xref: /netbsd-src/sys/arch/powerpc/ibm4xx/pmap.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: pmap.c,v 1.21 2003/05/10 21:10:36 thorpej Exp $	*/
2 
3 /*
4  * Copyright 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40  * Copyright (C) 1995, 1996 TooLs GmbH.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by TooLs GmbH.
54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/malloc.h>
71 #include <sys/proc.h>
72 #include <sys/user.h>
73 #include <sys/queue.h>
74 #include <sys/systm.h>
75 #include <sys/pool.h>
76 #include <sys/device.h>
77 
78 #include <uvm/uvm.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/pcb.h>
82 #include <machine/powerpc.h>
83 
84 #include <powerpc/spr.h>
85 #include <machine/tlb.h>
86 
87 /*
88  * kernmap is an array of PTEs large enough to map in
89  * 4GB.  At 16KB/page it is 256K entries or 2MB.
90  */
91 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
92 caddr_t kernmap;
93 
94 #define MINCTX		2
95 #define NUMCTX		256
96 volatile struct pmap *ctxbusy[NUMCTX];
97 
98 #define TLBF_USED	0x1
99 #define	TLBF_REF	0x2
100 #define	TLBF_LOCKED	0x4
101 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
102 typedef struct tlb_info_s {
103 	char	ti_flags;
104 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
105 	u_int	ti_va;
106 } tlb_info_t;
107 
108 volatile tlb_info_t tlb_info[NTLB];
109 /* We'll use a modified FIFO replacement policy cause it's cheap */
110 volatile int tlbnext = TLB_NRESERVED;
111 
112 u_long dtlb_miss_count = 0;
113 u_long itlb_miss_count = 0;
114 u_long ktlb_miss_count = 0;
115 u_long utlb_miss_count = 0;
116 
117 /* Event counters */
118 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
119 	NULL, "cpu", "tlbmiss");
120 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
121 	NULL, "cpu", "tlbhit");
122 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
123 	NULL, "cpu", "tlbflush");
124 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
125 	NULL, "cpu", "tlbenter");
126 
127 struct pmap kernel_pmap_;
128 
129 int physmem;
130 static int npgs;
131 static u_int nextavail;
132 #ifndef MSGBUFADDR
133 extern paddr_t msgbuf_paddr;
134 #endif
135 
136 static struct mem_region *mem, *avail;
137 
138 /*
139  * This is a cache of referenced/modified bits.
140  * Bits herein are shifted by ATTRSHFT.
141  */
142 static char *pmap_attrib;
143 
144 #define PV_WIRED	0x1
145 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
146 #define	PV_CMPVA(va,pv)	(!(((pv)->pv_va^(va))&(~PV_WIRED)))
147 
148 struct pv_entry {
149 	struct pv_entry *pv_next;	/* Linked list of mappings */
150 	vaddr_t pv_va;			/* virtual address of mapping */
151 	struct pmap *pv_pm;
152 };
153 
154 struct pv_entry *pv_table;
155 static struct pool pv_pool;
156 
157 static int pmap_initialized;
158 
159 static int ctx_flush(int);
160 
161 inline struct pv_entry *pa_to_pv(paddr_t);
162 static inline char *pa_to_attr(paddr_t);
163 
164 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
165 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
166 
167 static void pmap_pinit(pmap_t);
168 static void pmap_release(pmap_t);
169 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
170 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
171 
172 
173 inline struct pv_entry *
174 pa_to_pv(paddr_t pa)
175 {
176 	int bank, pg;
177 
178 	bank = vm_physseg_find(atop(pa), &pg);
179 	if (bank == -1)
180 		return NULL;
181 	return &vm_physmem[bank].pmseg.pvent[pg];
182 }
183 
184 static inline char *
185 pa_to_attr(paddr_t pa)
186 {
187 	int bank, pg;
188 
189 	bank = vm_physseg_find(atop(pa), &pg);
190 	if (bank == -1)
191 		return NULL;
192 	return &vm_physmem[bank].pmseg.attrs[pg];
193 }
194 
195 /*
196  * Insert PTE into page table.
197  */
198 int
199 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
200 {
201 	int seg = STIDX(va);
202 	int ptn = PTIDX(va);
203 	paddr_t pa;
204 
205 	if (!pm->pm_ptbl[seg]) {
206 		/* Don't allocate a page to clear a non-existent mapping. */
207 		if (!pte) return (1);
208 		/* Allocate a page XXXX this will sleep! */
209 		pa = 0;
210 		pm->pm_ptbl[seg] =
211 		    (uint *)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1);
212 	}
213 	pm->pm_ptbl[seg][ptn] = pte;
214 
215 	/* Flush entry. */
216 	ppc4xx_tlb_flush(va, pm->pm_ctx);
217 	return (1);
218 }
219 
220 /*
221  * Get a pointer to a PTE in a page table.
222  */
223 volatile u_int *
224 pte_find(struct pmap *pm, vaddr_t va)
225 {
226 	int seg = STIDX(va);
227 	int ptn = PTIDX(va);
228 
229 	if (pm->pm_ptbl[seg])
230 		return (&pm->pm_ptbl[seg][ptn]);
231 
232 	return (NULL);
233 }
234 
235 /*
236  * This is called during initppc, before the system is really initialized.
237  */
238 void
239 pmap_bootstrap(u_int kernelstart, u_int kernelend)
240 {
241 	struct mem_region *mp, *mp1;
242 	int cnt, i;
243 	u_int s, e, sz;
244 
245 	/*
246 	 * Allocate the kernel page table at the end of
247 	 * kernel space so it's in the locked TTE.
248 	 */
249 	kernmap = (caddr_t)kernelend;
250 
251 	/*
252 	 * Initialize kernel page table.
253 	 */
254 	for (i = 0; i < STSZ; i++) {
255 		pmap_kernel()->pm_ptbl[i] = 0;
256 	}
257 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
258 
259 	/*
260 	 * Announce page-size to the VM-system
261 	 */
262 	uvmexp.pagesize = NBPG;
263 	uvm_setpagesize();
264 
265 	/*
266 	 * Get memory.
267 	 */
268 	mem_regions(&mem, &avail);
269 	for (mp = mem; mp->size; mp++) {
270 		physmem += btoc(mp->size);
271 		printf("+%lx,",mp->size);
272 	}
273 	printf("\n");
274 	ppc4xx_tlb_init();
275 	/*
276 	 * Count the number of available entries.
277 	 */
278 	for (cnt = 0, mp = avail; mp->size; mp++)
279 		cnt++;
280 
281 	/*
282 	 * Page align all regions.
283 	 * Non-page aligned memory isn't very interesting to us.
