem) 410 */ 411 void 412 pmap_real_memory(paddr_t *start, psize_t *size) 413 { 414 struct mem_region *mp; 415 416 for (mp = mem; mp->size; mp++) { 417 if (*start + *size > mp->start && 418 *start < mp->start + mp->size) { 419 if (*start < mp->start) { 420 *size -= mp->start - *start; 421 *start = mp->start; 422 } 423 if (*start + *size > mp->start + mp->size) 424 *size = mp->start + mp->size - *start; 425 return; 426 } 427 } 428 *size = 0; 429 } 430 431 /* 432 * Initialize anything else for pmap handling. 433 * Called during vm_init(). 434 */ 435 void 436 pmap_init(void) 437 { 438 struct pv_entry *pv; 439 vsize_t sz; 440 vaddr_t addr; 441 int i, s; 442 int bank; 443 char *attr; 444 445 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 446 sz = round_page(sz); 447 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); 448 s = splvm(); 449 pv = pv_table = (struct pv_entry *)addr; 450 for (i = npgs; --i >= 0;) 451 pv++->pv_pm = NULL; 452 pmap_attrib = (char *)pv; 453 memset(pv, 0, npgs); 454 455 pv = pv_table; 456 attr = pmap_attrib; 457 for (bank = 0; bank < vm_nphysseg; bank++) { 458 sz = vm_physmem[bank].end - vm_physmem[bank].start; 459 vm_physmem[bank].pmseg.pvent = pv; 460 vm_physmem[bank].pmseg.attrs = attr; 461 pv += sz; 462 attr += sz; 463 } 464 465 pmap_initialized = 1; 466 splx(s); 467 468 /* Setup a pool for additional pvlist structures */ 469 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL); 470 } 471 472 /* 473 * How much virtual space is available to the kernel? 474 */ 475 void 476 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 477 { 478 479 #if 0 480 /* 481 * Reserve one segment for kernel virtual memory 482 */ 483 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); 484 *end = *start + SEGMENT_LENGTH; 485 #else 486 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 487 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 488 #endif 489 } 490 491 #ifdef PMAP_GROWKERNEL 492 /* 493 * Preallocate kernel page tables to a specified VA. 494 * This simply loops through the first TTE for each 495 * page table from the beginning of the kernel pmap, 496 * reads the entry, and if the result is 497 * zero (either invalid entry or no page table) it stores 498 * a zero there, populating page tables in the process. 499 * This is not the most efficient technique but i don't 500 * expect it to be called that often. 501 */ 502 extern struct vm_page *vm_page_alloc1 __P((void)); 503 extern void vm_page_free1 __P((struct vm_page *)); 504 505 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 506 507 vaddr_t 508 pmap_growkernel(vaddr_t maxkvaddr) 509 { 510 int s; 511 int seg; 512 paddr_t pg; 513 struct pmap *pm = pmap_kernel(); 514 515 s = splvm(); 516 517 /* Align with the start of a page table */ 518 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; 519 kbreak += PTMAP) { 520 seg = STIDX(kbreak); 521 522 if (pte_find(pm, kbreak)) 523 continue; 524 525 if (uvm.page_init_done) { 526 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 527 } else { 528 if (!uvm_page_physget(&pg)) 529 panic("pmap_growkernel: no memory"); 530 } 531 if (!pg) 532 panic("pmap_growkernel: no pages"); 533 pmap_zero_page((paddr_t)pg); 534 535 /* XXX This is based on all phymem being addressable */ 536 pm->pm_ptbl[seg] = (u_int *)pg; 537 } 538 splx(s); 539 return (kbreak); 540 } 541 542 /* 543 * vm_page_alloc1: 544 * 545 * Allocate and return a memory cell with no associated object. 546 */ 547 struct vm_page * 548 vm_page_alloc1(void) 549 { 550 struct vm_page *pg; 551 552 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 553 if (pg) { 554 pg->wire_count = 1; /* no mappings yet */ 555 pg->flags &= ~PG_BUSY; /* never busy */ 556 } 557 return pg; 558 } 559 560 /* 561 * vm_page_free1: 562 * 563 * Returns the given page to the free list, 564 * disassociating it with any VM object. 565 * 566 * Object and page must be locked prior to entry. 