xref: /netbsd-src/sys/arch/powerpc/ibm4xx/pmap.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: pmap.c,v 1.32 2005/02/25 07:09:58 simonb Exp $	*/
2 
3 /*
4  * Copyright 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40  * Copyright (C) 1995, 1996 TooLs GmbH.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by TooLs GmbH.
54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.32 2005/02/25 07:09:58 simonb Exp $");
71 
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80 
81 #include <uvm/uvm.h>
82 
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86 
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89 
90 /*
91  * kernmap is an array of PTEs large enough to map in
92  * 4GB.  At 16KB/page it is 256K entries or 2MB.
93  */
94 #define KERNMAP_SIZE	((0xffffffffU/PAGE_SIZE)+1)
95 caddr_t kernmap;
96 
97 #define MINCTX		2
98 #define NUMCTX		256
99 volatile struct pmap *ctxbusy[NUMCTX];
100 
101 #define TLBF_USED	0x1
102 #define	TLBF_REF	0x2
103 #define	TLBF_LOCKED	0x4
104 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
105 typedef struct tlb_info_s {
106 	char	ti_flags;
107 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
108 	u_int	ti_va;
109 } tlb_info_t;
110 
111 volatile tlb_info_t tlb_info[NTLB];
112 /* We'll use a modified FIFO replacement policy cause it's cheap */
113 volatile int tlbnext = TLB_NRESERVED;
114 
115 u_long dtlb_miss_count = 0;
116 u_long itlb_miss_count = 0;
117 u_long ktlb_miss_count = 0;
118 u_long utlb_miss_count = 0;
119 
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 	NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 	NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 	NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 	NULL, "cpu", "tlbenter");
129 
130 struct pmap kernel_pmap_;
131 
132 int physmem;
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138 
139 static struct mem_region *mem, *avail;
140 
141 /*
142  * This is a cache of referenced/modified bits.
143  * Bits herein are shifted by ATTRSHFT.
144  */
145 static char *pmap_attrib;
146 
147 #define PV_WIRED	0x1
148 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv)	(!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152 
153 struct pv_entry {
154 	struct pv_entry *pv_next;	/* Linked list of mappings */
155 	vaddr_t pv_va;			/* virtual address of mapping */
156 	struct pmap *pv_pm;
157 };
158 
159 struct pv_entry *pv_table;
160 static struct pool pv_pool;
161 
162 static int pmap_initialized;
163 
164 static int ctx_flush(int);
165 
166 inline struct pv_entry *pa_to_pv(paddr_t);
167 static inline char *pa_to_attr(paddr_t);
168 
169 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
170 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
171 
172 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, boolean_t);
173 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
174 
175 
176 inline struct pv_entry *
177 pa_to_pv(paddr_t pa)
178 {
179 	int bank, pg;
180 
181 	bank = vm_physseg_find(atop(pa), &pg);
182 	if (bank == -1)
183 		return NULL;
184 	return &vm_physmem[bank].pmseg.pvent[pg];
185 }
186 
187 static inline char *
188 pa_to_attr(paddr_t pa)
189 {
190 	int bank, pg;
191 
192 	bank = vm_physseg_find(atop(pa), &pg);
193 	if (bank == -1)
194 		return NULL;
195 	return &vm_physmem[bank].pmseg.attrs[pg];
196 }
197 
198 /*
199  * Insert PTE into page table.
200  */
201 int
202 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
203 {
204 	int seg = STIDX(va);
205 	int ptn = PTIDX(va);
206 	u_int oldpte;
207 
208 	if (!pm->pm_ptbl[seg]) {
209 		/* Don't allocate a page to clear a non-existent mapping. */
210 		if (!pte)
211 			return (0);
212 		/* Allocate a page XXXX this will sleep! */
213 		pm->pm_ptbl[seg] =
214 		    (uint *)uvm_km_zalloc(kernel_map, PAGE_SIZE);
215 	}
216 	oldpte = pm->pm_ptbl[seg][ptn];
217 	pm->pm_ptbl[seg][ptn] = pte;
218 
219 	/* Flush entry. */
220 	ppc4xx_tlb_flush(va, pm->pm_ctx);
221 	if (oldpte != pte) {
222 		if (pte == 0)
223 			pm->pm_stats.resident_count--;
224 		else
225 			pm->pm_stats.resident_count++;
226 	}
227 	return (1);
228 }
229 
230 /*
231  * Get a pointer to a PTE in a page table.
232  */
233 volatile u_int *
234 pte_find(struct pmap *pm, vaddr_t va)
235 {
236 	int seg = STIDX(va);
237 	int ptn = PTIDX(va);
238 
239 	if (pm->pm_ptbl[seg])
240 		return (&pm->pm_ptbl[seg][ptn]);
241 
242 	return (NULL);
243 }
244 
245 /*
246  * This is called during initppc, before the system is really initialized.
247  */
248 void
249 pmap_bootstrap(u_int kernelstart, u_int kernelend)
250 {
251 	struct mem_region *mp, *mp1;
252 	int cnt, i;
253 	u_int s, e, sz;
254 
255 	/*
256 	 * Allocate the kernel page table at the end of
257 	 * kernel space so it's in the locked TTE.
258 	 */
259 	kernmap = (caddr_t)kernelend;
260 
261 	/*
262 	 * Initialize kernel page table.
263 	 */
264 	for (i = 0; i < STSZ; i++) {
265 		pmap_kernel()->pm_ptbl[i] = 0;
266 	}
267 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
268 
269 	/*
270 	 * Announce page-size to the VM-system
271 	 */
272 	uvmexp.pagesize = NBPG;
273 	uvm_setpagesize();
274 
275 	/*
276 	 * Get memory.
277 	 */
278 	mem_regions(&mem, &avail);
279 	for (mp = mem; mp->size; mp++) {
280 		physmem += btoc(mp->size);
281 		printf("+%lx,",mp->size);
282 	}
283 	printf("\n");
284 	ppc4xx_tlb_init();
285 	/*
286 	 * Count the number of available entries.
287 	 */
288 	for (cnt = 0, mp = avail; mp->size; mp++)
289 		cnt++;
290 
291 	/*
292 	 * Page align all regions.
293 	 * Non-page aligned memory isn't very interesting to us.
294 	 * Also, sort the entries for ascending addresses.
295 	 */
296 	kernelstart &= ~PGOFSET;
297 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
298 	for (mp = avail; mp->size; mp++) {
299 		s = mp->start;
300 		e = mp->start + mp->size;
301 		printf("%08x-%08x -> ",s,e);
302 		/*
303 		 * Check whether this region holds all of the kernel.