284 	 * Also, sort the entries for ascending addresses.
285 	 */
286 	kernelstart &= ~PGOFSET;
287 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
288 	for (mp = avail; mp->size; mp++) {
289 		s = mp->start;
290 		e = mp->start + mp->size;
291 		printf("%08x-%08x -> ",s,e);
292 		/*
293 		 * Check whether this region holds all of the kernel.
294 		 */
295 		if (s < kernelstart && e > kernelend) {
296 			avail[cnt].start = kernelend;
297 			avail[cnt++].size = e - kernelend;
298 			e = kernelstart;
299 		}
300 		/*
301 		 * Look whether this regions starts within the kernel.
302 		 */
303 		if (s >= kernelstart && s < kernelend) {
304 			if (e <= kernelend)
305 				goto empty;
306 			s = kernelend;
307 		}
308 		/*
309 		 * Now look whether this region ends within the kernel.
310 		 */
311 		if (e > kernelstart && e <= kernelend) {
312 			if (s >= kernelstart)
313 				goto empty;
314 			e = kernelstart;
315 		}
316 		/*
317 		 * Now page align the start and size of the region.
318 		 */
319 		s = round_page(s);
320 		e = trunc_page(e);
321 		if (e < s)
322 			e = s;
323 		sz = e - s;
324 		printf("%08x-%08x = %x\n",s,e,sz);
325 		/*
326 		 * Check whether some memory is left here.
327 		 */
328 		if (sz == 0) {
329 		empty:
330 			memmove(mp, mp + 1,
331 				(cnt - (mp - avail)) * sizeof *mp);
332 			cnt--;
333 			mp--;
334 			continue;
335 		}
336 		/*
337 		 * Do an insertion sort.
338 		 */
339 		npgs += btoc(sz);
340 		for (mp1 = avail; mp1 < mp; mp1++)
341 			if (s < mp1->start)
342 				break;
343 		if (mp1 < mp) {
344 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
345 			mp1->start = s;
346 			mp1->size = sz;
347 		} else {
348 			mp->start = s;
349 			mp->size = sz;
350 		}
351 	}
352 
353 	/*
354 	 * We cannot do pmap_steal_memory here,
355 	 * since we don't run with translation enabled yet.
356 	 */
357 #ifndef MSGBUFADDR
358 	/*
359 	 * allow for msgbuf
360 	 */
361 	sz = round_page(MSGBUFSIZE);
362 	mp = NULL;
363 	for (mp1 = avail; mp1->size; mp1++)
364 		if (mp1->size >= sz)
365 			mp = mp1;
366 	if (mp == NULL)
367 		panic("not enough memory?");
368 
369 	npgs -= btoc(sz);
370 	msgbuf_paddr = mp->start + mp->size - sz;
371 	mp->size -= sz;
372 	if (mp->size <= 0)
373 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
374 #endif
375 
376 	printf("Loading pages\n");
377 	for (mp = avail; mp->size; mp++)
378 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
379 			atop(mp->start), atop(mp->start + mp->size),
380 			VM_FREELIST_DEFAULT);
381 
382 	/*
383 	 * Initialize kernel pmap and hardware.
384 	 */
385 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
386 	pmap_kernel()->pm_ctx = KERNEL_PID;
387 	nextavail = avail->start;
388 
389 
390 	evcnt_attach_static(&tlbhit_ev);
391 	evcnt_attach_static(&tlbmiss_ev);
392 	evcnt_attach_static(&tlbflush_ev);
393 	evcnt_attach_static(&tlbenter_ev);
394 	printf("Done\n");
395 }
396 
397 /*
398  * Restrict given range to physical memory
399  *
400  * (Used by /dev/mem)
401  */
402 void
403 pmap_real_memory(paddr_t *start, psize_t *size)
404 {
405 	struct mem_region *mp;
406 
407 	for (mp = mem; mp->size; mp++) {
408 		if (*start + *size > mp->start &&
409 		    *start < mp->start + mp->size) {
410 			if (*start < mp->start) {
411 				*size -= mp->start - *start;
412 				*start = mp->start;
413 			}
414 			if (*start + *size > mp->start + mp->size)
415 				*size = mp->start + mp->size - *start;
416 			return;
417 		}
418 	}
419 	*size = 0;
420 }
421 
422 /*
423  * Initialize anything else for pmap handling.
424  * Called during vm_init().
425  */
426 void
427 pmap_init(void)
428 {
429 	struct pv_entry *pv;
430 	vsize_t sz;
431 	vaddr_t addr;
432 	int i, s;
433 	int bank;
434 	char *attr;
435 
436 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
437 	sz = round_page(sz);
438 	addr = uvm_km_zalloc(kernel_map, sz);
439 	s = splvm();
440 	pv = pv_table = (struct pv_entry *)addr;
441 	for (i = npgs; --i >= 0;)
442 		pv++->pv_pm = NULL;
443 	pmap_attrib = (char *)pv;
444 	memset(pv, 0, npgs);
445 
446 	pv = pv_table;
447 	attr = pmap_attrib;
448 	for (bank = 0; bank < vm_nphysseg; bank++) {
449 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
450 		vm_physmem[bank].pmseg.pvent = pv;
451 		vm_physmem[bank].pmseg.attrs = attr;
452 		pv += sz;
453 		attr += sz;
454 	}
455 
456 	pmap_initialized = 1;
457 	splx(s);
458 
459 	/* Setup a pool for additional pvlist structures */
460 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
461 }
462 
463 /*
464  * How much virtual space is available to the kernel?
465  */
466 void
467 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
468 {
469 
470 #if 0
471 	/*
472 	 * Reserve one segment for kernel virtual memory
473 	 */
474 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
475 	*end = *start + SEGMENT_LENGTH;
476 #else
477 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
478 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
479 #endif
480 }
481 
482 #ifdef PMAP_GROWKERNEL
483 /*
484  * Preallocate kernel page tables to a specified VA.
485  * This simply loops through the first TTE for each
486  * page table from the beginning of the kernel pmap,
487  * reads the entry, and if the result is
488  * zero (either invalid entry or no page table) it stores
489  * a zero there, populating page tables in the process.
490  * This is not the most efficient technique but i don't
491  * expect it to be called that often.