567 */ 568 void 569 vm_page_free1(struct vm_page *pg) 570 { 571 #ifdef DIAGNOSTIC 572 if (pg->flags != (PG_CLEAN|PG_FAKE)) { 573 printf("Freeing invalid page %p\n", pg); 574 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg)); 575 #ifdef DDB 576 Debugger(); 577 #endif 578 return; 579 } 580 #endif 581 pg->flags |= PG_BUSY; 582 pg->wire_count = 0; 583 uvm_pagefree(pg); 584 } 585 #endif 586 587 /* 588 * Create and return a physical map. 589 */ 590 struct pmap * 591 pmap_create(void) 592 { 593 struct pmap *pm; 594 595 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK); 596 memset(pm, 0, sizeof *pm); 597 pm->pm_refs = 1; 598 return pm; 599 } 600 601 /* 602 * Add a reference to the given pmap. 603 */ 604 void 605 pmap_reference(struct pmap *pm) 606 { 607 608 pm->pm_refs++; 609 } 610 611 /* 612 * Retire the given pmap from service. 613 * Should only be called if the map contains no valid mappings. 614 */ 615 void 616 pmap_destroy(struct pmap *pm) 617 { 618 int i; 619 620 if (--pm->pm_refs > 0) { 621 return; 622 } 623 KASSERT(pm->pm_stats.resident_count == 0); 624 KASSERT(pm->pm_stats.wired_count == 0); 625 for (i = 0; i < STSZ; i++) 626 if (pm->pm_ptbl[i]) { 627 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 628 PAGE_SIZE, UVM_KMF_WIRED); 629 pm->pm_ptbl[i] = NULL; 630 } 631 if (pm->pm_ctx) 632 ctx_free(pm); 633 free(pm, M_VMPMAP); 634 } 635 636 /* 637 * Copy the range specified by src_addr/len 638 * from the source map to the range dst_addr/len 639 * in the destination map. 640 * 641 * This routine is only advisory and need not do anything. 642 */ 643 void 644 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 645 vsize_t len, vaddr_t src_addr) 646 { 647 } 648 649 /* 650 * Require that all active physical maps contain no 651 * incorrect entries NOW. 652 */ 653 void 654 pmap_update(struct pmap *pmap) 655 { 656 } 657 658 /* 659 * Garbage collects the physical map system for 660 * pages which are no longer used. 661 * Success need not be guaranteed -- that is, there 662 * may well be pages which are not referenced, but 663 * others may be collected. 664 * Called by the pageout daemon when pages are scarce. 665 */ 666 void 667 pmap_collect(struct pmap *pm) 668 { 669 } 670 671 /* 672 * Fill the given physical page with zeroes. 673 */ 674 void 675 pmap_zero_page(paddr_t pa) 676 { 677 678 #ifdef PPC_4XX_NOCACHE 679 memset((caddr_t)pa, 0, PAGE_SIZE); 680 #else 681 int i; 682 683 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 684 __asm __volatile ("dcbz 0,%0" :: "r"(pa)); 685 pa += CACHELINESIZE; 686 } 687 #endif 688 } 689 690 /* 691 * Copy the given physical source page to its destination. 692 */ 693 void 694 pmap_copy_page(paddr_t src, paddr_t dst) 695 { 696 697 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE); 698 dcache_flush_page(dst); 699 } 700 701 /* 702 * This returns whether this is the first mapping of a page. 703 */ 704 static inline int 705 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, boolean_t wired) 706 { 707 struct pv_entry *pv, *npv = NULL; 708 int s; 709 710 if (!pmap_initialized) 711 return 0; 712 713 s = splvm(); 714 pv = pa_to_pv(pa); 715 if (!pv->pv_pm) { 716 /* 717 * No entries yet, use header as the first entry. 718 */ 719 pv->pv_va = va; 720 pv->pv_pm = pm; 721 pv->pv_next = NULL; 722 } else { 723 /* 724 * There is at least one other VA mapping this page. 725 * Place this entry after the header. 726 */ 727 npv = pool_get(&pv_pool, PR_WAITOK); 728 npv->pv_va = va; 729 npv->pv_pm = pm; 730 npv->pv_next = pv->pv_next; 731 pv->pv_next = npv; 732 pv = npv; 733 } 734 if (wired) { 735 PV_WIRE(pv); 736 pm->pm_stats.wired_count++; 737 } 738 splx(s); 739 return (1); 740 } 741 742 static void 743 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 744 { 745 struct pv_entry *pv, *npv; 746 747 /* 748 * Remove from the PV table. 749 */ 750 pv = pa_to_pv(pa); 751 if (!pv) 752 return; 753 754 /* 755 * If it is the first entry on the list, it is actually 756 * in the header and we must copy the following entry up 757 * to the header. Otherwise we must search the list for 758 * the entry. In either case we free the now unused entry. 