304 		 */
305 		if (s < kernelstart && e > kernelend) {
306 			avail[cnt].start = kernelend;
307 			avail[cnt++].size = e - kernelend;
308 			e = kernelstart;
309 		}
310 		/*
311 		 * Look whether this regions starts within the kernel.
312 		 */
313 		if (s >= kernelstart && s < kernelend) {
314 			if (e <= kernelend)
315 				goto empty;
316 			s = kernelend;
317 		}
318 		/*
319 		 * Now look whether this region ends within the kernel.
320 		 */
321 		if (e > kernelstart && e <= kernelend) {
322 			if (s >= kernelstart)
323 				goto empty;
324 			e = kernelstart;
325 		}
326 		/*
327 		 * Now page align the start and size of the region.
328 		 */
329 		s = round_page(s);
330 		e = trunc_page(e);
331 		if (e < s)
332 			e = s;
333 		sz = e - s;
334 		printf("%08x-%08x = %x\n",s,e,sz);
335 		/*
336 		 * Check whether some memory is left here.
337 		 */
338 		if (sz == 0) {
339 		empty:
340 			memmove(mp, mp + 1,
341 				(cnt - (mp - avail)) * sizeof *mp);
342 			cnt--;
343 			mp--;
344 			continue;
345 		}
346 		/*
347 		 * Do an insertion sort.
348 		 */
349 		npgs += btoc(sz);
350 		for (mp1 = avail; mp1 < mp; mp1++)
351 			if (s < mp1->start)
352 				break;
353 		if (mp1 < mp) {
354 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
355 			mp1->start = s;
356 			mp1->size = sz;
357 		} else {
358 			mp->start = s;
359 			mp->size = sz;
360 		}
361 	}
362 
363 	/*
364 	 * We cannot do pmap_steal_memory here,
365 	 * since we don't run with translation enabled yet.
366 	 */
367 #ifndef MSGBUFADDR
368 	/*
369 	 * allow for msgbuf
370 	 */
371 	sz = round_page(MSGBUFSIZE);
372 	mp = NULL;
373 	for (mp1 = avail; mp1->size; mp1++)
374 		if (mp1->size >= sz)
375 			mp = mp1;
376 	if (mp == NULL)
377 		panic("not enough memory?");
378 
379 	npgs -= btoc(sz);
380 	msgbuf_paddr = mp->start + mp->size - sz;
381 	mp->size -= sz;
382 	if (mp->size <= 0)
383 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
384 #endif
385 
386 	for (mp = avail; mp->size; mp++)
387 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
388 			atop(mp->start), atop(mp->start + mp->size),
389 			VM_FREELIST_DEFAULT);
390 
391 	/*
392 	 * Initialize kernel pmap and hardware.
393 	 */
394 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
395 	pmap_kernel()->pm_ctx = KERNEL_PID;
396 	nextavail = avail->start;
397 
398 
399 	evcnt_attach_static(&tlbmiss_ev);
400 	evcnt_attach_static(&tlbhit_ev);
401 	evcnt_attach_static(&tlbflush_ev);
402 	evcnt_attach_static(&tlbenter_ev);
403 }
404 
405 /*
406  * Restrict given range to physical memory
407  *
408  * (Used by /dev/mem)
409  */
410 void
411 pmap_real_memory(paddr_t *start, psize_t *size)
412 {
413 	struct mem_region *mp;
414 
415 	for (mp = mem; mp->size; mp++) {
416 		if (*start + *size > mp->start &&
417 		    *start < mp->start + mp->size) {
418 			if (*start < mp->start) {
419 				*size -= mp->start - *start;
420 				*start = mp->start;
421 			}
422 			if (*start + *size > mp->start + mp->size)
423 				*size = mp->start + mp->size - *start;
424 			return;
425 		}
426 	}
427 	*size = 0;
428 }
429 
430 /*
431  * Initialize anything else for pmap handling.
432  * Called during vm_init().
433  */
434 void
435 pmap_init(void)
436 {
437 	struct pv_entry *pv;
438 	vsize_t sz;
439 	vaddr_t addr;
440 	int i, s;
441 	int bank;
442 	char *attr;
443 
444 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
445 	sz = round_page(sz);
446 	addr = uvm_km_zalloc(kernel_map, sz);
447 	s = splvm();
448 	pv = pv_table = (struct pv_entry *)addr;
449 	for (i = npgs; --i >= 0;)
450 		pv++->pv_pm = NULL;
451 	pmap_attrib = (char *)pv;
452 	memset(pv, 0, npgs);
453 
454 	pv = pv_table;
455 	attr = pmap_attrib;
456 	for (bank = 0; bank < vm_nphysseg; bank++) {
457 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
458 		vm_physmem[bank].pmseg.pvent = pv;
459 		vm_physmem[bank].pmseg.attrs = attr;
460 		pv += sz;
461 		attr += sz;
462 	}
463 
464 	pmap_initialized = 1;
465 	splx(s);
466 
467 	/* Setup a pool for additional pvlist structures */
468 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
469 }
470 
471 /*
472  * How much virtual space is available to the kernel?
473  */
474 void
475 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
476 {
477 
478 #if 0
479 	/*
480 	 * Reserve one segment for kernel virtual memory
481 	 */
482 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
483 	*end = *start + SEGMENT_LENGTH;
484 #else
485 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
486 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
487 #endif
488 }
489 
490 #ifdef PMAP_GROWKERNEL
491 /*
492  * Preallocate kernel page tables to a specified VA.
493  * This simply loops through the first TTE for each
494  * page table from the beginning of the kernel pmap,
495  * reads the entry, and if the result is
496  * zero (either invalid entry or no page table) it stores
497  * a zero there, populating page tables in the process.
498  * This is not the most efficient technique but i don't
499  * expect it to be called that often.
