1 /* $NetBSD: pmap.c,v 1.21 2003/05/10 21:10:36 thorpej Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 * Copyright (C) 1995, 1996 TooLs GmbH. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by TooLs GmbH. 54 * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/malloc.h> 71 #include <sys/proc.h> 72 #include <sys/user.h> 73 #include <sys/queue.h> 74 #include <sys/systm.h> 75 #include <sys/pool.h> 76 #include <sys/device.h> 77 78 #include <uvm/uvm.h> 79 80 #include <machine/cpu.h> 81 #include <machine/pcb.h> 82 #include <machine/powerpc.h> 83 84 #include <powerpc/spr.h> 85 #include <machine/tlb.h> 86 87 /* 88 * kernmap is an array of PTEs large enough to map in 89 * 4GB. At 16KB/page it is 256K entries or 2MB. 90 */ 91 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) 92 caddr_t kernmap; 93 94 #define MINCTX 2 95 #define NUMCTX 256 96 volatile struct pmap *ctxbusy[NUMCTX]; 97 98 #define TLBF_USED 0x1 99 #define TLBF_REF 0x2 100 #define TLBF_LOCKED 0x4 101 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 102 typedef struct tlb_info_s { 103 char ti_flags; 104 char ti_ctx; /* TLB_PID assiciated with the entry */ 105 u_int ti_va; 106 } tlb_info_t; 107 108 volatile tlb_info_t tlb_info[NTLB]; 109 /* We'll use a modified FIFO replacement policy cause it's cheap */ 110 volatile int tlbnext = TLB_NRESERVED; 111 112 u_long dtlb_miss_count = 0; 113 u_long itlb_miss_count = 0; 114 u_long ktlb_miss_count = 0; 115 u_long utlb_miss_count = 0; 116 117 /* Event counters */ 118 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 119 NULL, "cpu", "tlbmiss"); 120 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 121 NULL, "cpu", "tlbhit"); 122 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 123 NULL, "cpu", "tlbflush"); 124 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 125 NULL, "cpu", "tlbenter"); 126 127 struct pmap kernel_pmap_; 128 129 int physmem; 130 static int npgs; 131 static u_int nextavail; 132 #ifndef MSGBUFADDR 133 extern paddr_t msgbuf_paddr; 134 #endif 135 136 static struct mem_region *mem, *avail; 137 138 /* 139 * This is a cache of referenced/modified bits. 140 * Bits herein are shifted by ATTRSHFT. 141 */ 142 static char *pmap_attrib; 143 144 #define PV_WIRED 0x1 145 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 146 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED))) 147 148 struct pv_entry { 149 struct pv_entry *pv_next; /* Linked list of mappings */ 150 vaddr_t pv_va; /* virtual address of mapping */ 151 struct pmap *pv_pm; 152 }; 153 154 struct pv_entry *pv_table; 155 static struct pool pv_pool; 156 157 static int pmap_initialized; 158 159 static int ctx_flush(int); 160 161 inline struct pv_entry *pa_to_pv(paddr_t); 162 static inline char *pa_to_attr(paddr_t); 163 164 static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 165 static inline int pte_enter(struct pmap *, vaddr_t, u_int); 166 167 static void pmap_pinit(pmap_t); 168 static void pmap_release(pmap_t); 169 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t); 170 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 171 172 173 inline struct pv_entry * 174 pa_to_pv(paddr_t pa) 175 { 176 int bank, pg; 177 178 bank = vm_physseg_find(atop(pa), &pg); 179 if (bank == -1) 180 return NULL; 181 return &vm_physmem[bank].pmseg.pvent[pg]; 182 } 183 184 static inline char * 185 pa_to_attr(paddr_t pa) 186 { 187 int bank, pg; 188 189 bank = vm_physseg_find(atop(pa), &pg); 190 if (bank == -1) 191 return NULL; 192 return &vm_physmem[bank].pmseg.attrs[pg]; 193 } 194 195 /* 196 * Insert PTE into page table. 197 */ 198 int 199 pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 200 { 201 int seg = STIDX(va); 202 int ptn = PTIDX(va); 203 paddr_t pa; 204 205 if (!pm->pm_ptbl[seg]) { 206 /* Don't allocate a page to clear a non-existent mapping. */ 207 if (!pte) return (1); 208 /* Allocate a page XXXX this will sleep! */ 209 pa = 0; 210 pm->pm_ptbl[seg] = 211 (uint *)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1); 212 } 213 pm->pm_ptbl[seg][ptn] = pte; 214 215 /* Flush entry. */ 216 ppc4xx_tlb_flush(va, pm->pm_ctx); 217 return (1); 218 } 219 220 /* 221 * Get a pointer to a PTE in a page table. 222 */ 223 volatile u_int * 224 pte_find(struct pmap *pm, vaddr_t va) 225 { 226 int seg = STIDX(va); 227 int ptn = PTIDX(va); 228 229 if (pm->pm_ptbl[seg]) 230 return (&pm->pm_ptbl[seg][ptn]); 231 232 return (NULL); 233 } 234 235 /* 236 * This is called during initppc, before the system is really initialized. 237 */ 238 void 239 pmap_bootstrap(u_int kernelstart, u_int kernelend) 240 { 241 struct mem_region *mp, *mp1; 242 int cnt, i; 243 u_int s, e, sz; 244 245 /* 246 * Allocate the kernel page table at the end of 247 * kernel space so it's in the locked TTE. 248 */ 249 kernmap = (caddr_t)kernelend; 250 251 /* 252 * Initialize kernel page table. 253 */ 254 for (i = 0; i < STSZ; i++) { 255 pmap_kernel()->pm_ptbl[i] = 0; 256 } 257 ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 258 259 /* 260 * Announce page-size to the VM-system 261 */ 262 uvmexp.pagesize = NBPG; 263 uvm_setpagesize(); 264 265 /* 266 * Get memory. 267 */ 268 mem_regions(&mem, &avail); 269 for (mp = mem; mp->size; mp++) { 270 physmem += btoc(mp->size); 271 printf("+%lx,",mp->size); 272 } 273 printf("\n"); 274 ppc4xx_tlb_init(); 275 /* 276 * Count the number of available entries. 