759 */ 760 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 761 if (PV_ISWIRED(pv)) { 762 pm->pm_stats.wired_count--; 763 } 764 if ((npv = pv->pv_next)) { 765 *pv = *npv; 766 pool_put(&pv_pool, npv); 767 } else 768 pv->pv_pm = NULL; 769 } else { 770 for (; (npv = pv->pv_next) != NULL; pv = npv) 771 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 772 break; 773 if (npv) { 774 pv->pv_next = npv->pv_next; 775 if (PV_ISWIRED(npv)) { 776 pm->pm_stats.wired_count--; 777 } 778 pool_put(&pv_pool, npv); 779 } 780 } 781 } 782 783 /* 784 * Insert physical page at pa into the given pmap at virtual address va. 785 */ 786 int 787 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) 788 { 789 int s; 790 u_int tte; 791 int managed; 792 793 /* 794 * Have to remove any existing mapping first. 795 */ 796 pmap_remove(pm, va, va + PAGE_SIZE); 797 798 if (flags & PMAP_WIRED) 799 flags |= prot; 800 801 managed = 0; 802 if (vm_physseg_find(atop(pa), NULL) != -1) 803 managed = 1; 804 805 /* 806 * Generate TTE. 807 */ 808 tte = TTE_PA(pa); 809 /* XXXX -- need to support multiple page sizes. */ 810 tte |= TTE_SZ_16K; 811 #ifdef DIAGNOSTIC 812 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) == 813 (PME_NOCACHE | PME_WRITETHROUG)) 814 panic("pmap_enter: uncached & writethrough"); 815 #endif 816 if (flags & PME_NOCACHE) 817 /* Must be I/O mapping */ 818 tte |= TTE_I | TTE_G; 819 #ifdef PPC_4XX_NOCACHE 820 tte |= TTE_I; 821 #else 822 else if (flags & PME_WRITETHROUG) 823 /* Uncached and writethrough are not compatible */ 824 tte |= TTE_W; 825 #endif 826 if (pm == pmap_kernel()) 827 tte |= TTE_ZONE(ZONE_PRIV); 828 else 829 tte |= TTE_ZONE(ZONE_USER); 830 831 if (flags & VM_PROT_WRITE) 832 tte |= TTE_WR; 833 834 if (flags & VM_PROT_EXECUTE) 835 tte |= TTE_EX; 836 837 /* 838 * Now record mapping for later back-translation. 839 */ 840 if (pmap_initialized && managed) { 841 char *attr; 842 843 if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) { 844 /* Could not enter pv on a managed page */ 845 return 1; 846 } 847 848 /* Now set attributes. */ 849 attr = pa_to_attr(pa); 850 #ifdef DIAGNOSTIC 851 if (!attr) 852 panic("managed but no attr"); 853 #endif 854 if (flags & VM_PROT_ALL) 855 *attr |= PMAP_ATTR_REF; 856 if (flags & VM_PROT_WRITE) 857 *attr |= PMAP_ATTR_CHG; 858 } 859 860 s = splvm(); 861 862 /* Insert page into page table. */ 863 pte_enter(pm, va, tte); 864 865 /* If this is a real fault, enter it in the tlb */ 866 if (tte && ((flags & PMAP_WIRED) == 0)) { 867 ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 868 } 869 splx(s); 870 871 /* Flush the real memory from the instruction cache. */ 872 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 873 __syncicache((void *)pa, PAGE_SIZE); 874 875 return 0; 876 } 877 878 void 879 pmap_unwire(struct pmap *pm, vaddr_t va) 880 { 881 struct pv_entry *pv; 882 paddr_t pa; 883 int s; 884 885 if (!pmap_extract(pm, va, &pa)) { 886 return; 887 } 888 889 pv = pa_to_pv(pa); 890 if (!pv) 891 return; 892 893 s = splvm(); 894 while (pv != NULL) { 895 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 896 if (PV_ISWIRED(pv)) { 897 PV_UNWIRE(pv); 898 pm->pm_stats.wired_count--; 899 } 900 break; 901 } 902 pv = pv->pv_next; 903 } 904 splx(s); 905 } 906 907 void 908 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 909 { 910 int s; 911 u_int tte; 912 struct pmap *pm = pmap_kernel(); 913 914 /* 915 * Have to remove any existing mapping first. 916 */ 917 918 /* 919 * Generate TTE. 920 * 921 * XXXX 922 * 923 * Since the kernel does not handle execution privileges properly, 924 * we will handle read and execute permissions together. 925 */ 926 tte = 0; 927 if (prot & VM_PROT_ALL) { 928 929 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 930 /* XXXX -- need to support multiple page sizes. */ 931 tte |= TTE_SZ_16K; 932 #ifdef DIAGNOSTIC 933 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) == 934 (PME_NOCACHE | PME_WRITETHROUG)) 935 panic("pmap_kenter_pa: uncached & writethrough"); 936 #endif 937 if (prot & PME_NOCACHE) 938 /* Must be I/O mapping */ 939 tte |= TTE_I | TTE_G; 940 #ifdef PPC_4XX_NOCACHE 941 tte |= TTE_I; 942 #else 943 else if (prot & PME_WRITETHROUG) 944 /* Uncached and writethrough are not compatible */ 945 tte |= TTE_W; 946 #endif 947 if (prot & VM_PROT_WRITE) 948 tte |= TTE_WR; 949 } 950 951 s = splvm(); 952 953 /* Insert page into page table. */ 954 pte_enter(pm, va, tte); 955 splx(s); 956 } 957 958 void 959 pmap_kremove(vaddr_t va, vsize_t len) 960 { 961 962 while (len > 0) { 963 pte_enter(pmap_kernel(), va, 0); 964 va += PAGE_SIZE; 965 len -= PAGE_SIZE; 966 } 967 } 968 969 /* 970 * Remove the given range of mapping entries. 