500  */
501 extern struct vm_page *vm_page_alloc1 __P((void));
502 extern void vm_page_free1 __P((struct vm_page *));
503 
504 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
505 
506 vaddr_t
507 pmap_growkernel(vaddr_t maxkvaddr)
508 {
509 	int s;
510 	int seg;
511 	paddr_t pg;
512 	struct pmap *pm = pmap_kernel();
513 
514 	s = splvm();
515 
516 	/* Align with the start of a page table */
517 	for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
518 	     kbreak += PTMAP) {
519 		seg = STIDX(kbreak);
520 
521 		if (pte_find(pm, kbreak))
522 			continue;
523 
524 		if (uvm.page_init_done) {
525 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
526 		} else {
527 			if (!uvm_page_physget(&pg))
528 				panic("pmap_growkernel: no memory");
529 		}
530 		if (!pg)
531 			panic("pmap_growkernel: no pages");
532 		pmap_zero_page((paddr_t)pg);
533 
534 		/* XXX This is based on all phymem being addressable */
535 		pm->pm_ptbl[seg] = (u_int *)pg;
536 	}
537 	splx(s);
538 	return (kbreak);
539 }
540 
541 /*
542  *	vm_page_alloc1:
543  *
544  *	Allocate and return a memory cell with no associated object.
545  */
546 struct vm_page *
547 vm_page_alloc1(void)
548 {
549 	struct vm_page *pg;
550 
551 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
552 	if (pg) {
553 		pg->wire_count = 1;	/* no mappings yet */
554 		pg->flags &= ~PG_BUSY;	/* never busy */
555 	}
556 	return pg;
557 }
558 
559 /*
560  *	vm_page_free1:
561  *
562  *	Returns the given page to the free list,
563  *	disassociating it with any VM object.
564  *
565  *	Object and page must be locked prior to entry.
566  */
567 void
568 vm_page_free1(struct vm_page *mem)
569 {
570 #ifdef DIAGNOSTIC
571 	if (mem->flags != (PG_CLEAN|PG_FAKE)) {
572 		printf("Freeing invalid page %p\n", mem);
573 		printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
574 #ifdef DDB
575 		Debugger();
576 #endif
577 		return;
578 	}
579 #endif
580 	mem->flags |= PG_BUSY;
581 	mem->wire_count = 0;
582 	uvm_pagefree(mem);
583 }
584 #endif
585 
586 /*
587  * Create and return a physical map.
588  */
589 struct pmap *
590 pmap_create(void)
591 {
592 	struct pmap *pm;
593 
594 	pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
595 	memset(pm, 0, sizeof *pm);
596 	pm->pm_refs = 1;
597 	return pm;
598 }
599 
600 /*
601  * Add a reference to the given pmap.
602  */
603 void
604 pmap_reference(struct pmap *pm)
605 {
606 
607 	pm->pm_refs++;
608 }
609 
610 /*
611  * Retire the given pmap from service.
612  * Should only be called if the map contains no valid mappings.
613  */
614 void
615 pmap_destroy(struct pmap *pm)
616 {
617 	int i;
618 
619 	if (--pm->pm_refs > 0) {
620 		return;
621 	}
622 	KASSERT(pm->pm_stats.resident_count == 0);
623 	KASSERT(pm->pm_stats.wired_count == 0);
624 	for (i = 0; i < STSZ; i++)
625 		if (pm->pm_ptbl[i]) {
626 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
627 			    PAGE_SIZE);
628 			pm->pm_ptbl[i] = NULL;
629 		}
630 	if (pm->pm_ctx)
631 		ctx_free(pm);
632 	free(pm, M_VMPMAP);
633 }
634 
635 /*
636  * Copy the range specified by src_addr/len
637  * from the source map to the range dst_addr/len
638  * in the destination map.
639  *
640  * This routine is only advisory and need not do anything.
641  */
642 void
643 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
644 	  vsize_t len, vaddr_t src_addr)
645 {
646 }
647 
648 /*
649  * Require that all active physical maps contain no
650  * incorrect entries NOW.
651  */
652 void
653 pmap_update(struct pmap *pmap)
654 {
655 }
656 
657 /*
658  * Garbage collects the physical map system for
659  * pages which are no longer used.
660  * Success need not be guaranteed -- that is, there
661  * may well be pages which are not referenced, but
662  * others may be collected.
663  * Called by the pageout daemon when pages are scarce.
664  */
665 void
666 pmap_collect(struct pmap *pm)
667 {
668 }
669 
670 /*
671  * Fill the given physical page with zeroes.
672  */
673 void
674 pmap_zero_page(paddr_t pa)
675 {
676 
677 #ifdef PPC_4XX_NOCACHE
678 	memset((caddr_t)pa, 0, PAGE_SIZE);
679 #else
680 	int i;
681 
682 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
683 		__asm __volatile ("dcbz 0,%0" :: "r"(pa));
684 		pa += CACHELINESIZE;
685 	}
686 #endif
687 }
688 
689 /*
690  * Copy the given physical source page to its destination.
691  */
692 void
693 pmap_copy_page(paddr_t src, paddr_t dst)
694 {
695 
696 	memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
697 	dcache_flush_page(dst);
698 }
699 
700 /*
701  * This returns whether this is the first mapping of a page.
702  */
703 static inline int
704 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, boolean_t wired)
705 {
706 	struct pv_entry *pv, *npv = NULL;
707 	int s;
708 
709 	if (!pmap_initialized)
710 		return 0;
711 
712 	s = splvm();
713 	pv = pa_to_pv(pa);
714 	if (!pv->pv_pm) {
715 		/*
716 		 * No entries yet, use header as the first entry.
717 		 */
718 		pv->pv_va = va;
719 		pv->pv_pm = pm;
720 		pv->pv_next = NULL;
721 	} else {
722 		/*
723 		 * There is at least one other VA mapping this page.
724 		 * Place this entry after the header.
725 		 */
726 		npv = pool_get(&pv_pool, PR_WAITOK);
727 		npv->pv_va = va;
728 		npv->pv_pm = pm;
729 		npv->pv_next = pv->pv_next;
730 		pv->pv_next = npv;
731 	}
732 	if (wired) {
733 		PV_WIRE(pv);
734 	}
735 	splx(s);
736 	return (1);
737 }
738 
739 static void
740 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
741 {
742 	struct pv_entry *pv, *npv;
743 
744 	/*
745 	 * Remove from the PV table.
746 	 */
747 	pv = pa_to_pv(pa);
748 	if (!pv)
749 		return;
750 
751 	/*
752 	 * If it is the first entry on the list, it is actually
753 	 * in the header and we must copy the following entry up
754 	 * to the header.  Otherwise we must search the list for
755 	 * the entry.  In either case we free the now unused entry.