492  */
493 extern struct vm_page *vm_page_alloc1 __P((void));
494 extern void vm_page_free1 __P((struct vm_page *));
495 
496 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
497 
498 vaddr_t
499 pmap_growkernel(maxkvaddr)
500 	vaddr_t maxkvaddr;
501 {
502 	int s;
503 	int seg;
504 	paddr_t pg;
505 	struct pmap *pm = pmap_kernel();
506 
507 	s = splvm();
508 
509 	/* Align with the start of a page table */
510 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
511 	     kbreak += PTMAP) {
512 		seg = STIDX(kbreak);
513 
514 		if (pte_find(pm, kbreak)) continue;
515 
516 		if (uvm.page_init_done) {
517 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
518 		} else {
519 			if (!uvm_page_physget(&pg))
520 				panic("pmap_growkernel: no memory");
521 		}
522 		if (!pg) panic("pmap_growkernel: no pages");
523 		pmap_zero_page((paddr_t)pg);
524 
525 		/* XXX This is based on all phymem being addressable */
526 		pm->pm_ptbl[seg] = (u_int *)pg;
527 	}
528 	splx(s);
529 	return (kbreak);
530 }
531 
532 /*
533  *	vm_page_alloc1:
534  *
535  *	Allocate and return a memory cell with no associated object.
536  */
537 struct vm_page *
538 vm_page_alloc1()
539 {
540 	struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
541 	if (pg) {
542 		pg->wire_count = 1;	/* no mappings yet */
543 		pg->flags &= ~PG_BUSY;	/* never busy */
544 	}
545 	return pg;
546 }
547 
548 /*
549  *	vm_page_free1:
550  *
551  *	Returns the given page to the free list,
552  *	disassociating it with any VM object.
553  *
554  *	Object and page must be locked prior to entry.
555  */
556 void
557 vm_page_free1(mem)
558 	struct vm_page *mem;
559 {
560 #ifdef DIAGNOSTIC
561 	if (mem->flags != (PG_CLEAN|PG_FAKE)) {
562 		printf("Freeing invalid page %p\n", mem);
563 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
564 #ifdef DDB
565 		Debugger();
566 #endif
567 		return;
568 	}
569 #endif
570 	mem->flags |= PG_BUSY;
571 	mem->wire_count = 0;
572 	uvm_pagefree(mem);
573 }
574 #endif
575 
576 /*
577  * Create and return a physical map.
578  */
579 struct pmap *
580 pmap_create(void)
581 {
582 	struct pmap *pm;
583 
584 	pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
585 	memset((caddr_t)pm, 0, sizeof *pm);
586 	pmap_pinit(pm);
587 	return pm;
588 }
589 
590 /*
591  * Initialize a preallocated and zeroed pmap structure.
592  */
593 void
594 pmap_pinit(struct pmap *pm)
595 {
596 	int i;
597 
598 	/*
599 	 * Allocate some segment registers for this pmap.
600 	 */
601 	pm->pm_refs = 1;
602 	for (i = 0; i < STSZ; i++)
603 		pm->pm_ptbl[i] = NULL;
604 }
605 
606 /*
607  * Add a reference to the given pmap.
608  */
609 void
610 pmap_reference(struct pmap *pm)
611 {
612 
613 	pm->pm_refs++;
614 }
615 
616 /*
617  * Retire the given pmap from service.
618  * Should only be called if the map contains no valid mappings.
619  */
620 void
621 pmap_destroy(struct pmap *pm)
622 {
623 
624 	if (--pm->pm_refs == 0) {
625 		pmap_release(pm);
626 		free((caddr_t)pm, M_VMPMAP);
627 	}
628 }
629 
630 /*
631  * Release any resources held by the given physical map.
632  * Called when a pmap initialized by pmap_pinit is being released.
633  */
634 static void
635 pmap_release(struct pmap *pm)
636 {
637 	int i;
638 
639 	for (i = 0; i < STSZ; i++)
640 		if (pm->pm_ptbl[i]) {
641 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
642 			    PAGE_SIZE);
643 			pm->pm_ptbl[i] = NULL;
644 		}
645 	if (pm->pm_ctx) ctx_free(pm);
646 }
647 
648 /*
649  * Copy the range specified by src_addr/len
650  * from the source map to the range dst_addr/len
651  * in the destination map.
652  *
653  * This routine is only advisory and need not do anything.
654  */
655 void
656 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
657 	  vsize_t len, vaddr_t src_addr)
658 {
659 }
660 
661 /*
662  * Require that all active physical maps contain no
663  * incorrect entries NOW.
664  */
665 void
666 pmap_update(struct pmap *pmap)
667 {
668 }
669 
670 /*
671  * Garbage collects the physical map system for
672  * pages which are no longer used.
673  * Success need not be guaranteed -- that is, there
674  * may well be pages which are not referenced, but
675  * others may be collected.
676  * Called by the pageout daemon when pages are scarce.
677  */
678 void
679 pmap_collect(struct pmap *pm)
680 {
681 }
682 
683 /*
684  * Fill the given physical page with zeroes.
685  */
686 void
687 pmap_zero_page(paddr_t pa)
688 {
689 
690 #ifdef PPC_4XX_NOCACHE
691 	memset((caddr_t)pa, 0, PAGE_SIZE);
692 #else
693 	int i;
694 
695 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
696 		__asm __volatile ("dcbz 0,%0" :: "r"(pa));
697 		pa += CACHELINESIZE;
698 	}
699 #endif
700 }
701 
702 /*
703  * Copy the given physical source page to its destination.
704  */
705 void
706 pmap_copy_page(paddr_t src, paddr_t dst)
707 {
708 
709 	memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
710 	dcache_flush_page(dst);
711 }
712 
713 /*
714  * This returns whether this is the first mapping of a page.
715  */
716 static inline int
717 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
718 {
719 	struct pv_entry *pv, *npv = NULL;
720 	int s;
721 
722 	if (!pmap_initialized)
723 		return 0;
724 
725 	s = splvm();
726 
727 	pv = pa_to_pv(pa);
728 for (npv = pv; npv; npv = npv->pv_next)
729 if (npv->pv_va == va && npv->pv_pm == pm) {
730 printf("Duplicate pv: va %lx pm %p\n", va, pm);
731 #ifdef DDB
732 Debugger();
733 #endif
734 return (1);
735 }
736 
737 	if (!pv->pv_pm) {
738 		/*
739 		 * No entries yet, use header as the first entry.
740 		 */
741 		pv->pv_va = va;
742 		pv->pv_pm = pm;
743 		pv->pv_next = NULL;
744 	} else {
745 		/*
746 		 * There is at least one other VA mapping this page.
747 		 * Place this entry after the header.
748 		 */
749 		npv = pool_get(&pv_pool, PR_WAITOK);
750 		if (!npv) return (0);
751 		npv->pv_va = va;
752 		npv->pv_pm = pm;
753 		npv->pv_next = pv->pv_next;
754 		pv->pv_next = npv;
755 	}
756 	splx(s);
757 	return (1);
758 }
759 
760 static void
761 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
762 {
763 	struct pv_entry *pv, *npv;
764 
765 	/*
766 	 * Remove from the PV table.