971 */ 972 void 973 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 974 { 975 int s; 976 paddr_t pa; 977 volatile u_int *ptp; 978 979 s = splvm(); 980 while (va < endva) { 981 982 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 983 pa = TTE_PA(pa); 984 pmap_remove_pv(pm, va, pa); 985 *ptp = 0; 986 ppc4xx_tlb_flush(va, pm->pm_ctx); 987 pm->pm_stats.resident_count--; 988 } 989 va += PAGE_SIZE; 990 } 991 992 splx(s); 993 } 994 995 /* 996 * Get the physical page address for the given pmap/virtual address. 997 */ 998 boolean_t 999 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1000 { 1001 int seg = STIDX(va); 1002 int ptn = PTIDX(va); 1003 u_int pa = 0; 1004 int s; 1005 1006 s = splvm(); 1007 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) { 1008 *pap = TTE_PA(pa) | (va & PGOFSET); 1009 } 1010 splx(s); 1011 return (pa != 0); 1012 } 1013 1014 /* 1015 * Lower the protection on the specified range of this pmap. 1016 * 1017 * There are only two cases: either the protection is going to 0, 1018 * or it is going to read-only. 1019 */ 1020 void 1021 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1022 { 1023 volatile u_int *ptp; 1024 int s, bic; 1025 1026 if ((prot & VM_PROT_READ) == 0) { 1027 pmap_remove(pm, sva, eva); 1028 return; 1029 } 1030 bic = 0; 1031 if ((prot & VM_PROT_WRITE) == 0) { 1032 bic |= TTE_WR; 1033 } 1034 if ((prot & VM_PROT_EXECUTE) == 0) { 1035 bic |= TTE_EX; 1036 } 1037 if (bic == 0) { 1038 return; 1039 } 1040 s = splvm(); 1041 while (sva < eva) { 1042 if ((ptp = pte_find(pm, sva)) != NULL) { 1043 *ptp &= ~bic; 1044 ppc4xx_tlb_flush(sva, pm->pm_ctx); 1045 } 1046 sva += PAGE_SIZE; 1047 } 1048 splx(s); 1049 } 1050 1051 boolean_t 1052 pmap_check_attr(struct vm_page *pg, u_int mask, int clear) 1053 { 1054 paddr_t pa; 1055 char *attr; 1056 int s, rv; 1057 1058 /* 1059 * First modify bits in cache. 1060 */ 1061 pa = VM_PAGE_TO_PHYS(pg); 1062 attr = pa_to_attr(pa); 1063 if (attr == NULL) 1064 return FALSE; 1065 1066 s = splvm(); 1067 rv = ((*attr & mask) != 0); 1068 if (clear) { 1069 *attr &= ~mask; 1070 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0); 1071 } 1072 splx(s); 1073 return rv; 1074 } 1075 1076 1077 /* 1078 * Lower the protection on the specified physical page. 1079 * 1080 * There are only two cases: either the protection is going to 0, 1081 * or it is going to read-only. 1082 */ 1083 void 1084 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1085 { 1086 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1087 vaddr_t va; 1088 struct pv_entry *pvh, *pv, *npv; 1089 struct pmap *pm; 1090 1091 pvh = pa_to_pv(pa); 1092 if (pvh == NULL) 1093 return; 1094 1095 /* Handle extra pvs which may be deleted in the operation */ 1096 for (pv = pvh->pv_next; pv; pv = npv) { 1097 npv = pv->pv_next; 1098 1099 pm = pv->pv_pm; 1100 va = pv->pv_va; 1101 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1102 } 1103 /* Now check the head pv */ 1104 if (pvh->pv_pm) { 1105 pv = pvh; 1106 pm = pv->pv_pm; 1107 va = pv->pv_va; 1108 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1109 } 1110 } 1111 1112 /* 1113 * Activate the address space for the specified process. If the process 1114 * is the current process, load the new MMU context. 1115 */ 1116 void 1117 pmap_activate(struct lwp *l) 1118 { 1119 #if 0 1120 struct pcb *pcb = &l->l_proc->p_addr->u_pcb; 1121 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1122 1123 /* 1124 * XXX Normally performed in cpu_fork(). 1125 */ 1126 printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1127 pcb->pcb_pm = pmap; 1128 #endif 1129 } 1130 1131 /* 1132 * Deactivate the specified process's address space. 1133 */ 1134 void 1135 pmap_deactivate(struct lwp *l) 1136 { 1137 } 1138 1139 /* 1140 * Synchronize caches corresponding to [addr, addr+len) in p. 1141 */ 1142 void 1143 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1144 { 1145 struct pmap *pm = p->p_vmspace->vm_map.pmap; 1146 int msr, ctx, opid, step; 1147 1148 step = CACHELINESIZE; 1149 1150 /* 1151 * Need to turn off IMMU and switch to user context. 