756 	 */
757 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
758 		if (PV_ISWIRED(pv)) {
759 			pm->pm_stats.wired_count--;
760 		}
761 		if ((npv = pv->pv_next)) {
762 			*pv = *npv;
763 			pool_put(&pv_pool, npv);
764 		} else
765 			pv->pv_pm = NULL;
766 	} else {
767 		for (; (npv = pv->pv_next) != NULL; pv = npv)
768 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
769 				break;
770 		if (npv) {
771 			pv->pv_next = npv->pv_next;
772 			if (PV_ISWIRED(npv)) {
773 				pm->pm_stats.wired_count--;
774 			}
775 			pool_put(&pv_pool, npv);
776 		}
777 	}
778 }
779 
780 /*
781  * Insert physical page at pa into the given pmap at virtual address va.
782  */
783 int
784 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
785 {
786 	int s;
787 	u_int tte;
788 	int managed;
789 
790 	/*
791 	 * Have to remove any existing mapping first.
792 	 */
793 	pmap_remove(pm, va, va + PAGE_SIZE);
794 
795 	if (flags & PMAP_WIRED)
796 		flags |= prot;
797 
798 	managed = 0;
799 	if (vm_physseg_find(atop(pa), NULL) != -1)
800 		managed = 1;
801 
802 	/*
803 	 * Generate TTE.
804 	 */
805 	tte = TTE_PA(pa);
806 	/* XXXX -- need to support multiple page sizes. */
807 	tte |= TTE_SZ_16K;
808 #ifdef	DIAGNOSTIC
809 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
810 		(PME_NOCACHE | PME_WRITETHROUG))
811 		panic("pmap_enter: uncached & writethrough");
812 #endif
813 	if (flags & PME_NOCACHE)
814 		/* Must be I/O mapping */
815 		tte |= TTE_I | TTE_G;
816 #ifdef PPC_4XX_NOCACHE
817 	tte |= TTE_I;
818 #else
819 	else if (flags & PME_WRITETHROUG)
820 		/* Uncached and writethrough are not compatible */
821 		tte |= TTE_W;
822 #endif
823 	if (pm == pmap_kernel())
824 		tte |= TTE_ZONE(ZONE_PRIV);
825 	else
826 		tte |= TTE_ZONE(ZONE_USER);
827 
828 	if (flags & VM_PROT_WRITE)
829 		tte |= TTE_WR;
830 
831 	if (flags & VM_PROT_EXECUTE)
832 		tte |= TTE_EX;
833 
834 	/*
835 	 * Now record mapping for later back-translation.
836 	 */
837 	if (pmap_initialized && managed) {
838 		char *attr;
839 
840 		if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) {
841 			/* Could not enter pv on a managed page */
842 			return 1;
843 		}
844 
845 		/* Now set attributes. */
846 		attr = pa_to_attr(pa);
847 #ifdef DIAGNOSTIC
848 		if (!attr)
849 			panic("managed but no attr");
850 #endif
851 		if (flags & VM_PROT_ALL)
852 			*attr |= PMAP_ATTR_REF;
853 		if (flags & VM_PROT_WRITE)
854 			*attr |= PMAP_ATTR_CHG;
855 	}
856 
857 	s = splvm();
858 
859 	/* Insert page into page table. */
860 	pte_enter(pm, va, tte);
861 
862 	/* If this is a real fault, enter it in the tlb */
863 	if (tte && ((flags & PMAP_WIRED) == 0)) {
864 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
865 	}
866 	splx(s);
867 
868 	/* Flush the real memory from the instruction cache. */
869 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
870 		__syncicache((void *)pa, PAGE_SIZE);
871 
872 	if (flags & PMAP_WIRED)
873 		pm->pm_stats.wired_count++;
874 
875 	return 0;
876 }
877 
878 void
879 pmap_unwire(struct pmap *pm, vaddr_t va)
880 {
881 	struct pv_entry *pv, *npv;
882 	paddr_t pa;
883 	int s;
884 
885 	if (!pmap_extract(pm, va, &pa)) {
886 		return;
887 	}
888 
889 	pv = pa_to_pv(pa);
890 	if (!pv)
891 		return;
892 
893 	/*
894 	 * If it is the first entry on the list, it is actually
895 	 * in the header and we must copy the following entry up
896 	 * to the header.  Otherwise we must search the list for
897 	 * the entry.  In either case we free the now unused entry.
898 	 */
899 	s = splvm();
900 	for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
901 		if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
902 			if (PV_ISWIRED(npv)) {
903 				PV_UNWIRE(npv);
904 				pm->pm_stats.wired_count--;
905 			}
906 			break;
907 		}
908 	}
909 	splx(s);
910 }
911 
912 void
913 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
914 {
915 	int s;
916 	u_int tte;
917 	struct pmap *pm = pmap_kernel();
918 
919 	/*
920 	 * Have to remove any existing mapping first.
921 	 */
922 
923 	/*
924 	 * Generate TTE.
925 	 *
926 	 * XXXX
927 	 *
928 	 * Since the kernel does not handle execution privileges properly,
929 	 * we will handle read and execute permissions together.
930 	 */
931 	tte = 0;
932 	if (prot & VM_PROT_ALL) {
933 
934 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
935 		/* XXXX -- need to support multiple page sizes. */
936 		tte |= TTE_SZ_16K;
937 #ifdef DIAGNOSTIC
938 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
939 			(PME_NOCACHE | PME_WRITETHROUG))
940 			panic("pmap_kenter_pa: uncached & writethrough");
941 #endif
942 		if (prot & PME_NOCACHE)
943 			/* Must be I/O mapping */
944 			tte |= TTE_I | TTE_G;
945 #ifdef PPC_4XX_NOCACHE
946 		tte |= TTE_I;
947 #else
948 		else if (prot & PME_WRITETHROUG)
949 			/* Uncached and writethrough are not compatible */
950 			tte |= TTE_W;
951 #endif
952 		if (prot & VM_PROT_WRITE)
953 			tte |= TTE_WR;
954 	}
955 
956 	s = splvm();
957 
958 	/* Insert page into page table. */
959 	pte_enter(pm, va, tte);
960 	splx(s);
961 }
962 
963 void
964 pmap_kremove(vaddr_t va, vsize_t len)
965 {
966 
967 	while (len > 0) {
968 		pte_enter(pmap_kernel(), va, 0);
969 		va += PAGE_SIZE;
970 		len -= PAGE_SIZE;
971 	}
972 }
973 
974 /*
975  * Remove the given range of mapping entries.