277 */ 278 for (cnt = 0, mp = avail; mp->size; mp++) 279 cnt++; 280 281 /* 282 * Page align all regions. 283 * Non-page aligned memory isn't very interesting to us. 284 * Also, sort the entries for ascending addresses. 285 */ 286 kernelstart &= ~PGOFSET; 287 kernelend = (kernelend + PGOFSET) & ~PGOFSET; 288 for (mp = avail; mp->size; mp++) { 289 s = mp->start; 290 e = mp->start + mp->size; 291 printf("%08x-%08x -> ",s,e); 292 /* 293 * Check whether this region holds all of the kernel. 294 */ 295 if (s < kernelstart && e > kernelend) { 296 avail[cnt].start = kernelend; 297 avail[cnt++].size = e - kernelend; 298 e = kernelstart; 299 } 300 /* 301 * Look whether this regions starts within the kernel. 302 */ 303 if (s >= kernelstart && s < kernelend) { 304 if (e <= kernelend) 305 goto empty; 306 s = kernelend; 307 } 308 /* 309 * Now look whether this region ends within the kernel. 310 */ 311 if (e > kernelstart && e <= kernelend) { 312 if (s >= kernelstart) 313 goto empty; 314 e = kernelstart; 315 } 316 /* 317 * Now page align the start and size of the region. 318 */ 319 s = round_page(s); 320 e = trunc_page(e); 321 if (e < s) 322 e = s; 323 sz = e - s; 324 printf("%08x-%08x = %x\n",s,e,sz); 325 /* 326 * Check whether some memory is left here. 327 */ 328 if (sz == 0) { 329 empty: 330 memmove(mp, mp + 1, 331 (cnt - (mp - avail)) * sizeof *mp); 332 cnt--; 333 mp--; 334 continue; 335 } 336 /* 337 * Do an insertion sort. 338 */ 339 npgs += btoc(sz); 340 for (mp1 = avail; mp1 < mp; mp1++) 341 if (s < mp1->start) 342 break; 343 if (mp1 < mp) { 344 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 345 mp1->start = s; 346 mp1->size = sz; 347 } else { 348 mp->start = s; 349 mp->size = sz; 350 } 351 } 352 353 /* 354 * We cannot do pmap_steal_memory here, 355 * since we don't run with translation enabled yet. 356 */ 357 #ifndef MSGBUFADDR 358 /* 359 * allow for msgbuf 360 */ 361 sz = round_page(MSGBUFSIZE); 362 mp = NULL; 363 for (mp1 = avail; mp1->size; mp1++) 364 if (mp1->size >= sz) 365 mp = mp1; 366 if (mp == NULL) 367 panic("not enough memory?"); 368 369 npgs -= btoc(sz); 370 msgbuf_paddr = mp->start + mp->size - sz; 371 mp->size -= sz; 372 if (mp->size <= 0) 373 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); 374 #endif 375 376 printf("Loading pages\n"); 377 for (mp = avail; mp->size; mp++) 378 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 379 atop(mp->start), atop(mp->start + mp->size), 380 VM_FREELIST_DEFAULT); 381 382 /* 383 * Initialize kernel pmap and hardware. 384 */ 385 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 386 pmap_kernel()->pm_ctx = KERNEL_PID; 387 nextavail = avail->start; 388 389 390 evcnt_attach_static(&tlbhit_ev); 391 evcnt_attach_static(&tlbmiss_ev); 392 evcnt_attach_static(&tlbflush_ev); 393 evcnt_attach_static(&tlbenter_ev); 394 printf("Done\n"); 395 } 396 397 /* 398 * Restrict given range to physical memory 399 * 400 * (Used by /dev/mem) 401 */ 402 void 403 pmap_real_memory(paddr_t *start, psize_t *size) 404 { 405 struct mem_region *mp; 406 407 for (mp = mem; mp->size; mp++) { 408 if (*start + *size > mp->start && 409 *start < mp->start + mp->size) { 410 if (*start < mp->start) { 411 *size -= mp->start - *start; 412 *start = mp->start; 413 } 414 if (*start + *size > mp->start + mp->size) 415 *size = mp->start + mp->size - *start; 416 return; 417 } 418 } 419 *size = 0; 420 } 421 422 /* 423 * Initialize anything else for pmap handling. 424 * Called during vm_init(). 425 */ 426 void 427 pmap_init(void) 428 { 429 struct pv_entry *pv; 430 vsize_t sz; 431 vaddr_t addr; 432 int i, s; 433 int bank; 434 char *attr; 435 436 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 437 sz = round_page(sz); 438 addr = uvm_km_zalloc(kernel_map, sz); 439 s = splvm(); 440 pv = pv_table = (struct pv_entry *)addr; 441 for (i = npgs; --i >= 0;) 442 pv++->pv_pm = NULL; 443 pmap_attrib = (char *)pv; 444 memset(pv, 0, npgs); 445 446 pv = pv_table; 447 attr = pmap_attrib; 448 for (bank = 0; bank < vm_nphysseg; bank++) { 449 sz = vm_physmem[bank].end - vm_physmem[bank].start; 450 vm_physmem[bank].pmseg.pvent = pv; 451 vm_physmem[bank].pmseg.attrs = attr; 452 pv += sz; 453 attr += sz; 454 } 455 456 pmap_initialized = 1; 457 splx(s); 458 459 /* Setup a pool for additional pvlist structures */ 460 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL); 461 } 462 463 /* 464 * How much virtual space is available to the kernel? 465 */ 466 void 467 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 468 { 469 470 #if 0 471 /* 472 * Reserve one segment for kernel virtual memory 473 */ 474 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); 475 *end = *start + SEGMENT_LENGTH; 476 #else 477 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 478 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 479 #endif 480 } 481 482 #ifdef PMAP_GROWKERNEL 483 /* 484 * Preallocate kernel page tables to a specified VA. 485 * This simply loops through the first TTE for each 486 * page table from the beginning of the kernel pmap, 487 * reads the entry, and if the result is 488 * zero (either invalid entry or no page table) it stores 489 * a zero there, populating page tables in the process. 490 * This is not the most efficient technique but i don't 491 * expect it to be called that often. 