1 /* $NetBSD: pmap.c,v 1.57 2009/08/18 18:06:53 thorpej Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 * Copyright (C) 1995, 1996 TooLs GmbH. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by TooLs GmbH. 54 * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.57 2009/08/18 18:06:53 thorpej Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/user.h> 76 #include <sys/queue.h> 77 #include <sys/systm.h> 78 #include <sys/pool.h> 79 #include <sys/device.h> 80 81 #include <uvm/uvm.h> 82 83 #include <machine/cpu.h> 84 #include <machine/pcb.h> 85 #include <machine/powerpc.h> 86 87 #include <powerpc/spr.h> 88 #include <machine/tlb.h> 89 90 /* 91 * kernmap is an array of PTEs large enough to map in 92 * 4GB. At 16KB/page it is 256K entries or 2MB. 93 */ 94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) 95 void *kernmap; 96 97 #define MINCTX 2 98 #define NUMCTX 256 99 100 volatile struct pmap *ctxbusy[NUMCTX]; 101 102 #define TLBF_USED 0x1 103 #define TLBF_REF 0x2 104 #define TLBF_LOCKED 0x4 105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 106 107 typedef struct tlb_info_s { 108 char ti_flags; 109 char ti_ctx; /* TLB_PID assiciated with the entry */ 110 u_int ti_va; 111 } tlb_info_t; 112 113 volatile tlb_info_t tlb_info[NTLB]; 114 /* We'll use a modified FIFO replacement policy cause it's cheap */ 115 volatile int tlbnext; 116 117 static int tlb_nreserved = 0; 118 static int pmap_bootstrap_done = 0; 119 120 /* Event counters */ 121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 122 NULL, "cpu", "tlbmiss"); 123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 124 NULL, "cpu", "tlbhit"); 125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 126 NULL, "cpu", "tlbflush"); 127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 128 NULL, "cpu", "tlbenter"); 129 130 struct pmap kernel_pmap_; 131 struct pmap *const kernel_pmap_ptr = &kernel_pmap_; 132 133 static int npgs; 134 static u_int nextavail; 135 #ifndef MSGBUFADDR 136 extern paddr_t msgbuf_paddr; 137 #endif 138 139 static struct mem_region *mem, *avail; 140 141 /* 142 * This is a cache of referenced/modified bits. 143 * Bits herein are shifted by ATTRSHFT. 144 */ 145 static char *pmap_attrib; 146 147 #define PV_WIRED 0x1 148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED) 150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED) 151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED))) 152 153 struct pv_entry { 154 struct pv_entry *pv_next; /* Linked list of mappings */ 155 vaddr_t pv_va; /* virtual address of mapping */ 156 struct pmap *pv_pm; 157 }; 158 159 /* Each index corresponds to TLB_SIZE_* value. */ 160 static size_t tlbsize[] = { 161 1024, /* TLB_SIZE_1K */ 162 4096, /* TLB_SIZE_4K */ 163 16384, /* TLB_SIZE_16K */ 164 65536, /* TLB_SIZE_64K */ 165 262144, /* TLB_SIZE_256K */ 166 1048576, /* TLB_SIZE_1M */ 167 4194304, /* TLB_SIZE_4M */ 168 16777216, /* TLB_SIZE_16M */ 169 }; 170 171 struct pv_entry *pv_table; 172 static struct pool pv_pool; 173 174 static int pmap_initialized; 175 176 static int ctx_flush(int); 177 178 inline struct pv_entry *pa_to_pv(paddr_t); 179 static inline char *pa_to_attr(paddr_t); 180 181 static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 182 static inline int pte_enter(struct pmap *, vaddr_t, u_int); 183 184 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int); 185 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 186 187 static int ppc4xx_tlb_size_mask(size_t, int *, int *); 188 189 190 inline struct pv_entry * 191 pa_to_pv(paddr_t pa) 192 { 193 int bank, pg; 194 195 bank = vm_physseg_find(atop(pa), &pg); 196 if (bank == -1) 197 return NULL; 198 return &vm_physmem[bank].pmseg.pvent[pg]; 199 } 200 201 static inline char * 202 pa_to_attr(paddr_t pa) 203 { 204 int bank, pg; 205 206 bank = vm_physseg_find(atop(pa), &pg); 207 if (bank == -1) 208 return NULL; 209 return &vm_physmem[bank].pmseg.attrs[pg]; 210 } 211 212 /* 213 * Insert PTE into page table. 214 */ 215 int 216 pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 217 { 218 int seg = STIDX(va); 219 int ptn = PTIDX(va); 220 u_int oldpte; 221 222 if (!pm->pm_ptbl[seg]) { 223 /* Don't allocate a page to clear a non-existent mapping. */ 224 if (!pte) 225 return (0); 226 /* Allocate a page XXXX this will sleep! */ 227 pm->pm_ptbl[seg] = 228 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 229 UVM_KMF_WIRED | UVM_KMF_ZERO); 230 } 231 oldpte = pm->pm_ptbl[seg][ptn]; 232 pm->pm_ptbl[seg][ptn] = pte; 233 234 /* Flush entry. */ 235 ppc4xx_tlb_flush(va, pm->pm_ctx); 236 if (oldpte != pte) { 237 if (pte == 0) 238 pm->pm_stats.resident_count--; 239 else 240 pm->pm_stats.resident_count++; 241 } 242 return (1); 243 } 244 245 /* 246 * Get a pointer to a PTE in a page table. 