976  */
977 void
978 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
979 {
980 	int s;
981 	paddr_t pa;
982 	volatile u_int *ptp;
983 
984 	s = splvm();
985 	while (va < endva) {
986 
987 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
988 			pa = TTE_PA(pa);
989 			pmap_remove_pv(pm, va, pa);
990 			*ptp = 0;
991 			ppc4xx_tlb_flush(va, pm->pm_ctx);
992 			pm->pm_stats.resident_count--;
993 		}
994 		va += PAGE_SIZE;
995 	}
996 
997 	splx(s);
998 }
999 
1000 /*
1001  * Get the physical page address for the given pmap/virtual address.
1002  */
1003 boolean_t
1004 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1005 {
1006 	int seg = STIDX(va);
1007 	int ptn = PTIDX(va);
1008 	u_int pa = 0;
1009 	int s;
1010 
1011 	s = splvm();
1012 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1013 		*pap = TTE_PA(pa) | (va & PGOFSET);
1014 	}
1015 	splx(s);
1016 	return (pa != 0);
1017 }
1018 
1019 /*
1020  * Lower the protection on the specified range of this pmap.
1021  *
1022  * There are only two cases: either the protection is going to 0,
1023  * or it is going to read-only.
1024  */
1025 void
1026 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1027 {
1028 	volatile u_int *ptp;
1029 	int s, bic;
1030 
1031 	if ((prot & VM_PROT_READ) == 0) {
1032 		pmap_remove(pm, sva, eva);
1033 		return;
1034 	}
1035 	bic = 0;
1036 	if ((prot & VM_PROT_WRITE) == 0) {
1037 		bic |= TTE_WR;
1038 	}
1039 	if ((prot & VM_PROT_EXECUTE) == 0) {
1040 		bic |= TTE_EX;
1041 	}
1042 	if (bic == 0) {
1043 		return;
1044 	}
1045 	s = splvm();
1046 	while (sva < eva) {
1047 		if ((ptp = pte_find(pm, sva)) != NULL) {
1048 			*ptp &= ~bic;
1049 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
1050 		}
1051 		sva += PAGE_SIZE;
1052 	}
1053 	splx(s);
1054 }
1055 
1056 boolean_t
1057 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1058 {
1059 	paddr_t pa;
1060 	char *attr;
1061 	int s, rv;
1062 
1063 	/*
1064 	 * First modify bits in cache.
1065 	 */
1066 	pa = VM_PAGE_TO_PHYS(pg);
1067 	attr = pa_to_attr(pa);
1068 	if (attr == NULL)
1069 		return FALSE;
1070 
1071 	s = splvm();
1072 	rv = ((*attr & mask) != 0);
1073 	if (clear) {
1074 		*attr &= ~mask;
1075 		pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1076 	}
1077 	splx(s);
1078 	return rv;
1079 }
1080 
1081 
1082 /*
1083  * Lower the protection on the specified physical page.
1084  *
1085  * There are only two cases: either the protection is going to 0,
1086  * or it is going to read-only.
1087  */
1088 void
1089 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1090 {
1091 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
1092 	vaddr_t va;
1093 	struct pv_entry *pvh, *pv, *npv;
1094 	struct pmap *pm;
1095 
1096 	pvh = pa_to_pv(pa);
1097 	if (pvh == NULL)
1098 		return;
1099 
1100 	/* Handle extra pvs which may be deleted in the operation */
1101 	for (pv = pvh->pv_next; pv; pv = npv) {
1102 		npv = pv->pv_next;
1103 
1104 		pm = pv->pv_pm;
1105 		va = pv->pv_va;
1106 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
1107 	}
1108 	/* Now check the head pv */
1109 	if (pvh->pv_pm) {
1110 		pv = pvh;
1111 		pm = pv->pv_pm;
1112 		va = pv->pv_va;
1113 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
1114 	}
1115 }
1116 
1117 /*
1118  * Activate the address space for the specified process.  If the process
1119  * is the current process, load the new MMU context.
1120  */
1121 void
1122 pmap_activate(struct lwp *l)
1123 {
1124 #if 0
1125 	struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1126 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1127 
1128 	/*
1129 	 * XXX Normally performed in cpu_fork().
1130 	 */
1131 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1132 	pcb->pcb_pm = pmap;
1133 #endif
1134 }
1135 
1136 /*
1137  * Deactivate the specified process's address space.
1138  */
1139 void
1140 pmap_deactivate(struct lwp *l)
1141 {
1142 }
1143 
1144 /*
1145  * Synchronize caches corresponding to [addr, addr+len) in p.
1146  */
1147 void
1148 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1149 {
1150 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
1151 	int msr, ctx, opid, step;
1152 
1153 	step = CACHELINESIZE;
1154 
1155 	/*
1156 	 * Need to turn off IMMU and switch to user context.
1157 	 * (icbi uses DMMU).