492 */ 493 extern struct vm_page *vm_page_alloc1 __P((void)); 494 extern void vm_page_free1 __P((struct vm_page *)); 495 496 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 497 498 vaddr_t 499 pmap_growkernel(maxkvaddr) 500 vaddr_t maxkvaddr; 501 { 502 int s; 503 int seg; 504 paddr_t pg; 505 struct pmap *pm = pmap_kernel(); 506 507 s = splvm(); 508 509 /* Align with the start of a page table */ 510 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; 511 kbreak += PTMAP) { 512 seg = STIDX(kbreak); 513 514 if (pte_find(pm, kbreak)) continue; 515 516 if (uvm.page_init_done) { 517 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 518 } else { 519 if (!uvm_page_physget(&pg)) 520 panic("pmap_growkernel: no memory"); 521 } 522 if (!pg) panic("pmap_growkernel: no pages"); 523 pmap_zero_page((paddr_t)pg); 524 525 /* XXX This is based on all phymem being addressable */ 526 pm->pm_ptbl[seg] = (u_int *)pg; 527 } 528 splx(s); 529 return (kbreak); 530 } 531 532 /* 533 * vm_page_alloc1: 534 * 535 * Allocate and return a memory cell with no associated object. 536 */ 537 struct vm_page * 538 vm_page_alloc1() 539 { 540 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 541 if (pg) { 542 pg->wire_count = 1; /* no mappings yet */ 543 pg->flags &= ~PG_BUSY; /* never busy */ 544 } 545 return pg; 546 } 547 548 /* 549 * vm_page_free1: 550 * 551 * Returns the given page to the free list, 552 * disassociating it with any VM object. 553 * 554 * Object and page must be locked prior to entry. 555 */ 556 void 557 vm_page_free1(mem) 558 struct vm_page *mem; 559 { 560 #ifdef DIAGNOSTIC 561 if (mem->flags != (PG_CLEAN|PG_FAKE)) { 562 printf("Freeing invalid page %p\n", mem); 563 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem)); 564 #ifdef DDB 565 Debugger(); 566 #endif 567 return; 568 } 569 #endif 570 mem->flags |= PG_BUSY; 571 mem->wire_count = 0; 572 uvm_pagefree(mem); 573 } 574 #endif 575 576 /* 577 * Create and return a physical map. 578 */ 579 struct pmap * 580 pmap_create(void) 581 { 582 struct pmap *pm; 583 584 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK); 585 memset((caddr_t)pm, 0, sizeof *pm); 586 pmap_pinit(pm); 587 return pm; 588 } 589 590 /* 591 * Initialize a preallocated and zeroed pmap structure. 592 */ 593 void 594 pmap_pinit(struct pmap *pm) 595 { 596 int i; 597 598 /* 599 * Allocate some segment registers for this pmap. 600 */ 601 pm->pm_refs = 1; 602 for (i = 0; i < STSZ; i++) 603 pm->pm_ptbl[i] = NULL; 604 } 605 606 /* 607 * Add a reference to the given pmap. 608 */ 609 void 610 pmap_reference(struct pmap *pm) 611 { 612 613 pm->pm_refs++; 614 } 615 616 /* 617 * Retire the given pmap from service. 618 * Should only be called if the map contains no valid mappings. 619 */ 620 void 621 pmap_destroy(struct pmap *pm) 622 { 623 624 if (--pm->pm_refs == 0) { 625 pmap_release(pm); 626 free((caddr_t)pm, M_VMPMAP); 627 } 628 } 629 630 /* 631 * Release any resources held by the given physical map. 632 * Called when a pmap initialized by pmap_pinit is being released. 633 */ 634 static void 635 pmap_release(struct pmap *pm) 636 { 637 int i; 638 639 for (i = 0; i < STSZ; i++) 640 if (pm->pm_ptbl[i]) { 641 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 642 PAGE_SIZE); 643 pm->pm_ptbl[i] = NULL; 644 } 645 if (pm->pm_ctx) ctx_free(pm); 646 } 647 648 /* 649 * Copy the range specified by src_addr/len 650 * from the source map to the range dst_addr/len 651 * in the destination map. 652 * 653 * This routine is only advisory and need not do anything. 654 */ 655 void 656 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 657 vsize_t len, vaddr_t src_addr) 658 { 659 } 660 661 /* 662 * Require that all active physical maps contain no 663 * incorrect entries NOW. 664 */ 665 void 666 pmap_update(struct pmap *pmap) 667 { 668 } 669 670 /* 671 * Garbage collects the physical map system for 672 * pages which are no longer used. 673 * Success need not be guaranteed -- that is, there 674 * may well be pages which are not referenced, but 675 * others may be collected. 676 * Called by the pageout daemon when pages are scarce. 677 */ 678 void 679 pmap_collect(struct pmap *pm) 680 { 681 } 682 683 /* 684 * Fill the given physical page with zeroes. 685 */ 686 void 687 pmap_zero_page(paddr_t pa) 688 { 689 690 #ifdef PPC_4XX_NOCACHE 691 memset((caddr_t)pa, 0, PAGE_SIZE); 692 #else 693 int i; 694 695 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 696 __asm __volatile ("dcbz 0,%0" :: "r"(pa)); 697 pa += CACHELINESIZE; 698 } 699 #endif 700 } 701 702 /* 703 * Copy the given physical source page to its destination. 704 */ 705 void 706 pmap_copy_page(paddr_t src, paddr_t dst) 707 { 708 709 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE); 710 dcache_flush_page(dst); 711 } 712 713 /* 714 * This returns whether this is the first mapping of a page. 715 */ 716 static inline int 717 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 718 { 719 struct pv_entry *pv, *npv = NULL; 720 int s; 721 722 if (!pmap_initialized) 723 return 0; 724 725 s = splvm(); 726 727 pv = pa_to_pv(pa); 728 for (npv = pv; npv; npv = npv->pv_next) 729 if (npv->pv_va == va && npv->pv_pm == pm) { 730 printf("Duplicate pv: va %lx pm %p\n", va, pm); 731 #ifdef DDB 732 Debugger(); 733 #endif 734 return (1); 735 } 736 737 if (!pv->pv_pm) { 738 /* 739 * No entries yet, use header as the first entry. 