1152 * (icbi uses DMMU). 1153 */ 1154 if (!(ctx = pm->pm_ctx)) { 1155 /* No context -- assign it one */ 1156 ctx_alloc(pm); 1157 ctx = pm->pm_ctx; 1158 } 1159 __asm __volatile("mfmsr %0;" 1160 "li %1, %7;" 1161 "andc %1,%0,%1;" 1162 "mtmsr %1;" 1163 "sync;isync;" 1164 "mfpid %1;" 1165 "mtpid %2;" 1166 "sync; isync;" 1167 "1:" 1168 "dcbf 0,%3;" 1169 "icbi 0,%3;" 1170 "add %3,%3,%5;" 1171 "addc. %4,%4,%6;" 1172 "bge 1b;" 1173 "mtpid %1;" 1174 "mtmsr %0;" 1175 "sync; isync" 1176 : "=&r" (msr), "=&r" (opid) 1177 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step), 1178 "K" (PSL_IR | PSL_DR)); 1179 } 1180 1181 1182 /* This has to be done in real mode !!! */ 1183 void 1184 ppc4xx_tlb_flush(vaddr_t va, int pid) 1185 { 1186 u_long i, found; 1187 u_long msr; 1188 1189 /* If there's no context then it can't be mapped. */ 1190 if (!pid) 1191 return; 1192 1193 asm("mfpid %1;" /* Save PID */ 1194 "mfmsr %2;" /* Save MSR */ 1195 "li %0,0;" /* Now clear MSR */ 1196 "mtmsr %0;" 1197 "mtpid %4;" /* Set PID */ 1198 "sync;" 1199 "tlbsx. %0,0,%3;" /* Search TLB */ 1200 "sync;" 1201 "mtpid %1;" /* Restore PID */ 1202 "mtmsr %2;" /* Restore MSR */ 1203 "sync;isync;" 1204 "li %1,1;" 1205 "beq 1f;" 1206 "li %1,0;" 1207 "1:" 1208 : "=&r" (i), "=&r" (found), "=&r" (msr) 1209 : "r" (va), "r" (pid)); 1210 if (found && !TLB_LOCKED(i)) { 1211 1212 /* Now flush translation */ 1213 asm volatile( 1214 "tlbwe %0,%1,0;" 1215 "sync;isync;" 1216 : : "r" (0), "r" (i)); 1217 1218 tlb_info[i].ti_ctx = 0; 1219 tlb_info[i].ti_flags = 0; 1220 tlbnext = i; 1221 /* Successful flushes */ 1222 tlbflush_ev.ev_count++; 1223 } 1224 } 1225 1226 void 1227 ppc4xx_tlb_flush_all(void) 1228 { 1229 u_long i; 1230 1231 for (i = 0; i < NTLB; i++) 1232 if (!TLB_LOCKED(i)) { 1233 asm volatile( 1234 "tlbwe %0,%1,0;" 1235 "sync;isync;" 1236 : : "r" (0), "r" (i)); 1237 tlb_info[i].ti_ctx = 0; 1238 tlb_info[i].ti_flags = 0; 1239 } 1240 1241 asm volatile("sync;isync"); 1242 } 1243 1244 /* Find a TLB entry to evict. */ 1245 static int 1246 ppc4xx_tlb_find_victim(void) 1247 { 1248 int flags; 1249 1250 for (;;) { 1251 if (++tlbnext >= NTLB) 1252 tlbnext = TLB_NRESERVED; 1253 flags = tlb_info[tlbnext].ti_flags; 1254 if (!(flags & TLBF_USED) || 1255 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1256 u_long va, stack = (u_long)&va; 1257 1258 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && 1259 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1260 (flags & TLBF_USED)) { 1261 /* Kernel stack page */ 1262 flags |= TLBF_USED; 1263 tlb_info[tlbnext].ti_flags = flags; 1264 } else { 1265 /* Found it! */ 1266 return (tlbnext); 1267 } 1268 } else { 1269 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1270 } 1271 } 1272 } 1273 1274 void 1275 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1276 { 1277 u_long th, tl, idx; 1278 tlbpid_t pid; 1279 u_short msr; 1280 paddr_t pa; 1281 int s, sz; 1282 1283 tlbenter_ev.ev_count++; 1284 1285 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1286 pa = (pte & TTE_RPN_MASK(sz)); 1287 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1288 tl = (pte & ~TLB_RPN_MASK) | pa; 1289 tl |= ppc4xx_tlbflags(va, pa); 1290 1291 s = splhigh(); 1292 idx = ppc4xx_tlb_find_victim(); 1293 1294 #ifdef DIAGNOSTIC 1295 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) { 1296 panic("ppc4xx_tlb_enter: replacing entry %ld", idx); 1297 } 1298 #endif 1299 1300 tlb_info[idx].ti_va = (va & TLB_EPN_MASK); 1301 tlb_info[idx].ti_ctx = ctx; 1302 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; 1303 1304 asm volatile( 1305 "mfmsr %0;" /* Save MSR */ 1306 "li %1,0;" 1307 "tlbwe %1,%3,0;" /* Invalidate old entry. */ 1308 "mtmsr %1;" /* Clear MSR */ 1309 "mfpid %1;" /* Save old PID */ 1310 "mtpid %2;" /* Load translation ctx */ 1311 "sync; isync;" 1312 #ifdef DEBUG 1313 "andi. %3,%3,63;" 1314 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */ 1315 #endif 1316 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ 1317 "sync; isync;" 1318 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ 1319 "sync; isync;" 1320 : "=&r" (msr), "=&r" (pid) 1321 : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); 1322 splx(s); 1323 } 1324 1325 void 1326 ppc4xx_tlb_unpin(int i) 1327 { 1328 1329 if (i == -1) 1330 for (i = 0; i < TLB_NRESERVED; i++) 1331 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1332 else 1333 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1334 } 1335 1336 void 1337 ppc4xx_tlb_init(void) 1338 { 1339 int i; 1340 1341 /* Mark reserved TLB entries */ 1342 for (i = 0; i < TLB_NRESERVED; i++) { 1343 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1344 tlb_info[i].ti_ctx = KERNEL_PID; 1345 } 1346 1347 /* Setup security zones */ 1348 /* Z0 - accessible by kernel only if TLB entry permissions allow 1349 * Z1,Z2 - access is controlled by TLB entry permissions 1350 * Z3 - full access regardless of TLB entry permissions 1351 */ 1352 1353 asm volatile( 1354 "mtspr %0,%1;" 1355 "sync;" 1356 :: "K"(SPR_ZPR), "r" (0x1b000000)); 1357 } 1358 1359 1360 /* 1361 * We should pass the ctx in from trap code. 1362 */ 1363 int 1364 pmap_tlbmiss(vaddr_t va, int ctx) 1365 { 1366 volatile u_int *pte; 1367 u_long tte; 1368 1369 tlbmiss_ev.ev_count++; 1370 1371 /* 1372 * XXXX We will reserve 0-0x80000000 for va==pa mappings. 1373 */ 1374 if (ctx != KERNEL_PID || (va & 0x80000000)) { 1375 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va); 1376 if (pte == NULL) { 1377 /* Map unmanaged addresses directly for kernel access */ 1378 return 1; 1379 } 1380 tte = *pte; 1381 if (tte == 0) { 1382 return 1; 1383 } 1384 } else { 1385 /* Create a 16MB writable mapping. */ 1386 #ifdef PPC_4XX_NOCACHE 1387 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR; 1388 #else 1389 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1390 #endif 1391 } 1392 tlbhit_ev.ev_count++; 1393 ppc4xx_tlb_enter(ctx, va, tte); 1394 1395 return 0; 1396 } 1397 1398 /* 1399 * Flush all the entries matching a context from the TLB. 1400 */ 1401 static int 1402 ctx_flush(int cnum) 1403 { 1404 int i; 1405 1406 /* We gotta steal this context */ 1407 for (i = TLB_NRESERVED; i < NTLB; i++) { 1408 if (tlb_info[i].ti_ctx == cnum) { 1409 /* Can't steal ctx if it has a locked entry. */ 1410 if (TLB_LOCKED(i)) { 1411 #ifdef DIAGNOSTIC 1412 printf("ctx_flush: can't invalidate " 1413 "locked mapping %d " 1414 "for context %d\n", i, cnum); 1415 #ifdef DDB 1416 Debugger(); 1417 #endif 1418 #endif 1419 return (1); 1420 } 1421 #ifdef DIAGNOSTIC 1422 if (i < TLB_NRESERVED) 1423 panic("TLB entry %d not locked", i); 1424 #endif 1425 /* Invalidate particular TLB entry regardless of locked status */ 1426 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); 1427 tlb_info[i].ti_flags = 0; 1428 } 1429 } 1430 return (0); 1431 } 1432 1433 /* 1434 * Allocate a context. If necessary, steal one from someone else. 1435 * 1436 * The new context is flushed from the TLB before returning. 1437 */ 1438 int 1439 ctx_alloc(struct pmap *pm) 1440 { 1441 int s, cnum; 1442 static int next = MINCTX; 1443 1444 if (pm == pmap_kernel()) { 1445 #ifdef DIAGNOSTIC 1446 printf("ctx_alloc: kernel pmap!\n"); 1447 #endif 1448 return (0); 1449 } 1450 s = splvm(); 1451 1452 /* Find a likely context. */ 1453 cnum = next; 1454 do { 1455 if ((++cnum) > NUMCTX) 1456 cnum = MINCTX; 1457 } while (ctxbusy[cnum] != NULL && cnum != next); 1458 1459 /* Now clean it out */ 1460 oops: 1461 if (cnum < MINCTX) 1462 cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1463 if (ctx_flush(cnum)) { 1464 /* oops -- something's wired. */ 1465 if ((++cnum) > NUMCTX) 1466 cnum = MINCTX; 1467 goto oops; 1468 } 1469 1470 if (ctxbusy[cnum]) { 1471 #ifdef DEBUG 1472 /* We should identify this pmap and clear it */ 1473 printf("Warning: stealing context %d\n", cnum); 1474 #endif 1475 ctxbusy[cnum]->pm_ctx = 0; 1476 } 1477 ctxbusy[cnum] = pm; 1478 next = cnum; 1479 splx(s); 1480 pm->pm_ctx = cnum; 1481 1482 return cnum; 1483 } 1484 1485 /* 1486 * Give away a context. 