1158 	 */
1159 	if (!(ctx = pm->pm_ctx)) {
1160 		/* No context -- assign it one */
1161 		ctx_alloc(pm);
1162 		ctx = pm->pm_ctx;
1163 	}
1164 	__asm __volatile("mfmsr %0;"
1165 		"li %1, %7;"
1166 		"andc %1,%0,%1;"
1167 		"mtmsr %1;"
1168 		"sync;isync;"
1169 		"mfpid %1;"
1170 		"mtpid %2;"
1171 		"sync; isync;"
1172 		"1:"
1173 		"dcbf 0,%3;"
1174 		"icbi 0,%3;"
1175 		"add %3,%3,%5;"
1176 		"addc. %4,%4,%6;"
1177 		"bge 1b;"
1178 		"mtpid %1;"
1179 		"mtmsr %0;"
1180 		"sync; isync"
1181 		: "=&r" (msr), "=&r" (opid)
1182 		: "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1183 		  "K" (PSL_IR | PSL_DR));
1184 }
1185 
1186 
1187 /* This has to be done in real mode !!! */
1188 void
1189 ppc4xx_tlb_flush(vaddr_t va, int pid)
1190 {
1191 	u_long i, found;
1192 	u_long msr;
1193 
1194 	/* If there's no context then it can't be mapped. */
1195 	if (!pid)
1196 		return;
1197 
1198 	asm("mfpid %1;"			/* Save PID */
1199 		"mfmsr %2;"		/* Save MSR */
1200 		"li %0,0;"		/* Now clear MSR */
1201 		"mtmsr %0;"
1202 		"mtpid %4;"		/* Set PID */
1203 		"sync;"
1204 		"tlbsx. %0,0,%3;"	/* Search TLB */
1205 		"sync;"
1206 		"mtpid %1;"		/* Restore PID */
1207 		"mtmsr %2;"		/* Restore MSR */
1208 		"sync;isync;"
1209 		"li %1,1;"
1210 		"beq 1f;"
1211 		"li %1,0;"
1212 		"1:"
1213 		: "=&r" (i), "=&r" (found), "=&r" (msr)
1214 		: "r" (va), "r" (pid));
1215 	if (found && !TLB_LOCKED(i)) {
1216 
1217 		/* Now flush translation */
1218 		asm volatile(
1219 			"tlbwe %0,%1,0;"
1220 			"sync;isync;"
1221 			: : "r" (0), "r" (i));
1222 
1223 		tlb_info[i].ti_ctx = 0;
1224 		tlb_info[i].ti_flags = 0;
1225 		tlbnext = i;
1226 		/* Successful flushes */
1227 		tlbflush_ev.ev_count++;
1228 	}
1229 }
1230 
1231 void
1232 ppc4xx_tlb_flush_all(void)
1233 {
1234 	u_long i;
1235 
1236 	for (i = 0; i < NTLB; i++)
1237 		if (!TLB_LOCKED(i)) {
1238 			asm volatile(
1239 				"tlbwe %0,%1,0;"
1240 				"sync;isync;"
1241 				: : "r" (0), "r" (i));
1242 			tlb_info[i].ti_ctx = 0;
1243 			tlb_info[i].ti_flags = 0;
1244 		}
1245 
1246 	asm volatile("sync;isync");
1247 }
1248 
1249 /* Find a TLB entry to evict. */
1250 static int
1251 ppc4xx_tlb_find_victim(void)
1252 {
1253 	int flags;
1254 
1255 	for (;;) {
1256 		if (++tlbnext >= NTLB)
1257 			tlbnext = TLB_NRESERVED;
1258 		flags = tlb_info[tlbnext].ti_flags;
1259 		if (!(flags & TLBF_USED) ||
1260 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1261 			u_long va, stack = (u_long)&va;
1262 
1263 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1264 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1265 			     (flags & TLBF_USED)) {
1266 				/* Kernel stack page */
1267 				flags |= TLBF_USED;
1268 				tlb_info[tlbnext].ti_flags = flags;
1269 			} else {
1270 				/* Found it! */
1271 				return (tlbnext);
1272 			}
1273 		} else {
1274 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1275 		}
1276 	}
1277 }
1278 
1279 void
1280 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1281 {
1282 	u_long th, tl, idx;
1283 	tlbpid_t pid;
1284 	u_short msr;
1285 	paddr_t pa;
1286 	int s, sz;
1287 
1288 	tlbenter_ev.ev_count++;
1289 
1290 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1291 	pa = (pte & TTE_RPN_MASK(sz));
1292 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1293 	tl = (pte & ~TLB_RPN_MASK) | pa;
1294 	tl |= ppc4xx_tlbflags(va, pa);
1295 
1296 	s = splhigh();
1297 	idx = ppc4xx_tlb_find_victim();
1298 
1299 #ifdef DIAGNOSTIC
1300 	if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1301 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1302 	}
1303 #endif
1304 
1305 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1306 	tlb_info[idx].ti_ctx = ctx;
1307 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1308 
1309 	asm volatile(
1310 		"mfmsr %0;"			/* Save MSR */
1311 		"li %1,0;"
1312 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
1313 		"mtmsr %1;"			/* Clear MSR */
1314 		"mfpid %1;"			/* Save old PID */
1315 		"mtpid %2;"			/* Load translation ctx */
1316 		"sync; isync;"
1317 #ifdef DEBUG
1318 		"andi. %3,%3,63;"
1319 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
1320 #endif
1321 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
1322 		"sync; isync;"
1323 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
1324 		"sync; isync;"
1325 	: "=&r" (msr), "=&r" (pid)
1326 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1327 	splx(s);
1328 }
1329 
1330 void
1331 ppc4xx_tlb_unpin(int i)
1332 {
1333 
1334 	if (i == -1)
1335 		for (i = 0; i < TLB_NRESERVED; i++)
1336 			tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1337 	else
1338 		tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1339 }
1340 
1341 void
1342 ppc4xx_tlb_init(void)
1343 {
1344 	int i;
1345 
1346 	/* Mark reserved TLB entries */
1347 	for (i = 0; i < TLB_NRESERVED; i++) {
1348 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1349 		tlb_info[i].ti_ctx = KERNEL_PID;
1350 	}
1351 
1352 	/* Setup security zones */
1353 	/* Z0 - accessible by kernel only if TLB entry permissions allow
1354 	 * Z1,Z2 - access is controlled by TLB entry permissions
1355 	 * Z3 - full access regardless of TLB entry permissions
1356 	 */
1357 
1358 	asm volatile(
1359 		"mtspr %0,%1;"
1360 		"sync;"
1361 		::  "K"(SPR_ZPR), "r" (0x1b000000));
1362 }
1363 
1364 
1365 /*
1366  * We should pass the ctx in from trap code.
1367  */
1368 int
1369 pmap_tlbmiss(vaddr_t va, int ctx)
1370 {
1371 	volatile u_int *pte;
1372 	u_long tte;
1373 
1374 	tlbmiss_ev.ev_count++;
1375 
1376 	/*
1377 	 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1378 	 */
1379 	if (ctx != KERNEL_PID || (va & 0x80000000)) {
1380 		pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1381 		if (pte == NULL) {
1382 			/* Map unmanaged addresses directly for kernel access */
1383 			return 1;
1384 		}
1385 		tte = *pte;
1386 		if (tte == 0) {
1387 			return 1;
1388 		}
1389 	} else {
1390 		/* Create a 16MB writable mapping. */
1391 #ifdef PPC_4XX_NOCACHE
1392 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1393 #else
1394 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1395 #endif
1396 	}
1397 	tlbhit_ev.ev_count++;
1398 	ppc4xx_tlb_enter(ctx, va, tte);
1399 
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Flush all the entries matching a context from the TLB.