740 */ 741 pv->pv_va = va; 742 pv->pv_pm = pm; 743 pv->pv_next = NULL; 744 } else { 745 /* 746 * There is at least one other VA mapping this page. 747 * Place this entry after the header. 748 */ 749 npv = pool_get(&pv_pool, PR_WAITOK); 750 if (!npv) return (0); 751 npv->pv_va = va; 752 npv->pv_pm = pm; 753 npv->pv_next = pv->pv_next; 754 pv->pv_next = npv; 755 } 756 splx(s); 757 return (1); 758 } 759 760 static void 761 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 762 { 763 struct pv_entry *pv, *npv; 764 765 /* 766 * Remove from the PV table. 767 */ 768 pv = pa_to_pv(pa); 769 if (!pv) return; 770 771 /* 772 * If it is the first entry on the list, it is actually 773 * in the header and we must copy the following entry up 774 * to the header. Otherwise we must search the list for 775 * the entry. In either case we free the now unused entry. 776 */ 777 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 778 if ((npv = pv->pv_next)) { 779 *pv = *npv; 780 pool_put(&pv_pool, npv); 781 } else 782 pv->pv_pm = NULL; 783 } else { 784 for (; (npv = pv->pv_next) != NULL; pv = npv) 785 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 786 break; 787 if (npv) { 788 pv->pv_next = npv->pv_next; 789 pool_put(&pv_pool, npv); 790 } 791 } 792 } 793 794 /* 795 * Insert physical page at pa into the given pmap at virtual address va. 796 */ 797 int 798 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) 799 { 800 int s; 801 u_int tte; 802 int managed; 803 804 /* 805 * Have to remove any existing mapping first. 806 */ 807 pmap_remove(pm, va, va + PAGE_SIZE); 808 809 if (flags & PMAP_WIRED) flags |= prot; 810 811 /* If it has no protections don't bother w/the rest */ 812 if (!(flags & VM_PROT_ALL)) 813 return (0); 814 815 managed = 0; 816 if (vm_physseg_find(atop(pa), NULL) != -1) 817 managed = 1; 818 819 /* 820 * Generate TTE. 821 * 822 * XXXX 823 * 824 * Since the kernel does not handle execution privileges properly, 825 * we will handle read and execute permissions together. 826 */ 827 tte = TTE_PA(pa) | TTE_EX; 828 /* XXXX -- need to support multiple page sizes. */ 829 tte |= TTE_SZ_16K; 830 #ifdef DIAGNOSTIC 831 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) == 832 (PME_NOCACHE | PME_WRITETHROUG)) 833 panic("pmap_enter: uncached & writethrough"); 834 #endif 835 if (flags & PME_NOCACHE) 836 /* Must be I/O mapping */ 837 tte |= TTE_I | TTE_G; 838 #ifdef PPC_4XX_NOCACHE 839 tte |= TTE_I; 840 #else 841 else if (flags & PME_WRITETHROUG) 842 /* Uncached and writethrough are not compatible */ 843 tte |= TTE_W; 844 #endif 845 if (pm == pmap_kernel()) 846 tte |= TTE_ZONE(ZONE_PRIV); 847 else 848 tte |= TTE_ZONE(ZONE_USER); 849 850 if (flags & VM_PROT_WRITE) 851 tte |= TTE_WR; 852 853 /* 854 * Now record mapping for later back-translation. 855 */ 856 if (pmap_initialized && managed) { 857 char *attr; 858 859 if (!pmap_enter_pv(pm, va, pa)) { 860 /* Could not enter pv on a managed page */ 861 return 1; 862 } 863 864 /* Now set attributes. */ 865 attr = pa_to_attr(pa); 866 #ifdef DIAGNOSTIC 867 if (!attr) 868 panic("managed but no attr"); 869 #endif 870 if (flags & VM_PROT_ALL) 871 *attr |= PTE_HI_REF; 872 if (flags & VM_PROT_WRITE) 873 *attr |= PTE_HI_CHG; 874 } 875 876 s = splvm(); 877 pm->pm_stats.resident_count++; 878 879 /* Insert page into page table. */ 880 pte_enter(pm, va, tte); 881 882 /* If this is a real fault, enter it in the tlb */ 883 if (tte && ((flags & PMAP_WIRED) == 0)) { 884 ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 885 } 886 splx(s); 887 888 /* Flush the real memory from the instruction cache. */ 889 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 890 __syncicache((void *)pa, PAGE_SIZE); 891 892 return 0; 893 } 894 895 void 896 pmap_unwire(struct pmap *pm, vaddr_t va) 897 { 898 struct pv_entry *pv, *npv; 899 paddr_t pa; 900 int s = splvm(); 901 902 if (pm == NULL) { 903 return; 904 } 905 906 if (!pmap_extract(pm, va, &pa)) { 907 return; 908 } 909 910 va |= PV_WIRED; 911 912 pv = pa_to_pv(pa); 913 if (!pv) return; 914 915 /* 916 * If it is the first entry on the list, it is actually 917 * in the header and we must copy the following entry up 918 * to the header. Otherwise we must search the list for 919 * the entry. In either case we free the now unused entry. 920 */ 921 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) { 922 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) { 923 npv->pv_va &= ~PV_WIRED; 924 break; 925 } 926 } 927 splx(s); 928 } 929 930 void 931 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 932 { 933 int s; 934 u_int tte; 935 struct pmap *pm = pmap_kernel(); 936 937 /* 938 * Have to remove any existing mapping first. 939 */ 940 941 /* 942 * Generate TTE. 943 * 944 * XXXX 945 * 946 * Since the kernel does not handle execution privileges properly, 947 * we will handle read and execute permissions together. 