767 	 */
768 	pv = pa_to_pv(pa);
769 	if (!pv) return;
770 
771 	/*
772 	 * If it is the first entry on the list, it is actually
773 	 * in the header and we must copy the following entry up
774 	 * to the header.  Otherwise we must search the list for
775 	 * the entry.  In either case we free the now unused entry.
776 	 */
777 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
778 		if ((npv = pv->pv_next)) {
779 			*pv = *npv;
780 			pool_put(&pv_pool, npv);
781 		} else
782 			pv->pv_pm = NULL;
783 	} else {
784 		for (; (npv = pv->pv_next) != NULL; pv = npv)
785 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
786 				break;
787 		if (npv) {
788 			pv->pv_next = npv->pv_next;
789 			pool_put(&pv_pool, npv);
790 		}
791 	}
792 }
793 
794 /*
795  * Insert physical page at pa into the given pmap at virtual address va.
796  */
797 int
798 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
799 {
800 	int s;
801 	u_int tte;
802 	int managed;
803 
804 	/*
805 	 * Have to remove any existing mapping first.
806 	 */
807 	pmap_remove(pm, va, va + PAGE_SIZE);
808 
809 	if (flags & PMAP_WIRED) flags |= prot;
810 
811 	/* If it has no protections don't bother w/the rest */
812 	if (!(flags & VM_PROT_ALL))
813 		return (0);
814 
815 	managed = 0;
816 	if (vm_physseg_find(atop(pa), NULL) != -1)
817 		managed = 1;
818 
819 	/*
820 	 * Generate TTE.
821 	 *
822 	 * XXXX
823 	 *
824 	 * Since the kernel does not handle execution privileges properly,
825 	 * we will handle read and execute permissions together.
826 	 */
827 	tte = TTE_PA(pa) | TTE_EX;
828 	/* XXXX -- need to support multiple page sizes. */
829 	tte |= TTE_SZ_16K;
830 #ifdef	DIAGNOSTIC
831 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
832 		(PME_NOCACHE | PME_WRITETHROUG))
833 		panic("pmap_enter: uncached & writethrough");
834 #endif
835 	if (flags & PME_NOCACHE)
836 		/* Must be I/O mapping */
837 		tte |= TTE_I | TTE_G;
838 #ifdef PPC_4XX_NOCACHE
839 	tte |= TTE_I;
840 #else
841 	else if (flags & PME_WRITETHROUG)
842 		/* Uncached and writethrough are not compatible */
843 		tte |= TTE_W;
844 #endif
845 	if (pm == pmap_kernel())
846 		tte |= TTE_ZONE(ZONE_PRIV);
847 	else
848 		tte |= TTE_ZONE(ZONE_USER);
849 
850 	if (flags & VM_PROT_WRITE)
851 		tte |= TTE_WR;
852 
853 	/*
854 	 * Now record mapping for later back-translation.
855 	 */
856 	if (pmap_initialized && managed) {
857 		char *attr;
858 
859 		if (!pmap_enter_pv(pm, va, pa)) {
860 			/* Could not enter pv on a managed page */
861 			return 1;
862 		}
863 
864 		/* Now set attributes. */
865 		attr = pa_to_attr(pa);
866 #ifdef DIAGNOSTIC
867 		if (!attr)
868 			panic("managed but no attr");
869 #endif
870 		if (flags & VM_PROT_ALL)
871 			*attr |= PTE_HI_REF;
872 		if (flags & VM_PROT_WRITE)
873 			*attr |= PTE_HI_CHG;
874 	}
875 
876 	s = splvm();
877 	pm->pm_stats.resident_count++;
878 
879 	/* Insert page into page table. */
880 	pte_enter(pm, va, tte);
881 
882 	/* If this is a real fault, enter it in the tlb */
883 	if (tte && ((flags & PMAP_WIRED) == 0)) {
884 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
885 	}
886 	splx(s);
887 
888 	/* Flush the real memory from the instruction cache. */
889 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
890 		__syncicache((void *)pa, PAGE_SIZE);
891 
892 	return 0;
893 }
894 
895 void
896 pmap_unwire(struct pmap *pm, vaddr_t va)
897 {
898 	struct pv_entry *pv, *npv;
899 	paddr_t pa;
900 	int s = splvm();
901 
902 	if (pm == NULL) {
903 		return;
904 	}
905 
906 	if (!pmap_extract(pm, va, &pa)) {
907 		return;
908 	}
909 
910 	va |= PV_WIRED;
911 
912 	pv = pa_to_pv(pa);
913 	if (!pv) return;
914 
915 	/*
916 	 * If it is the first entry on the list, it is actually
917 	 * in the header and we must copy the following entry up
918 	 * to the header.  Otherwise we must search the list for
919 	 * the entry.  In either case we free the now unused entry.
920 	 */
921 	for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
922 		if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
923 			npv->pv_va &= ~PV_WIRED;
924 			break;
925 		}
926 	}
927 	splx(s);
928 }
929 
930 void
931 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
932 {
933 	int s;
934 	u_int tte;
935 	struct pmap *pm = pmap_kernel();
936 
937 	/*
938 	 * Have to remove any existing mapping first.
939 	 */
940 
941 	/*
942 	 * Generate TTE.
943 	 *
944 	 * XXXX
945 	 *
946 	 * Since the kernel does not handle execution privileges properly,
947 	 * we will handle read and execute permissions together.
948 	 */
949 	tte = 0;
950 	if (prot & VM_PROT_ALL) {
951 
952 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
953 		/* XXXX -- need to support multiple page sizes. */
954 		tte |= TTE_SZ_16K;
955 #ifdef DIAGNOSTIC
956 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
957 			(PME_NOCACHE | PME_WRITETHROUG))
958 			panic("pmap_kenter_pa: uncached & writethrough");
959 #endif
960 		if (prot & PME_NOCACHE)
961 			/* Must be I/O mapping */
962 			tte |= TTE_I | TTE_G;
963 #ifdef PPC_4XX_NOCACHE
964 		tte |= TTE_I;
965 #else
966 		else if (prot & PME_WRITETHROUG)
967 			/* Uncached and writethrough are not compatible */
968 			tte |= TTE_W;
969 #endif
970 		if (prot & VM_PROT_WRITE)
971 			tte |= TTE_WR;
972 	}
973 
974 	s = splvm();
975 	pm->pm_stats.resident_count++;
976 
977 	/* Insert page into page table. */
978 	pte_enter(pm, va, tte);
979 	splx(s);
980 }
981 
982 void
983 pmap_kremove(vaddr_t va, vsize_t len)
984 {
985 
986 	while (len > 0) {
987 		pte_enter(pmap_kernel(), va, 0);
988 		va += PAGE_SIZE;
989 		len -= PAGE_SIZE;
990 	}
991 }
992 
993 /*
994  * Remove the given range of mapping entries.