1405  */
1406 static int
1407 ctx_flush(int cnum)
1408 {
1409 	int i;
1410 
1411 	/* We gotta steal this context */
1412 	for (i = TLB_NRESERVED; i < NTLB; i++) {
1413 		if (tlb_info[i].ti_ctx == cnum) {
1414 			/* Can't steal ctx if it has a locked entry. */
1415 			if (TLB_LOCKED(i)) {
1416 #ifdef DIAGNOSTIC
1417 				printf("ctx_flush: can't invalidate "
1418 					"locked mapping %d "
1419 					"for context %d\n", i, cnum);
1420 #ifdef DDB
1421 				Debugger();
1422 #endif
1423 #endif
1424 				return (1);
1425 			}
1426 #ifdef DIAGNOSTIC
1427 			if (i < TLB_NRESERVED)
1428 				panic("TLB entry %d not locked", i);
1429 #endif
1430 			/* Invalidate particular TLB entry regardless of locked status */
1431 			asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1432 			tlb_info[i].ti_flags = 0;
1433 		}
1434 	}
1435 	return (0);
1436 }
1437 
1438 /*
1439  * Allocate a context.  If necessary, steal one from someone else.
1440  *
1441  * The new context is flushed from the TLB before returning.
1442  */
1443 int
1444 ctx_alloc(struct pmap *pm)
1445 {
1446 	int s, cnum;
1447 	static int next = MINCTX;
1448 
1449 	if (pm == pmap_kernel()) {
1450 #ifdef DIAGNOSTIC
1451 		printf("ctx_alloc: kernel pmap!\n");
1452 #endif
1453 		return (0);
1454 	}
1455 	s = splvm();
1456 
1457 	/* Find a likely context. */
1458 	cnum = next;
1459 	do {
1460 		if ((++cnum) > NUMCTX)
1461 			cnum = MINCTX;
1462 	} while (ctxbusy[cnum] != NULL && cnum != next);
1463 
1464 	/* Now clean it out */
1465 oops:
1466 	if (cnum < MINCTX)
1467 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
1468 	if (ctx_flush(cnum)) {
1469 		/* oops -- something's wired. */
1470 		if ((++cnum) > NUMCTX)
1471 			cnum = MINCTX;
1472 		goto oops;
1473 	}
1474 
1475 	if (ctxbusy[cnum]) {
1476 #ifdef DEBUG
1477 		/* We should identify this pmap and clear it */
1478 		printf("Warning: stealing context %d\n", cnum);
1479 #endif
1480 		ctxbusy[cnum]->pm_ctx = 0;
1481 	}
1482 	ctxbusy[cnum] = pm;
1483 	next = cnum;
1484 	splx(s);
1485 	pm->pm_ctx = cnum;
1486 
1487 	return cnum;
1488 }
1489 
1490 /*
1491  * Give away a context.
1492  */
1493 void
1494 ctx_free(struct pmap *pm)
1495 {
1496 	int oldctx;
1497 
1498 	oldctx = pm->pm_ctx;
1499 
1500 	if (oldctx == 0)
1501 		panic("ctx_free: freeing kernel context");
1502 #ifdef DIAGNOSTIC
1503 	if (ctxbusy[oldctx] == 0)
1504 		printf("ctx_free: freeing free context %d\n", oldctx);
1505 	if (ctxbusy[oldctx] != pm) {
1506 		printf("ctx_free: freeing someone esle's context\n "
1507 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1508 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1509 #ifdef DDB
1510 		Debugger();
1511 #endif
1512 	}
1513 #endif
1514 	/* We should verify it has not been stolen and reallocated... */
1515 	ctxbusy[oldctx] = NULL;
1516 	ctx_flush(oldctx);
1517 }
1518 
1519 
1520 #ifdef DEBUG
1521 /*
1522  * Test ref/modify handling.
1523  */
1524 void pmap_testout __P((void));
1525 void
1526 pmap_testout()
1527 {
1528 	vaddr_t va;
1529 	volatile int *loc;
1530 	int val = 0;
1531 	paddr_t pa;
1532 	struct vm_page *pg;
1533 	int ref, mod;
1534 
1535 	/* Allocate a page */
1536 	va = (vaddr_t)uvm_km_zalloc(kernel_map, PAGE_SIZE);
1537 	loc = (int*)va;
1538 
1539 	pmap_extract(pmap_kernel(), va, &pa);
1540 	pg = PHYS_TO_VM_PAGE(pa);
1541 	pmap_unwire(pmap_kernel(), va);
1542 
1543 	pmap_remove(pmap_kernel(), va, va+1);
1544 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1545 	pmap_update(pmap_kernel());
1546 
1547 	/* Now clear reference and modify */
1548 	ref = pmap_clear_reference(pg);
1549 	mod = pmap_clear_modify(pg);
1550 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1551 	       (void *)(u_long)va, (long)pa,
1552 	       ref, mod);
1553 
1554 	/* Check it's properly cleared */
1555 	ref = pmap_is_referenced(pg);
1556 	mod = pmap_is_modified(pg);
1557 	printf("Checking cleared page: ref %d, mod %d\n",
1558 	       ref, mod);
1559 
1560 	/* Reference page */
1561 	val = *loc;
1562 
1563 	ref = pmap_is_referenced(pg);
1564 	mod = pmap_is_modified(pg);
1565 	printf("Referenced page: ref %d, mod %d val %x\n",
1566 	       ref, mod, val);
1567 
1568 	/* Now clear reference and modify */
1569 	ref = pmap_clear_reference(pg);
1570 	mod = pmap_clear_modify(pg);
1571 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1572 	       (void *)(u_long)va, (long)pa,
1573 	       ref, mod);
1574 
1575 	/* Modify page */
1576 	*loc = 1;
1577 
1578 	ref = pmap_is_referenced(pg);
1579 	mod = pmap_is_modified(pg);
1580 	printf("Modified page: ref %d, mod %d\n",
1581 	       ref, mod);
1582 
1583 	/* Now clear reference and modify */
1584 	ref = pmap_clear_reference(pg);
1585 	mod = pmap_clear_modify(pg);
1586 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1587 	       (void *)(u_long)va, (long)pa,
1588 	       ref, mod);
1589 
1590 	/* Check it's properly cleared */
1591 	ref = pmap_is_referenced(pg);
1592 	mod = pmap_is_modified(pg);
1593 	printf("Checking cleared page: ref %d, mod %d\n",
1594 	       ref, mod);
1595 
1596 	/* Modify page */
1597 	*loc = 1;
1598 
1599 	ref = pmap_is_referenced(pg);
1600 	mod = pmap_is_modified(pg);
1601 	printf("Modified page: ref %d, mod %d\n",
1602 	       ref, mod);
1603 
1604 	/* Check pmap_protect() */
1605 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1606 	pmap_update(pmap_kernel());
1607 	ref = pmap_is_referenced(pg);
1608 	mod = pmap_is_modified(pg);
1609 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1610 	       ref, mod);
1611 
1612 	/* Now clear reference and modify */
1613 	ref = pmap_clear_reference(pg);