1487 */ 1488 void 1489 ctx_free(struct pmap *pm) 1490 { 1491 int oldctx; 1492 1493 oldctx = pm->pm_ctx; 1494 1495 if (oldctx == 0) 1496 panic("ctx_free: freeing kernel context"); 1497 #ifdef DIAGNOSTIC 1498 if (ctxbusy[oldctx] == 0) 1499 printf("ctx_free: freeing free context %d\n", oldctx); 1500 if (ctxbusy[oldctx] != pm) { 1501 printf("ctx_free: freeing someone esle's context\n " 1502 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", 1503 oldctx, (void *)(u_long)ctxbusy[oldctx], pm); 1504 #ifdef DDB 1505 Debugger(); 1506 #endif 1507 } 1508 #endif 1509 /* We should verify it has not been stolen and reallocated... */ 1510 ctxbusy[oldctx] = NULL; 1511 ctx_flush(oldctx); 1512 } 1513 1514 1515 #ifdef DEBUG 1516 /* 1517 * Test ref/modify handling. 1518 */ 1519 void pmap_testout __P((void)); 1520 void 1521 pmap_testout() 1522 { 1523 vaddr_t va; 1524 volatile int *loc; 1525 int val = 0; 1526 paddr_t pa; 1527 struct vm_page *pg; 1528 int ref, mod; 1529 1530 /* Allocate a page */ 1531 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 1532 UVM_KMF_WIRED | UVM_KMF_ZERO); 1533 loc = (int*)va; 1534 1535 pmap_extract(pmap_kernel(), va, &pa); 1536 pg = PHYS_TO_VM_PAGE(pa); 1537 pmap_unwire(pmap_kernel(), va); 1538 1539 pmap_kremove(va, PAGE_SIZE); 1540 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1541 pmap_update(pmap_kernel()); 1542 1543 /* Now clear reference and modify */ 1544 ref = pmap_clear_reference(pg); 1545 mod = pmap_clear_modify(pg); 1546 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1547 (void *)(u_long)va, (long)pa, 1548 ref, mod); 1549 1550 /* Check it's properly cleared */ 1551 ref = pmap_is_referenced(pg); 1552 mod = pmap_is_modified(pg); 1553 printf("Checking cleared page: ref %d, mod %d\n", 1554 ref, mod); 1555 1556 /* Reference page */ 1557 val = *loc; 1558 1559 ref = pmap_is_referenced(pg); 1560 mod = pmap_is_modified(pg); 1561 printf("Referenced page: ref %d, mod %d val %x\n", 1562 ref, mod, val); 1563 1564 /* Now clear reference and modify */ 1565 ref = pmap_clear_reference(pg); 1566 mod = pmap_clear_modify(pg); 1567 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1568 (void *)(u_long)va, (long)pa, 1569 ref, mod); 1570 1571 /* Modify page */ 1572 *loc = 1; 1573 1574 ref = pmap_is_referenced(pg); 1575 mod = pmap_is_modified(pg); 1576 printf("Modified page: ref %d, mod %d\n", 1577 ref, mod); 1578 1579 /* Now clear reference and modify */ 1580 ref = pmap_clear_reference(pg); 1581 mod = pmap_clear_modify(pg); 1582 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1583 (void *)(u_long)va, (long)pa, 1584 ref, mod); 1585 1586 /* Check it's properly cleared */ 1587 ref = pmap_is_referenced(pg); 1588 mod = pmap_is_modified(pg); 1589 printf("Checking cleared page: ref %d, mod %d\n", 1590 ref, mod); 1591 1592 /* Modify page */ 1593 *loc = 1; 1594 1595 ref = pmap_is_referenced(pg); 1596 mod = pmap_is_modified(pg); 1597 printf("Modified page: ref %d, mod %d\n", 1598 ref, mod); 1599 1600 /* Check pmap_protect() */ 1601 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); 1602 pmap_update(pmap_kernel()); 1603 ref = pmap_is_referenced(pg); 1604 mod = pmap_is_modified(pg); 1605 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", 1606 ref, mod); 1607 1608 /* Now clear reference and modify */ 1609 ref = pmap_clear_reference(pg); 1610 mod = pmap_clear_modify(pg); 1611 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1612 (void *)(u_long)va, (long)pa, 1613 ref, mod); 1614 1615 /* Reference page */ 1616 val = *loc; 1617 1618 ref = pmap_is_referenced(pg); 1619 mod = pmap_is_modified(pg); 1620 printf("Referenced page: ref %d, mod %d val %x\n", 1621 ref, mod, val); 1622 1623 /* Now clear reference and modify */ 1624 ref = pmap_clear_reference(pg); 1625 mod = pmap_clear_modify(pg); 1626 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1627 (void *)(u_long)va, (long)pa, 1628 ref, mod); 1629 1630 /* Modify page */ 1631 #if 0 1632 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1633 pmap_update(pmap_kernel()); 1634 #endif 1635 *loc = 1; 1636 1637 ref = pmap_is_referenced(pg); 1638 mod = pmap_is_modified(pg); 1639 printf("Modified page: ref %d, mod %d\n", 1640 ref, mod); 1641 1642 /* Check pmap_protect() */ 1643 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); 1644 pmap_update(pmap_kernel()); 1645 ref = pmap_is_referenced(pg); 1646 mod = pmap_is_modified(pg); 1647 