995  */
996 void
997 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
998 {
999 	int s;
1000 	paddr_t pa;
1001 	volatile u_int *ptp;
1002 
1003 	s = splvm();
1004 	while (va < endva) {
1005 
1006 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1007 			pa = TTE_PA(pa);
1008 			pmap_remove_pv(pm, va, pa);
1009 			*ptp = 0;
1010 			ppc4xx_tlb_flush(va, pm->pm_ctx);
1011 			pm->pm_stats.resident_count--;
1012 		}
1013 		va += PAGE_SIZE;
1014 	}
1015 
1016 	splx(s);
1017 }
1018 
1019 /*
1020  * Get the physical page address for the given pmap/virtual address.
1021  */
1022 boolean_t
1023 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1024 {
1025 	int seg = STIDX(va);
1026 	int ptn = PTIDX(va);
1027 	u_int pa = 0;
1028 	int s = splvm();
1029 
1030 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1031 		*pap = TTE_PA(pa) | (va & PGOFSET);
1032 	}
1033 	splx(s);
1034 	return (pa != 0);
1035 }
1036 
1037 /*
1038  * Lower the protection on the specified range of this pmap.
1039  *
1040  * There are only two cases: either the protection is going to 0,
1041  * or it is going to read-only.
1042  */
1043 void
1044 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1045 {
1046 	volatile u_int *ptp;
1047 	int s;
1048 
1049 	if (prot & VM_PROT_READ) {
1050 		s = splvm();
1051 		while (sva < eva) {
1052 			if ((ptp = pte_find(pm, sva)) != NULL) {
1053 				*ptp &= ~TTE_WR;
1054 				ppc4xx_tlb_flush(sva, pm->pm_ctx);
1055 			}
1056 			sva += PAGE_SIZE;
1057 		}
1058 		splx(s);
1059 		return;
1060 	}
1061 	pmap_remove(pm, sva, eva);
1062 }
1063 
1064 boolean_t
1065 check_attr(struct vm_page *pg, u_int mask, int clear)
1066 {
1067 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
1068 	int s;
1069 	char *attr;
1070 	int rv;
1071 
1072 	/*
1073 	 * First modify bits in cache.
1074 	 */
1075 	s = splvm();
1076 	attr = pa_to_attr(pa);
1077 	if (attr == NULL)
1078 		return FALSE;
1079 
1080 	rv = ((*attr & mask) != 0);
1081 	if (clear) {
1082 		*attr &= ~mask;
1083 		pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0);
1084 	}
1085 	splx(s);
1086 	return rv;
1087 }
1088 
1089 
1090 /*
1091  * Lower the protection on the specified physical page.
1092  *
1093  * There are only two cases: either the protection is going to 0,
1094  * or it is going to read-only.
1095  */
1096 void
1097 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1098 {
1099 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
1100 	vaddr_t va;
1101 	struct pv_entry *pvh, *pv, *npv;
1102 	struct pmap *pm;
1103 
1104 	pvh = pa_to_pv(pa);
1105 	if (pvh == NULL)
1106 		return;
1107 
1108 	/* Handle extra pvs which may be deleted in the operation */
1109 	for (pv = pvh->pv_next; pv; pv = npv) {
1110 		npv = pv->pv_next;
1111 
1112 		pm = pv->pv_pm;
1113 		va = pv->pv_va;
1114 		pmap_protect(pm, va, va+PAGE_SIZE, prot);
1115 	}
1116 	/* Now check the head pv */
1117 	if (pvh->pv_pm) {
1118 		pv = pvh;
1119 		pm = pv->pv_pm;
1120 		va = pv->pv_va;
1121 		pmap_protect(pm, va, va+PAGE_SIZE, prot);
1122 	}
1123 }
1124 
1125 /*
1126  * Activate the address space for the specified process.  If the process
1127  * is the current process, load the new MMU context.
1128  */
1129 void
1130 pmap_activate(struct lwp *l)
1131 {
1132 #if 0
1133 	struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1134 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1135 
1136 	/*
1137 	 * XXX Normally performed in cpu_fork().
1138 	 */
1139 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1140 	if (pcb->pcb_pm != pmap) {
1141 		pcb->pcb_pm = pmap;
1142 		(void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1143 		    (paddr_t *)&pcb->pcb_pmreal);
1144 	}
1145 
1146 	if (l == curlwp) {
1147 		/* Store pointer to new current pmap. */
1148 		curpm = pcb->pcb_pmreal;
1149 	}
1150 #endif
1151 }
1152 
1153 /*
1154  * Deactivate the specified process's address space.
1155  */
1156 void
1157 pmap_deactivate(struct lwp *l)
1158 {
1159 }
1160 
1161 /*
1162  * Synchronize caches corresponding to [addr, addr+len) in p.
1163  */
1164 void
1165 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1166 {
1167 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
1168 	int msr, ctx, opid, step;
1169 
1170 
1171 	step = CACHELINESIZE;
1172 
1173 	/*
1174 	 * Need to turn off IMMU and switch to user context.
1175 	 * (icbi uses DMMU).