948 */ 949 tte = 0; 950 if (prot & VM_PROT_ALL) { 951 952 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 953 /* XXXX -- need to support multiple page sizes. */ 954 tte |= TTE_SZ_16K; 955 #ifdef DIAGNOSTIC 956 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) == 957 (PME_NOCACHE | PME_WRITETHROUG)) 958 panic("pmap_kenter_pa: uncached & writethrough"); 959 #endif 960 if (prot & PME_NOCACHE) 961 /* Must be I/O mapping */ 962 tte |= TTE_I | TTE_G; 963 #ifdef PPC_4XX_NOCACHE 964 tte |= TTE_I; 965 #else 966 else if (prot & PME_WRITETHROUG) 967 /* Uncached and writethrough are not compatible */ 968 tte |= TTE_W; 969 #endif 970 if (prot & VM_PROT_WRITE) 971 tte |= TTE_WR; 972 } 973 974 s = splvm(); 975 pm->pm_stats.resident_count++; 976 977 /* Insert page into page table. */ 978 pte_enter(pm, va, tte); 979 splx(s); 980 } 981 982 void 983 pmap_kremove(vaddr_t va, vsize_t len) 984 { 985 986 while (len > 0) { 987 pte_enter(pmap_kernel(), va, 0); 988 va += PAGE_SIZE; 989 len -= PAGE_SIZE; 990 } 991 } 992 993 /* 994 * Remove the given range of mapping entries. 995 */ 996 void 997 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 998 { 999 int s; 1000 paddr_t pa; 1001 volatile u_int *ptp; 1002 1003 s = splvm(); 1004 while (va < endva) { 1005 1006 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 1007 pa = TTE_PA(pa); 1008 pmap_remove_pv(pm, va, pa); 1009 *ptp = 0; 1010 ppc4xx_tlb_flush(va, pm->pm_ctx); 1011 pm->pm_stats.resident_count--; 1012 } 1013 va += PAGE_SIZE; 1014 } 1015 1016 splx(s); 1017 } 1018 1019 /* 1020 * Get the physical page address for the given pmap/virtual address. 1021 */ 1022 boolean_t 1023 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1024 { 1025 int seg = STIDX(va); 1026 int ptn = PTIDX(va); 1027 u_int pa = 0; 1028 int s = splvm(); 1029 1030 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) { 1031 *pap = TTE_PA(pa) | (va & PGOFSET); 1032 } 1033 splx(s); 1034 return (pa != 0); 1035 } 1036 1037 /* 1038 * Lower the protection on the specified range of this pmap. 1039 * 1040 * There are only two cases: either the protection is going to 0, 1041 * or it is going to read-only. 1042 */ 1043 void 1044 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1045 { 1046 volatile u_int *ptp; 1047 int s; 1048 1049 if (prot & VM_PROT_READ) { 1050 s = splvm(); 1051 while (sva < eva) { 1052 if ((ptp = pte_find(pm, sva)) != NULL) { 1053 *ptp &= ~TTE_WR; 1054 ppc4xx_tlb_flush(sva, pm->pm_ctx); 1055 } 1056 sva += PAGE_SIZE; 1057 } 1058 splx(s); 1059 return; 1060 } 1061 pmap_remove(pm, sva, eva); 1062 } 1063 1064 boolean_t 1065 check_attr(struct vm_page *pg, u_int mask, int clear) 1066 { 1067 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1068 int s; 1069 char *attr; 1070 int rv; 1071 1072 /* 1073 * First modify bits in cache. 1074 */ 1075 s = splvm(); 1076 attr = pa_to_attr(pa); 1077 if (attr == NULL) 1078 return FALSE; 1079 1080 rv = ((*attr & mask) != 0); 1081 if (clear) { 1082 *attr &= ~mask; 1083 pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0); 1084 } 1085 splx(s); 1086 return rv; 1087 } 1088 1089 1090 /* 1091 * Lower the protection on the specified physical page. 1092 * 1093 * There are only two cases: either the protection is going to 0, 1094 * or it is going to read-only. 1095 */ 1096 void 1097 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1098 { 1099 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1100 vaddr_t va; 1101 struct pv_entry *pvh, *pv, *npv; 1102 struct pmap *pm; 1103 1104 pvh = pa_to_pv(pa); 1105 if (pvh == NULL) 1106 return; 1107 1108 /* Handle extra pvs which may be deleted in the operation */ 1109 for (pv = pvh->pv_next; pv; pv = npv) { 1110 npv = pv->pv_next; 1111 1112 pm = pv->pv_pm; 1113 va = pv->pv_va; 1114 pmap_protect(pm, va, va+PAGE_SIZE, prot); 1115 } 1116 /* Now check the head pv */ 1117 if (pvh->pv_pm) { 1118 pv = pvh; 1119 pm = pv->pv_pm; 1120 va = pv->pv_va; 1121 pmap_protect(pm, va, va+PAGE_SIZE, prot); 1122 } 1123 } 1124 1125 /* 1126 * Activate the address space for the specified process. If the process 1127 * is the current process, load the new MMU context. 1128 */ 1129 void 1130 pmap_activate(struct lwp *l) 1131 { 1132 #if 0 1133 struct pcb *pcb = &l->l_proc->p_addr->u_pcb; 1134 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1135 1136 /* 1137 * XXX Normally performed in cpu_fork(). 1138 */ 1139 printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1140 if (pcb->pcb_pm != pmap) { 1141 pcb->pcb_pm = pmap; 1142 (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm, 1143 (paddr_t *)&pcb->pcb_pmreal); 1144 } 1145 1146 if (l == curlwp) { 1147 /* Store pointer to new current pmap. */ 1148 curpm = pcb->pcb_pmreal; 1149 } 1150 #endif 1151 } 1152 1153 /* 1154 * Deactivate the specified process's address space. 1155 */ 1156 void 1157 pmap_deactivate(struct lwp *l) 1158 { 1159 } 1160 1161 /* 1162 * Synchronize caches corresponding to [addr, addr+len) in p. 1163 */ 1164 void 1165 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1166 { 1167 struct pmap *pm = p->p_vmspace->vm_map.pmap; 1168 int msr, ctx, opid, step; 1169 1170 1171 step = CACHELINESIZE; 1172 1173 /* 1174 * Need to turn off IMMU and switch to user context. 1175 * (icbi uses DMMU). 1176 */ 1177 if (!