printf("pmap_protect(): ref %d, mod %d\n", 1648 ref, mod); 1649 1650 /* Now clear reference and modify */ 1651 ref = pmap_clear_reference(pg); 1652 mod = pmap_clear_modify(pg); 1653 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1654 (void *)(u_long)va, (long)pa, 1655 ref, mod); 1656 1657 /* Reference page */ 1658 val = *loc; 1659 1660 ref = pmap_is_referenced(pg); 1661 mod = pmap_is_modified(pg); 1662 printf("Referenced page: ref %d, mod %d val %x\n", 1663 ref, mod, val); 1664 1665 /* Now clear reference and modify */ 1666 ref = pmap_clear_reference(pg); 1667 mod = pmap_clear_modify(pg); 1668 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1669 (void *)(u_long)va, (long)pa, 1670 ref, mod); 1671 1672 /* Modify page */ 1673 #if 0 1674 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1675 pmap_update(pmap_kernel()); 1676 #endif 1677 *loc = 1; 1678 1679 ref = pmap_is_referenced(pg); 1680 mod = pmap_is_modified(pg); 1681 printf("Modified page: ref %d, mod %d\n", 1682 ref, mod); 1683 1684 /* Check pmap_pag_protect() */ 1685 pmap_page_protect(pg, VM_PROT_READ); 1686 ref = pmap_is_referenced(pg); 1687 mod = pmap_is_modified(pg); 1688 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", 1689 ref, mod); 1690 1691 /* Now clear reference and modify */ 1692 ref = pmap_clear_reference(pg); 1693 mod = pmap_clear_modify(pg); 1694 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1695 (void *)(u_long)va, (long)pa, 1696 ref, mod); 1697 1698 /* Reference page */ 1699 val = *loc; 1700 1701 ref = pmap_is_referenced(pg); 1702 mod = pmap_is_modified(pg); 1703 printf("Referenced page: ref %d, mod %d val %x\n", 1704 ref, mod, val); 1705 1706 /* Now clear reference and modify */ 1707 ref = pmap_clear_reference(pg); 1708 mod = pmap_clear_modify(pg); 1709 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1710 (void *)(u_long)va, (long)pa, 1711 ref, mod); 1712 1713 /* Modify page */ 1714 #if 0 1715 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1716 pmap_update(pmap_kernel()); 1717 #endif 1718 *loc = 1; 1719 1720 ref = pmap_is_referenced(pg); 1721 mod = pmap_is_modified(pg); 1722 printf("Modified page: ref %d, mod %d\n", 1723 ref, mod); 1724 1725 /* Check pmap_pag_protect() */ 1726 pmap_page_protect(pg, VM_PROT_NONE); 1727 ref = pmap_is_referenced(pg); 1728 mod = pmap_is_modified(pg); 1729 printf("pmap_page_protect(): ref %d, mod %d\n", 1730 ref, mod); 1731 1732 /* Now clear reference and modify */ 1733 ref = pmap_clear_reference(pg); 1734 mod = pmap_clear_modify(pg); 1735 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1736 (void *)(u_long)va, (long)pa, 1737 ref, mod); 1738 1739 1740 /* Reference page */ 1741 val = *loc; 1742 1743 ref = pmap_is_referenced(pg); 1744 mod = pmap_is_modified(pg); 1745 printf("Referenced page: ref %d, mod %d val %x\n", 1746 ref, mod, val); 1747 1748 /* Now clear reference and modify */ 1749 ref = pmap_clear_reference(pg); 1750 mod = pmap_clear_modify(pg); 1751 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1752 (void *)(u_long)va, (long)pa, 1753 ref, mod); 1754 1755 /* Modify page */ 1756 #if 0 1757 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1758 pmap_update(pmap_kernel()); 1759 #endif 1760 *loc = 1; 1761 1762 ref = pmap_is_referenced(pg); 1763 mod = pmap_is_modified(pg); 1764 printf("Modified page: ref %d, mod %d\n", 1765 ref, mod); 1766 1767 /* Unmap page */ 1768 pmap_remove(pmap_kernel(), va, va+1); 1769 pmap_update(pmap_kernel()); 1770 ref = pmap_is_referenced(pg); 1771 mod = pmap_is_modified(pg); 1772 printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1773 1774 /* Now clear reference and modify */ 1775 ref = pmap_clear_reference(pg); 1776 mod = pmap_clear_modify(pg); 1777 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1778 (void *)(u_long)va, (long)pa, ref, mod); 1779 1780 /* Check it's properly cleared */ 1781 ref = pmap_is_referenced(pg); 1782 mod = pmap_is_modified(pg); 1783 printf("Checking cleared page: ref %d, mod %d\n", 1784 ref, mod); 1785 1786 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); 1787 pmap_kenter_pa(va, pa, VM_PROT_ALL); 1788 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED); 1789 } 1790 #endif 1791