1176 	 */
1177 	if (!(ctx = pm->pm_ctx)) {
1178 		/* No context -- assign it one */
1179 		ctx_alloc(pm);
1180 		ctx = pm->pm_ctx;
1181 	}
1182 	__asm __volatile("mfmsr %0;"
1183 		"li %1, 0x20;"
1184 		"andc %1,%0,%1;"
1185 		"mtmsr %1;"
1186 		"sync;isync;"
1187 		"mfpid %1;"
1188 		"mtpid %2;"
1189 		"sync; isync;"
1190 		"1:"
1191 		"dcbf 0,%3;"
1192 		"icbi 0,%3;"
1193 		"add %3,%3,%5;"
1194 		"addc. %4,%4,%6;"
1195 		"bge 1b;"
1196 		"mtpid %1;"
1197 		"mtmsr %0;"
1198 		"sync; isync"
1199 		: "=&r" (msr), "=&r" (opid)
1200 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step));
1201 }
1202 
1203 
1204 /* This has to be done in real mode !!! */
1205 void
1206 ppc4xx_tlb_flush(vaddr_t va, int pid)
1207 {
1208 	u_long i, found;
1209 	u_long msr;
1210 
1211 	/* If there's no context then it can't be mapped. */
1212 	if (!pid) return;
1213 
1214 	asm("mfpid %1;"			/* Save PID */
1215 		"mfmsr %2;"		/* Save MSR */
1216 		"li %0,0;"		/* Now clear MSR */
1217 		"mtmsr %0;"
1218 		"mtpid %4;"		/* Set PID */
1219 		"sync;"
1220 		"tlbsx. %0,0,%3;"	/* Search TLB */
1221 		"sync;"
1222 		"mtpid %1;"		/* Restore PID */
1223 		"mtmsr %2;"		/* Restore MSR */
1224 		"sync;isync;"
1225 		"li %1,1;"
1226 		"beq 1f;"
1227 		"li %1,0;"
1228 		"1:"
1229 		: "=&r" (i), "=&r" (found), "=&r" (msr)
1230 		: "r" (va), "r" (pid));
1231 	if (found && !TLB_LOCKED(i)) {
1232 
1233 		/* Now flush translation */
1234 		asm volatile(
1235 			"tlbwe %0,%1,0;"
1236 			"sync;isync;"
1237 			: : "r" (0), "r" (i));
1238 
1239 		tlb_info[i].ti_ctx = 0;
1240 		tlb_info[i].ti_flags = 0;
1241 		tlbnext = i;
1242 		/* Successful flushes */
1243 		tlbflush_ev.ev_count++;
1244 	}
1245 }
1246 
1247 void
1248 ppc4xx_tlb_flush_all(void)
1249 {
1250 	u_long i;
1251 
1252 	for (i = 0; i < NTLB; i++)
1253 		if (!TLB_LOCKED(i)) {
1254 			asm volatile(
1255 				"tlbwe %0,%1,0;"
1256 				"sync;isync;"
1257 				: : "r" (0), "r" (i));
1258 			tlb_info[i].ti_ctx = 0;
1259 			tlb_info[i].ti_flags = 0;
1260 		}
1261 
1262 	asm volatile("sync;isync");
1263 }
1264 
1265 /* Find a TLB entry to evict. */
1266 static int
1267 ppc4xx_tlb_find_victim(void)
1268 {
1269 	int flags;
1270 
1271 	for (;;) {
1272 		if (++tlbnext >= NTLB)
1273 			tlbnext = TLB_NRESERVED;
1274 		flags = tlb_info[tlbnext].ti_flags;
1275 		if (!(flags & TLBF_USED) ||
1276 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1277 			u_long va, stack = (u_long)&va;
1278 
1279 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1280 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1281 			     (flags & TLBF_USED)) {
1282 				/* Kernel stack page */
1283 				flags |= TLBF_USED;
1284 				tlb_info[tlbnext].ti_flags = flags;
1285 			} else {
1286 				/* Found it! */
1287 				return (tlbnext);
1288 			}
1289 		} else {
1290 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1291 		}
1292 	}
1293 }
1294 
1295 void
1296 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1297 {
1298 	u_long th, tl, idx;
1299 	tlbpid_t pid;
1300 	u_short msr;
1301 	paddr_t pa;
1302 	int s, sz;
1303 
1304 	tlbenter_ev.ev_count++;
1305 
1306 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1307 	pa = (pte & TTE_RPN_MASK(sz));
1308 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1309 	tl = (pte & ~TLB_RPN_MASK) | pa;
1310 	tl |= ppc4xx_tlbflags(va, pa);
1311 
1312 	s = splhigh();
1313 	idx = ppc4xx_tlb_find_victim();
1314 
1315 #ifdef DIAGNOSTIC
1316 	if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1317 		panic("ppc4xx_tlb_enter: repacing entry %ld", idx);
1318 	}
1319 #endif
1320 
1321 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1322 	tlb_info[idx].ti_ctx = ctx;
1323 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1324 
1325 	asm volatile(
1326 		"mfmsr %0;"			/* Save MSR */
1327 		"li %1,0;"
1328 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
1329 		"mtmsr %1;"			/* Clear MSR */
1330 		"mfpid %1;"			/* Save old PID */
1331 		"mtpid %2;"			/* Load translation ctx */
1332 		"sync; isync;"
1333 #ifdef DEBUG
1334 		"andi. %3,%3,63;"
1335 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
1336 #endif
1337 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
1338 		"sync; isync;"
1339 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
1340 		"sync; isync;"
1341 	: "=&r" (msr), "=&r" (pid)
1342 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1343 	splx(s);
1344 }
1345 
1346 void
1347 ppc4xx_tlb_unpin(int i)
1348 {
1349 
1350 	if (i == -1)
1351 		for (i = 0; i < TLB_NRESERVED; i++)
1352 			tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1353 	else
1354 		tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1355 }
1356 
1357 void
1358 ppc4xx_tlb_init(void)
1359 {
1360 	int i;
1361 
1362 	/* Mark reserved TLB entries */
1363 	for (i = 0; i < TLB_NRESERVED; i++) {
1364 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1365 		tlb_info[i].ti_ctx = KERNEL_PID;
1366 	}
1367 
1368 	/* Setup security zones */
1369 	/* Z0 - accessible by kernel only if TLB entry permissions allow
1370 	 * Z1,Z2 - access is controlled by TLB entry permissions
1371 	 * Z3 - full access regardless of TLB entry permissions
1372 	 */
1373 
1374 	asm volatile(
1375 		"mtspr %0,%1;"
1376 		"sync;"
1377 		::  "K"(SPR_ZPR), "r" (0x1b000000));
1378 }
1379 
1380 
1381 /*
1382  * We should pass the ctx in from trap code.
1383  */
1384 int
1385 pmap_tlbmiss(vaddr_t va, int ctx)
1386 {
1387 	volatile u_int *pte;
1388 	u_long tte;
1389 
1390 	tlbmiss_ev.ev_count++;
1391 
1392 	/*
1393 	 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1394 	 */
1395 	if (ctx != KERNEL_PID || (va & 0x80000000)) {
1396 		pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1397 		if (pte == NULL) {
1398 			/* Map unmanaged addresses directly for kernel access */
1399 			return 1;
1400 		}
1401 		tte = *pte;
1402 		if (tte == 0) {
1403 			return 1;
1404 		}
1405 	} else {
1406 		/* Create a 16MB writable mapping. */
1407 #ifdef PPC_4XX_NOCACHE
1408 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1409 #else
1410 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1411 #endif
1412 	}
1413 	tlbhit_ev.ev_count++;
1414 	ppc4xx_tlb_enter(ctx, va, tte);
1415 
1416 	return 0;
1417 }
1418 
1419 /*
1420  * Flush all the entries matching a context from the TLB.