1614 	mod = pmap_clear_modify(pg);
1615 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1616 	       (void *)(u_long)va, (long)pa,
1617 	       ref, mod);
1618 
1619 	/* Reference page */
1620 	val = *loc;
1621 
1622 	ref = pmap_is_referenced(pg);
1623 	mod = pmap_is_modified(pg);
1624 	printf("Referenced page: ref %d, mod %d val %x\n",
1625 	       ref, mod, val);
1626 
1627 	/* Now clear reference and modify */
1628 	ref = pmap_clear_reference(pg);
1629 	mod = pmap_clear_modify(pg);
1630 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1631 	       (void *)(u_long)va, (long)pa,
1632 	       ref, mod);
1633 
1634 	/* Modify page */
1635 #if 0
1636 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1637 	pmap_update(pmap_kernel());
1638 #endif
1639 	*loc = 1;
1640 
1641 	ref = pmap_is_referenced(pg);
1642 	mod = pmap_is_modified(pg);
1643 	printf("Modified page: ref %d, mod %d\n",
1644 	       ref, mod);
1645 
1646 	/* Check pmap_protect() */
1647 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1648 	pmap_update(pmap_kernel());
1649 	ref = pmap_is_referenced(pg);
1650 	mod = pmap_is_modified(pg);
1651 	printf("pmap_protect(): ref %d, mod %d\n",
1652 	       ref, mod);
1653 
1654 	/* Now clear reference and modify */
1655 	ref = pmap_clear_reference(pg);
1656 	mod = pmap_clear_modify(pg);
1657 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1658 	       (void *)(u_long)va, (long)pa,
1659 	       ref, mod);
1660 
1661 	/* Reference page */
1662 	val = *loc;
1663 
1664 	ref = pmap_is_referenced(pg);
1665 	mod = pmap_is_modified(pg);
1666 	printf("Referenced page: ref %d, mod %d val %x\n",
1667 	       ref, mod, val);
1668 
1669 	/* Now clear reference and modify */
1670 	ref = pmap_clear_reference(pg);
1671 	mod = pmap_clear_modify(pg);
1672 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1673 	       (void *)(u_long)va, (long)pa,
1674 	       ref, mod);
1675 
1676 	/* Modify page */
1677 #if 0
1678 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1679 	pmap_update(pmap_kernel());
1680 #endif
1681 	*loc = 1;
1682 
1683 	ref = pmap_is_referenced(pg);
1684 	mod = pmap_is_modified(pg);
1685 	printf("Modified page: ref %d, mod %d\n",
1686 	       ref, mod);
1687 
1688 	/* Check pmap_pag_protect() */
1689 	pmap_page_protect(pg, VM_PROT_READ);
1690 	ref = pmap_is_referenced(pg);
1691 	mod = pmap_is_modified(pg);
1692 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1693 	       ref, mod);
1694 
1695 	/* Now clear reference and modify */
1696 	ref = pmap_clear_reference(pg);
1697 	mod = pmap_clear_modify(pg);
1698 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1699 	       (void *)(u_long)va, (long)pa,
1700 	       ref, mod);
1701 
1702 	/* Reference page */
1703 	val = *loc;
1704 
1705 	ref = pmap_is_referenced(pg);
1706 	mod = pmap_is_modified(pg);
1707 	printf("Referenced page: ref %d, mod %d val %x\n",
1708 	       ref, mod, val);
1709 
1710 	/* Now clear reference and modify */
1711 	ref = pmap_clear_reference(pg);
1712 	mod = pmap_clear_modify(pg);
1713 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1714 	       (void *)(u_long)va, (long)pa,
1715 	       ref, mod);
1716 
1717 	/* Modify page */
1718 #if 0
1719 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1720 	pmap_update(pmap_kernel());
1721 #endif
1722 	*loc = 1;
1723 
1724 	ref = pmap_is_referenced(pg);
1725 	mod = pmap_is_modified(pg);
1726 	printf("Modified page: ref %d, mod %d\n",
1727 	       ref, mod);
1728 
1729 	/* Check pmap_pag_protect() */
1730 	pmap_page_protect(pg, VM_PROT_NONE);
1731 	ref = pmap_is_referenced(pg);
1732 	mod = pmap_is_modified(pg);
1733 	printf("pmap_page_protect(): ref %d, mod %d\n",
1734 	       ref, mod);
1735 
1736 	/* Now clear reference and modify */
1737 	ref = pmap_clear_reference(pg);
1738 	mod = pmap_clear_modify(pg);
1739 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1740 	       (void *)(u_long)va, (long)pa,
1741 	       ref, mod);
1742 
1743 
1744 	/* Reference page */
1745 	val = *loc;
1746 
1747 	ref = pmap_is_referenced(pg);
1748 	mod = pmap_is_modified(pg);
1749 	printf("Referenced page: ref %d, mod %d val %x\n",
1750 	       ref, mod, val);
1751 
1752 	/* Now clear reference and modify */
1753 	ref = pmap_clear_reference(pg);
1754 	mod = pmap_clear_modify(pg);
1755 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1756 	       (void *)(u_long)va, (long)pa,
1757 	       ref, mod);
1758 
1759 	/* Modify page */
1760 #if 0
1761 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1762 	pmap_update(pmap_kernel());
1763 #endif
1764 	*loc = 1;
1765 
1766 	ref = pmap_is_referenced(pg);
1767 	mod = pmap_is_modified(pg);
1768 	printf("Modified page: ref %d, mod %d\n",
1769 	       ref, mod);
1770 
1771 	/* Unmap page */
1772 	pmap_remove(pmap_kernel(), va, va+1);
1773 	pmap_update(pmap_kernel());
1774 	ref = pmap_is_referenced(pg);
1775 	mod = pmap_is_modified(pg);
1776 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1777 
1778 	/* Now clear reference and modify */
1779 	ref = pmap_clear_reference(pg);
1780 	mod = pmap_clear_modify(pg);
1781 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1782 	       (void *)(u_long)va, (long)pa, ref, mod);
1783 
1784 	/* Check it's properly cleared */
1785 	ref = pmap_is_referenced(pg);
1786 	mod = pmap_is_modified(pg);
1787 	printf("Checking cleared page: ref %d, mod %d\n",
1788 	       ref, mod);
1789 
1790 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1791 		VM_PROT_ALL|PMAP_WIRED);
1792 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE);
1793 }
1794 #endif
1795