(ctx = pm->pm_ctx)) { 1178 /* No context -- assign it one */ 1179 ctx_alloc(pm); 1180 ctx = pm->pm_ctx; 1181 } 1182 __asm __volatile("mfmsr %0;" 1183 "li %1, 0x20;" 1184 "andc %1,%0,%1;" 1185 "mtmsr %1;" 1186 "sync;isync;" 1187 "mfpid %1;" 1188 "mtpid %2;" 1189 "sync; isync;" 1190 "1:" 1191 "dcbf 0,%3;" 1192 "icbi 0,%3;" 1193 "add %3,%3,%5;" 1194 "addc. %4,%4,%6;" 1195 "bge 1b;" 1196 "mtpid %1;" 1197 "mtmsr %0;" 1198 "sync; isync" 1199 : "=&r" (msr), "=&r" (opid) 1200 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step)); 1201 } 1202 1203 1204 /* This has to be done in real mode !!! */ 1205 void 1206 ppc4xx_tlb_flush(vaddr_t va, int pid) 1207 { 1208 u_long i, found; 1209 u_long msr; 1210 1211 /* If there's no context then it can't be mapped. */ 1212 if (!pid) return; 1213 1214 asm("mfpid %1;" /* Save PID */ 1215 "mfmsr %2;" /* Save MSR */ 1216 "li %0,0;" /* Now clear MSR */ 1217 "mtmsr %0;" 1218 "mtpid %4;" /* Set PID */ 1219 "sync;" 1220 "tlbsx. %0,0,%3;" /* Search TLB */ 1221 "sync;" 1222 "mtpid %1;" /* Restore PID */ 1223 "mtmsr %2;" /* Restore MSR */ 1224 "sync;isync;" 1225 "li %1,1;" 1226 "beq 1f;" 1227 "li %1,0;" 1228 "1:" 1229 : "=&r" (i), "=&r" (found), "=&r" (msr) 1230 : "r" (va), "r" (pid)); 1231 if (found && !TLB_LOCKED(i)) { 1232 1233 /* Now flush translation */ 1234 asm volatile( 1235 "tlbwe %0,%1,0;" 1236 "sync;isync;" 1237 : : "r" (0), "r" (i)); 1238 1239 tlb_info[i].ti_ctx = 0; 1240 tlb_info[i].ti_flags = 0; 1241 tlbnext = i; 1242 /* Successful flushes */ 1243 tlbflush_ev.ev_count++; 1244 } 1245 } 1246 1247 void 1248 ppc4xx_tlb_flush_all(void) 1249 { 1250 u_long i; 1251 1252 for (i = 0; i < NTLB; i++) 1253 if (!TLB_LOCKED(i)) { 1254 asm volatile( 1255 "tlbwe %0,%1,0;" 1256 "sync;isync;" 1257 : : "r" (0), "r" (i)); 1258 tlb_info[i].ti_ctx = 0; 1259 tlb_info[i].ti_flags = 0; 1260 } 1261 1262 asm volatile("sync;isync"); 1263 } 1264 1265 /* Find a TLB entry to evict. */ 1266 static int 1267 ppc4xx_tlb_find_victim(void) 1268 { 1269 int flags; 1270 1271 for (;;) { 1272 if (++tlbnext >= NTLB) 1273 tlbnext = TLB_NRESERVED; 1274 flags = tlb_info[tlbnext].ti_flags; 1275 if (!(flags & TLBF_USED) || 1276 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1277 u_long va, stack = (u_long)&va; 1278 1279 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && 1280 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1281 (flags & TLBF_USED)) { 1282 /* Kernel stack page */ 1283 flags |= TLBF_USED; 1284 tlb_info[tlbnext].ti_flags = flags; 1285 } else { 1286 /* Found it! */ 1287 return (tlbnext); 1288 } 1289 } else { 1290 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1291 } 1292 } 1293 } 1294 1295 void 1296 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1297 { 1298 u_long th, tl, idx; 1299 tlbpid_t pid; 1300 u_short msr; 1301 paddr_t pa; 1302 int s, sz; 1303 1304 tlbenter_ev.ev_count++; 1305 1306 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1307 pa = (pte & TTE_RPN_MASK(sz)); 1308 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1309 tl = (pte & ~TLB_RPN_MASK) | pa; 1310 tl |= ppc4xx_tlbflags(va, pa); 1311 1312 s = splhigh(); 1313 idx = ppc4xx_tlb_find_victim(); 1314 1315 #ifdef DIAGNOSTIC 1316 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) { 1317 panic("ppc4xx_tlb_enter: repacing entry %ld", idx); 1318 } 1319 #endif 1320 1321 tlb_info[idx].ti_va = (va & TLB_EPN_MASK); 1322 tlb_info[idx].ti_ctx = ctx; 1323 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; 1324 1325 asm volatile( 1326 "mfmsr %0;" /* Save MSR */ 1327 "li %1,0;" 1328 "tlbwe %1,%3,0;" /* Invalidate old entry. */ 1329 "mtmsr %1;" /* Clear MSR */ 1330 "mfpid %1;" /* Save old PID */ 1331 "mtpid %2;" /* Load translation ctx */ 1332 "sync; isync;" 1333 #ifdef DEBUG 1334 "andi. %3,%3,63;" 1335 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */ 1336 #endif 1337 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ 1338 "sync; isync;" 1339 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ 1340 "sync; isync;" 1341 : "=&r" (msr), "=&r" (pid) 1342 : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); 1343 splx(s); 1344 } 1345 1346 void 1347 ppc4xx_tlb_unpin(int i) 1348 { 1349 1350 if (i == -1) 1351 for (i = 0; i < TLB_NRESERVED; i++) 1352 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1353 else 1354 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1355 } 1356 1357 void 1358 ppc4xx_tlb_init(void) 1359 { 1360 int i; 1361 1362 /* Mark reserved TLB entries */ 1363 for (i = 0; i < TLB_NRESERVED; i++) { 1364 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1365 tlb_info[i].ti_ctx = KERNEL_PID; 1366 } 1367 1368 /* Setup security zones */ 1369 /* Z0 - accessible by kernel only if TLB entry permissions allow 1370 * Z1,Z2 - access is controlled by TLB entry permissions 1371 * Z3 - full access regardless of TLB entry permissions 1372 */ 1373 1374 asm volatile( 1375 "mtspr %0,%1;" 1376 "sync;" 1377 :: "K"(SPR_ZPR), "r" (0x1b000000)); 1378 } 1379 1380 1381 /* 1382 * We should pass the ctx in from trap code. 1383 */ 1384 int 1385 pmap_tlbmiss(vaddr_t va, int ctx) 1386 { 1387 volatile u_int *pte; 1388 u_long tte; 1389 1390 tlbmiss_ev.ev_count++; 1391 1392 /* 1393 * XXXX We will reserve 0-0x80000000 for va==pa mappings. 