1421  */
1422 static int
1423 ctx_flush(int cnum)
1424 {
1425 	int i;
1426 
1427 	/* We gotta steal this context */
1428 	for (i = TLB_NRESERVED; i < NTLB; i++) {
1429 		if (tlb_info[i].ti_ctx == cnum) {
1430 			/* Can't steal ctx if it has a locked entry. */
1431 			if (TLB_LOCKED(i)) {
1432 #ifdef DIAGNOSTIC
1433 				printf("ctx_flush: can't invalidate "
1434 					"locked mapping %d "
1435 					"for context %d\n", i, cnum);
1436 #ifdef DDB
1437 				Debugger();
1438 #endif
1439 #endif
1440 				return (1);
1441 			}
1442 #ifdef DIAGNOSTIC
1443 			if (i < TLB_NRESERVED)
1444 				panic("TLB entry %d not locked", i);
1445 #endif
1446 			/* Invalidate particular TLB entry regardless of locked status */
1447 			asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1448 			tlb_info[i].ti_flags = 0;
1449 		}
1450 	}
1451 	return (0);
1452 }
1453 
1454 /*
1455  * Allocate a context.  If necessary, steal one from someone else.
1456  *
1457  * The new context is flushed from the TLB before returning.
1458  */
1459 int
1460 ctx_alloc(struct pmap *pm)
1461 {
1462 	int s, cnum;
1463 	static int next = MINCTX;
1464 
1465 	if (pm == pmap_kernel()) {
1466 #ifdef DIAGNOSTIC
1467 		printf("ctx_alloc: kernel pmap!\n");
1468 #endif
1469 		return (0);
1470 	}
1471 	s = splvm();
1472 
1473 	/* Find a likely context. */
1474 	cnum = next;
1475 	do {
1476 		if ((++cnum) > NUMCTX)
1477 			cnum = MINCTX;
1478 	} while (ctxbusy[cnum] != NULL && cnum != next);
1479 
1480 	/* Now clean it out */
1481 oops:
1482 	if (cnum < MINCTX)
1483 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
1484 	if (ctx_flush(cnum)) {
1485 		/* oops -- something's wired. */
1486 		if ((++cnum) > NUMCTX)
1487 			cnum = MINCTX;
1488 		goto oops;
1489 	}
1490 
1491 	if (ctxbusy[cnum]) {
1492 #ifdef DEBUG
1493 		/* We should identify this pmap and clear it */
1494 		printf("Warning: stealing context %d\n", cnum);
1495 #endif
1496 		ctxbusy[cnum]->pm_ctx = 0;
1497 	}
1498 	ctxbusy[cnum] = pm;
1499 	next = cnum;
1500 	splx(s);
1501 	pm->pm_ctx = cnum;
1502 
1503 	return cnum;
1504 }
1505 
1506 /*
1507  * Give away a context.
1508  */
1509 void
1510 ctx_free(struct pmap *pm)
1511 {
1512 	int oldctx;
1513 
1514 	oldctx = pm->pm_ctx;
1515 
1516 	if (oldctx == 0)
1517 		panic("ctx_free: freeing kernel context");
1518 #ifdef DIAGNOSTIC
1519 	if (ctxbusy[oldctx] == 0)
1520 		printf("ctx_free: freeing free context %d\n", oldctx);
1521 	if (ctxbusy[oldctx] != pm) {
1522 		printf("ctx_free: freeing someone esle's context\n "
1523 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1524 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1525 #ifdef DDB
1526 		Debugger();
1527 #endif
1528 	}
1529 #endif
1530 	/* We should verify it has not been stolen and reallocated... */
1531 	ctxbusy[oldctx] = NULL;
1532 	ctx_flush(oldctx);
1533 }
1534 
1535 
1536 #ifdef DEBUG
1537 /*
1538  * Test ref/modify handling.
1539  */
1540 void pmap_testout __P((void));
1541 void
1542 pmap_testout()
1543 {
1544 	vaddr_t va;
1545 	volatile int *loc;
1546 	int val = 0;
1547 	paddr_t pa;
1548 	struct vm_page *pg;
1549 	int ref, mod;
1550 
1551 	/* Allocate a page */
1552 	va = (vaddr_t)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1);
1553 	loc = (int*)va;
1554 
1555 	pmap_extract(pmap_kernel(), va, &pa);
1556 	pg = PHYS_TO_VM_PAGE(pa);
1557 	pmap_unwire(pmap_kernel(), va);
1558 
1559 	pmap_remove(pmap_kernel(), va, va+1);
1560 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1561 	pmap_update(pmap_kernel());
1562 
1563 	/* Now clear reference and modify */
1564 	ref = pmap_clear_reference(pg);
1565 	mod = pmap_clear_modify(pg);
1566 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1567 	       (void *)(u_long)va, (long)pa,
1568 	       ref, mod);
1569 
1570 	/* Check it's properly cleared */
1571 	ref = pmap_is_referenced(pg);
1572 	mod = pmap_is_modified(pg);
1573 	printf("Checking cleared page: ref %d, mod %d\n",
1574 	       ref, mod);
1575 
1576 	/* Reference page */
1577 	val = *loc;
1578 
1579 	ref = pmap_is_referenced(pg);
1580 	mod = pmap_is_modified(pg);
1581 	printf("Referenced page: ref %d, mod %d val %x\n",
1582 	       ref, mod, val);
1583 
1584 	/* Now clear reference and modify */
1585 	ref = pmap_clear_reference(pg);
1586 	mod = pmap_clear_modify(pg);
1587 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1588 	       (void *)(u_long)va, (long)pa,
1589 	       ref, mod);
1590 
1591 	/* Modify page */
1592 	*loc = 1;
1593 
1594 	ref = pmap_is_referenced(pg);
1595 	mod = pmap_is_modified(pg);
1596 	printf("Modified page: ref %d, mod %d\n",
1597 	       ref, mod);
1598 
1599 	/* Now clear reference and modify */
1600 	ref = pmap_clear_reference(pg);
1601 	mod = pmap_clear_modify(pg);
1602 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1603 	       (void *)(u_long)va, (long)pa,
1604 	       ref, mod);
1605 
1606 	/* Check it's properly cleared */
1607 	ref = pmap_is_referenced(pg);
1608 	mod = pmap_is_modified(pg);
1609 	printf("Checking cleared page: ref %d, mod %d\n",
1610 	       ref, mod);
1611 
1612 	/* Modify page */
1613 	*loc = 1;
1614 
1615 	ref = pmap_is_referenced(pg);
1616 	mod = pmap_is_modified(pg);
1617 	printf("Modified page: ref %d, mod %d\n",
1618 	       ref, mod);
1619 
1620 	/* Check pmap_protect() */
1621 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1622 	pmap_update(pmap_kernel());
1623 	ref = pmap_is_referenced(pg);
1624 	mod = pmap_is_modified(pg);
1625 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1626 	       ref, mod);
1627 
1628 	/* Now clear reference and modify */
1629 	ref = pmap_clear_reference(pg);
1630 	mod = pmap_clear_modify(pg);
1631 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1632 	       (void *)(u_long)va, (long)pa,
1633 	       ref, mod);
1634 
1635 	/* Reference page */
1636 	val = *loc;
1637 
1638 	ref = pmap_is_referenced(pg);
1639 	mod = pmap_is_modified(pg);
1640 	printf("Referenced page: ref %d, mod %d val %x\n",
1641 	       ref, mod, val);
1642 
1643 	/* Now clear reference and modify */
1644 	ref = pmap_clear_reference(pg);
1645 	mod = pmap_clear_modify(pg);
1646 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1647 	       (void *)(u_long)va, (long)pa,
1648 	       ref, mod);
1649 
1650 	/* Modify page */
1651 #if 0
1652 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1653 	pmap_update(pmap_kernel());
1654 #endif
1655 	*loc = 1;
1656 
1657 	ref = pmap_is_referenced(pg);
1658 	mod = pmap_is_modified(pg);
1659 	printf("Modified page: ref %d, mod %d\n",
1660 	       ref, mod);
1661 
1662 	/* Check pmap_protect() */
1663 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1664 	pmap_update(pmap_kernel());
1665 	ref = pmap_is_referenced(pg);
1666 	mod = pmap_is_modified(pg);
1667 	printf("pmap_protect(): ref %d, mod %d\n",
1668 	       ref, mod);
1669 
1670 	/* Now clear reference and modify */
1671 	ref = pmap_clear_reference(pg);
1672 	mod = pmap_clear_modify(pg);
1673 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1674 	       (void *)(u_long)va, (long)pa,
1675 	       ref, mod);
1676 
1677 	/* Reference page */
1678 	val = *loc;
1679 
1680 	ref = pmap_is_referenced(pg);
1681 	mod = pmap_is_modified(pg);
1682 	printf("Referenced page: ref %d, mod %d val %x\n",
1683 	       ref, mod, val);
1684 
1685 	/* Now clear reference and modify */
1686 	ref = pmap_clear_reference(pg);
1687 	mod = pmap_clear_modify(pg);
1688 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1689 	       (void *)(u_long)va, (long)pa,
1690 	       ref, mod);
1691 
1692 	/* Modify page */
1693 #if 0
1694 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1695 	pmap_update(pmap_kernel());
1696 #endif
1697 	*loc = 1;
1698 
1699 	ref = pmap_is_referenced(pg);
1700 	mod = pmap_is_modified(pg);
1701 	printf("Modified page: ref %d, mod %d\n",
1702 	       ref, mod);
1703 
1704 	/* Check pmap_pag_protect() */
1705 	pmap_page_protect(pg, VM_PROT_READ);
1706 	ref = pmap_is_referenced(pg);
1707 	mod = pmap_is_modified(pg);
1708 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1709 	       ref, mod);
1710 
1711 	/* Now clear reference and modify */
1712 	ref = pmap_clear_reference(pg);
1713 	mod = pmap_clear_modify(pg);
1714 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1715 	       (void *)(u_long)va, (long)pa,
1716 	       ref, mod);
1717 
1718 	/* Reference page */
1719 	val = *loc;
1720 
1721 	ref = pmap_is_referenced(pg);
1722 	mod = pmap_is_modified(pg);
1723 	printf("Referenced page: ref %d, mod %d val %x\n",
1724 	       ref, mod, val);
1725 
1726 	/* Now clear reference and modify */
1727 	ref = pmap_clear_reference(pg);
1728 	mod = pmap_clear_modify(pg);
1729 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1730 	       (void *)(u_long)va, (long)pa,
1731 	       ref, mod);
1732 
1733 	/* Modify page */
1734 #if 0
1735 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1736 	pmap_update(pmap_kernel());
1737 #endif
1738 	*loc = 1;
1739 
1740 	ref = pmap_is_referenced(pg);
1741 	mod = pmap_is_modified(pg);
1742 	printf("Modified page: ref %d, mod %d\n",
1743 	       ref, mod);
1744 
1745 	/* Check pmap_pag_protect() */
1746 	pmap_page_protect(pg, VM_PROT_NONE);
1747 	ref = pmap_is_referenced(pg);
1748 	mod = pmap_is_modified(pg);
1749 	printf("pmap_page_protect(): ref %d, mod %d\n",
1750 	       ref, mod);
1751 
1752 	/* Now clear reference and modify */
1753 	ref = pmap_clear_reference(pg);
1754 	mod = pmap_clear_modify(pg);
1755 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1756 	       (void *)(u_long)va, (long)pa,
1757 	       ref, mod);
1758 
1759 
1760 	/* Reference page */
1761 	val = *loc;
1762 
1763 	ref = pmap_is_referenced(pg);
1764 	mod = pmap_is_modified(pg);
1765 	printf("Referenced page: ref %d, mod %d val %x\n",
1766 	       ref, mod, val);
1767 
1768 	/* Now clear reference and modify */
1769 	ref = pmap_clear_reference(pg);
1770 	mod = pmap_clear_modify(pg);
1771 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1772 	       (void *)(u_long)va, (long)pa,
1773 	       ref, mod);
1774 
1775 	/* Modify page */
1776 #if 0
1777 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1778 	pmap_update(pmap_kernel());
1779 #endif
1780 	*loc = 1;
1781 
1782 	ref = pmap_is_referenced(pg);
1783 	mod = pmap_is_modified(pg);
1784 	printf("Modified page: ref %d, mod %d\n",
1785 	       ref, mod);
1786 
1787 	/* Unmap page */
1788 	pmap_remove(pmap_kernel(), va, va+1);
1789 	pmap_update(pmap_kernel());
1790 	ref = pmap_is_referenced(pg);
1791 	mod = pmap_is_modified(pg);
1792 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1793 
1794 	/* Now clear reference and modify */
1795 	ref = pmap_clear_reference(pg);
1796 	mod = pmap_clear_modify(pg);
1797 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1798 	       (void *)(u_long)va, (long)pa, ref, mod);
1799 
1800 	/* Check it's properly cleared */
1801 	ref = pmap_is_referenced(pg);
1802 	mod = pmap_is_modified(pg);
1803 	printf("Checking cleared page: ref %d, mod %d\n",
1804 	       ref, mod);
1805 
1806 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1807 		VM_PROT_ALL|PMAP_WIRED);
1808 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE);
1809 }
1810 #endif
1811