1394 */ 1395 if (ctx != KERNEL_PID || (va & 0x80000000)) { 1396 pte = pte_find((struct pmap *)ctxbusy[ctx], va); 1397 if (pte == NULL) { 1398 /* Map unmanaged addresses directly for kernel access */ 1399 return 1; 1400 } 1401 tte = *pte; 1402 if (tte == 0) { 1403 return 1; 1404 } 1405 } else { 1406 /* Create a 16MB writable mapping. */ 1407 #ifdef PPC_4XX_NOCACHE 1408 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR; 1409 #else 1410 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1411 #endif 1412 } 1413 tlbhit_ev.ev_count++; 1414 ppc4xx_tlb_enter(ctx, va, tte); 1415 1416 return 0; 1417 } 1418 1419 /* 1420 * Flush all the entries matching a context from the TLB. 1421 */ 1422 static int 1423 ctx_flush(int cnum) 1424 { 1425 int i; 1426 1427 /* We gotta steal this context */ 1428 for (i = TLB_NRESERVED; i < NTLB; i++) { 1429 if (tlb_info[i].ti_ctx == cnum) { 1430 /* Can't steal ctx if it has a locked entry. */ 1431 if (TLB_LOCKED(i)) { 1432 #ifdef DIAGNOSTIC 1433 printf("ctx_flush: can't invalidate " 1434 "locked mapping %d " 1435 "for context %d\n", i, cnum); 1436 #ifdef DDB 1437 Debugger(); 1438 #endif 1439 #endif 1440 return (1); 1441 } 1442 #ifdef DIAGNOSTIC 1443 if (i < TLB_NRESERVED) 1444 panic("TLB entry %d not locked", i); 1445 #endif 1446 /* Invalidate particular TLB entry regardless of locked status */ 1447 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); 1448 tlb_info[i].ti_flags = 0; 1449 } 1450 } 1451 return (0); 1452 } 1453 1454 /* 1455 * Allocate a context. If necessary, steal one from someone else. 1456 * 1457 * The new context is flushed from the TLB before returning. 1458 */ 1459 int 1460 ctx_alloc(struct pmap *pm) 1461 { 1462 int s, cnum; 1463 static int next = MINCTX; 1464 1465 if (pm == pmap_kernel()) { 1466 #ifdef DIAGNOSTIC 1467 printf("ctx_alloc: kernel pmap!\n"); 1468 #endif 1469 return (0); 1470 } 1471 s = splvm(); 1472 1473 /* Find a likely context. */ 1474 cnum = next; 1475 do { 1476 if ((++cnum) > NUMCTX) 1477 cnum = MINCTX; 1478 } while (ctxbusy[cnum] != NULL && cnum != next); 1479 1480 /* Now clean it out */ 1481 oops: 1482 if (cnum < MINCTX) 1483 cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1484 if (ctx_flush(cnum)) { 1485 /* oops -- something's wired. */ 1486 if ((++cnum) > NUMCTX) 1487 cnum = MINCTX; 1488 goto oops; 1489 } 1490 1491 if (ctxbusy[cnum]) { 1492 #ifdef DEBUG 1493 /* We should identify this pmap and clear it */ 1494 printf("Warning: stealing context %d\n", cnum); 1495 #endif 1496 ctxbusy[cnum]->pm_ctx = 0; 1497 } 1498 ctxbusy[cnum] = pm; 1499 next = cnum; 1500 splx(s); 1501 pm->pm_ctx = cnum; 1502 1503 return cnum; 1504 } 1505 1506 /* 1507 * Give away a context. 1508 */ 1509 void 1510 ctx_free(struct pmap *pm) 1511 { 1512 int oldctx; 1513 1514 oldctx = pm->pm_ctx; 1515 1516 if (oldctx == 0) 1517 panic("ctx_free: freeing kernel context"); 1518 #ifdef DIAGNOSTIC 1519 if (ctxbusy[oldctx] == 0) 1520 printf("ctx_free: freeing free context %d\n", oldctx); 1521 if (ctxbusy[oldctx] != pm) { 1522 printf("ctx_free: freeing someone esle's context\n " 1523 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", 1524 oldctx, (void *)(u_long)ctxbusy[oldctx], pm); 1525 #ifdef DDB 1526 Debugger(); 1527 #endif 1528 } 1529 #endif 1530 /* We should verify it has not been stolen and reallocated... */ 1531 ctxbusy[oldctx] = NULL; 1532 ctx_flush(oldctx); 1533 } 1534 1535 1536 #ifdef DEBUG 1537 /* 1538 * Test ref/modify handling. 1539 */ 1540 void pmap_testout __P((void)); 1541 void 1542 pmap_testout() 1543 { 1544 vaddr_t va; 1545 volatile int *loc; 1546 int val = 0; 1547 paddr_t pa; 1548 struct vm_page *pg; 1549 int ref, mod; 1550 1551 /* Allocate a page */ 1552 va = (vaddr_t)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1); 1553 loc = (int*)va; 1554 1555 pmap_extract(pmap_kernel(), va, &pa); 1556 pg = PHYS_TO_VM_PAGE(pa); 1557 pmap_unwire(pmap_kernel(), va); 1558 1559 pmap_remove(pmap_kernel(), va, va+1); 1560 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1561 pmap_update(pmap_kernel()); 1562 1563 /* Now clear reference and modify */ 1564 ref = pmap_clear_reference(pg); 1565 mod = pmap_clear_modify(pg); 1566 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1567 (void *)(u_long)va, (long)pa, 1568 ref, mod); 1569 1570 /* Check it's properly cleared */ 1571 ref = pmap_is_referenced(pg); 1572 mod = pmap_is_modified(pg); 1573 printf("Checking cleared page: ref %d, mod %d\n", 1574 ref, mod); 1575 1576 /* Reference page */ 1577 val = *loc; 1578 1579 ref = pmap_is_referenced(pg); 1580 mod = pmap_is_modified(pg); 1581 printf("Referenced page: ref %d, mod %d val %x\n", 1582 ref, mod, val); 1583 1584 /* Now clear reference and modify */ 1585 ref = pmap_clear_reference(pg); 1586 mod = pmap_clear_modify(pg); 1587 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1588 (void *)(u_long)va, (long)pa, 1589 ref, mod); 1590 1591 /* Modify page */ 1592 *loc = 1; 1593 1594 ref = pmap_is_referenced(pg); 1595 mod = pmap_is_modified(pg); 1596 printf("Modified page: ref %d, mod %d\n", 1597 ref, mod); 1598 1599 /* Now clear reference and modify */ 1600 ref = pmap_clear_reference(pg); 1601 mod = pmap_clear_modify(pg); 1602 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1603 (void *)(u_long)va, (long)pa, 1604 ref, mod); 1605 1606 /* Check it's properly cleared */ 1607 ref = pmap_is_referenced(pg); 1608 mod = pmap_is_modified(pg); 1609 printf("Checking cleared page: ref %d, mod %d\n", 1610 ref, mod); 1611 1612 /* Modify page */ 1613 *loc = 1; 1614 1615 ref = pmap_is_referenced(pg); 1616 mod = pmap_is_modified(pg); 1617 printf("Modified page: ref %d, mod %d\n", 1618 ref, mod); 1619 1620 /* Check pmap_protect() */ 1621 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); 1622 pmap_update(pmap_kernel()); 1623 ref = pmap_is_referenced(pg); 1624 mod = pmap_is_modified(pg); 1625 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", 1626 ref, mod); 1627 1628 /* Now clear reference and modify */ 1629 ref = pmap_clear_reference(pg); 1630 mod = pmap_clear_modify(pg); 1631 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1632 (void *)(u_long)va, (long)pa, 1633 ref, mod); 1634 1635 /* Reference page */ 1636 val = *loc; 1637 1638 ref = pmap_is_referenced(pg); 1639 mod = pmap_is_modified(pg); 1640 printf("Referenced page: ref %d, mod %d val %x\n", 1641 ref, mod, val); 1642 1643 /* Now clear reference and modify */ 1644 ref = pmap_clear_reference(pg); 1645 mod = pmap_clear_modify(pg); 1646 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1647 (void *)(u_long)va, (long)pa, 1648 ref, mod); 1649 1650 /* Modify page */ 1651 #if 0 1652 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1653 pmap_update(pmap_kernel()); 1654 #endif 1655 *loc = 1; 1656 1657 ref = pmap_is_referenced(pg); 1658 mod = pmap_is_modified(pg); 1659 printf("Modified page: ref %d, mod %d\n", 1660 ref, mod); 1661 1662 /* Check pmap_protect() */ 1663 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); 1664 pmap_update(pmap_kernel()); 1665 ref = pmap_is_referenced(pg); 1666 mod = pmap_is_modified(pg); 1667 printf("pmap_protect(): ref %d, mod %d\n", 1668 ref, mod); 1669 1670 /* Now clear reference and modify */ 1671 ref = pmap_clear_reference(pg); 1672 mod = pmap_clear_modify(pg); 1673 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1674 (void *)(u_long)va, (long)pa, 1675 ref, mod); 1676 1677 /* Reference page */ 1678 val = *loc; 1679 1680 ref = pmap_is_referenced(pg); 1681 mod = pmap_is_modified(pg); 1682 printf("Referenced page: ref %d, mod %d val %x\n", 1683 ref, mod, val); 1684 1685 /* Now clear reference and modify */ 1686 ref = pmap_clear_reference(pg); 1687 mod = pmap_clear_modify(pg); 1688 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1689 (void *)(u_long)va, (long)pa, 1690 ref, mod); 1691 1692 /* Modify page */ 1693 #if 0 1694 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1695 pmap_update(pmap_kernel()); 1696 #endif 1697 *loc = 1; 1698 1699 ref = pmap_is_referenced(pg); 1700 mod = pmap_is_modified(pg); 1701 printf("Modified page: ref %d, mod %d\n", 1702 ref, mod); 1703 1704 /* Check pmap_pag_protect() */ 1705 pmap_page_protect(pg, VM_PROT_READ); 1706 ref = pmap_is_referenced(pg); 1707 mod = pmap_is_modified(pg); 1708 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", 1709 ref, mod); 1710 1711 /* Now clear reference and modify */ 1712 ref = pmap_clear_reference(pg); 1713 mod = pmap_clear_modify(pg); 1714 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1715 (void *)(u_long)va, (long)pa, 1716 ref, mod); 1717 1718 /* Reference page */ 1719 val = *loc; 1720 1721 ref = pmap_is_referenced(pg); 1722 mod = pmap_is_modified(pg); 1723 printf("Referenced page: ref %d, mod %d val %x\n", 1724 ref, mod, val); 1725 1726 /* Now clear reference and modify */ 1727 ref = pmap_clear_reference(pg); 1728 mod = pmap_clear_modify(pg); 1729 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1730 (void *)(u_long)va, (long)pa, 1731 ref, mod); 1732 1733 /* Modify page */ 1734 #if 0 1735 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1736 pmap_update(pmap_kernel()); 1737 #endif 1738 *loc = 1; 1739 1740 ref = pmap_is_referenced(pg); 1741 mod = pmap_is_modified(pg); 1742 printf("Modified page: ref %d, mod %d\n", 1743 ref, mod); 1744 1745 /* Check pmap_pag_protect() */ 1746 pmap_page_protect(pg, VM_PROT_NONE); 1747 ref = pmap_is_referenced(pg); 1748 mod = pmap_is_modified(pg); 1749 printf("pmap_page_protect(): ref %d, mod %d\n", 1750 ref, mod); 1751 1752 /* Now clear reference and modify */ 1753 ref = pmap_clear_reference(pg); 1754 mod = pmap_clear_modify(pg); 1755 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1756 (void *)(u_long)va, (long)pa, 1757 ref, mod); 1758 1759 1760 /* Reference page */ 1761 val = *loc; 1762 1763 ref = pmap_is_referenced(pg); 1764 mod = pmap_is_modified(pg); 1765 printf("Referenced page: ref %d, mod %d val %x\n", 1766 ref, mod, val); 1767 1768 /* Now clear reference and modify */ 1769 ref = pmap_clear_reference(pg); 1770 mod = pmap_clear_modify(pg); 1771 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1772 (void *)(u_long)va, (long)pa, 1773 ref, mod); 1774 1775 /* Modify page */ 1776 #if 0 1777 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1778 pmap_update(pmap_kernel()); 1779 #endif 1780 *loc = 1; 1781 1782 ref = pmap_is_referenced(pg); 1783 mod = pmap_is_modified(pg); 1784 printf("Modified page: ref %d, mod %d\n", 1785 ref, mod); 1786 1787 /* Unmap page */ 1788 pmap_remove(pmap_kernel(), va, va+1); 1789 pmap_update(pmap_kernel()); 1790 ref = pmap_is_referenced(pg); 1791 mod = pmap_is_modified(pg); 1792 printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1793 1794 /* Now clear reference and modify */ 1795 ref = pmap_clear_reference(pg); 1796 mod = pmap_clear_modify(pg); 1797 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1798 (void *)(u_long)va, (long)pa, ref, mod); 1799 1800 /* Check it's properly cleared */ 1801 ref = pmap_is_referenced(pg); 1802 mod = pmap_is_modified(pg); 1803 printf("Checking cleared page: ref %d, mod %d\n", 1804 ref, mod); 1805 1806 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 1807 VM_PROT_ALL|PMAP_WIRED); 1808 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE); 1809 } 1810 #endif 1811