247 */ 248 volatile u_int * 249 pte_find(struct pmap *pm, vaddr_t va) 250 { 251 int seg = STIDX(va); 252 int ptn = PTIDX(va); 253 254 if (pm->pm_ptbl[seg]) 255 return (&pm->pm_ptbl[seg][ptn]); 256 257 return (NULL); 258 } 259 260 /* 261 * This is called during initppc, before the system is really initialized. 262 */ 263 void 264 pmap_bootstrap(u_int kernelstart, u_int kernelend) 265 { 266 struct mem_region *mp, *mp1; 267 int cnt, i; 268 u_int s, e, sz; 269 270 tlbnext = tlb_nreserved; 271 272 /* 273 * Allocate the kernel page table at the end of 274 * kernel space so it's in the locked TTE. 275 */ 276 kernmap = (void *)kernelend; 277 278 /* 279 * Initialize kernel page table. 280 */ 281 for (i = 0; i < STSZ; i++) { 282 pmap_kernel()->pm_ptbl[i] = 0; 283 } 284 ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 285 286 /* 287 * Announce page-size to the VM-system 288 */ 289 uvmexp.pagesize = NBPG; 290 uvm_setpagesize(); 291 292 /* 293 * Get memory. 294 */ 295 mem_regions(&mem, &avail); 296 for (mp = mem; mp->size; mp++) { 297 physmem += btoc(mp->size); 298 printf("+%lx,",mp->size); 299 } 300 printf("\n"); 301 ppc4xx_tlb_init(); 302 /* 303 * Count the number of available entries. 304 */ 305 for (cnt = 0, mp = avail; mp->size; mp++) 306 cnt++; 307 308 /* 309 * Page align all regions. 310 * Non-page aligned memory isn't very interesting to us. 311 * Also, sort the entries for ascending addresses. 312 */ 313 kernelstart &= ~PGOFSET; 314 kernelend = (kernelend + PGOFSET) & ~PGOFSET; 315 for (mp = avail; mp->size; mp++) { 316 s = mp->start; 317 e = mp->start + mp->size; 318 printf("%08x-%08x -> ",s,e); 319 /* 320 * Check whether this region holds all of the kernel. 321 */ 322 if (s < kernelstart && e > kernelend) { 323 avail[cnt].start = kernelend; 324 avail[cnt++].size = e - kernelend; 325 e = kernelstart; 326 } 327 /* 328 * Look whether this regions starts within the kernel. 329 */ 330 if (s >= kernelstart && s < kernelend) { 331 if (e <= kernelend) 332 goto empty; 333 s = kernelend; 334 } 335 /* 336 * Now look whether this region ends within the kernel. 337 */ 338 if (e > kernelstart && e <= kernelend) { 339 if (s >= kernelstart) 340 goto empty; 341 e = kernelstart; 342 } 343 /* 344 * Now page align the start and size of the region. 345 */ 346 s = round_page(s); 347 e = trunc_page(e); 348 if (e < s) 349 e = s; 350 sz = e - s; 351 printf("%08x-%08x = %x\n",s,e,sz); 352 /* 353 * Check whether some memory is left here. 354 */ 355 if (sz == 0) { 356 empty: 357 memmove(mp, mp + 1, 358 (cnt - (mp - avail)) * sizeof *mp); 359 cnt--; 360 mp--; 361 continue; 362 } 363 /* 364 * Do an insertion sort. 365 */ 366 npgs += btoc(sz); 367 for (mp1 = avail; mp1 < mp; mp1++) 368 if (s < mp1->start) 369 break; 370 if (mp1 < mp) { 371 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 372 mp1->start = s; 373 mp1->size = sz; 374 } else { 375 mp->start = s; 376 mp->size = sz; 377 } 378 } 379 380 /* 381 * We cannot do pmap_steal_memory here, 382 * since we don't run with translation enabled yet. 383 */ 384 #ifndef MSGBUFADDR 385 /* 386 * allow for msgbuf 387 */ 388 sz = round_page(MSGBUFSIZE); 389 mp = NULL; 390 for (mp1 = avail; mp1->size; mp1++) 391 if (mp1->size >= sz) 392 mp = mp1; 393 if (mp == NULL) 394 panic("not enough memory?"); 395 396 npgs -= btoc(sz); 397 msgbuf_paddr = mp->start + mp->size - sz; 398 mp->size -= sz; 399 if (mp->size <= 0) 400 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); 401 #endif 402 403 for (mp = avail; mp->size; mp++) 404 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 405 atop(mp->start), atop(mp->start + mp->size), 406 VM_FREELIST_DEFAULT); 407 408 /* 409 * Initialize kernel pmap and hardware. 410 */ 411 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 412 pmap_kernel()->pm_ctx = KERNEL_PID; 413 nextavail = avail->start; 414 415 evcnt_attach_static(&tlbmiss_ev); 416 evcnt_attach_static(&tlbhit_ev); 417 evcnt_attach_static(&tlbflush_ev); 418 evcnt_attach_static(&tlbenter_ev); 419 420 pmap_bootstrap_done = 1; 421 } 422 423 /* 424 * Restrict given range to physical memory 425 * 426 * (Used by /dev/mem) 427 */ 428 void 429 pmap_real_memory(paddr_t *start, psize_t *size) 430 { 431 struct mem_region *mp; 432 433 for (mp = mem; mp->size; mp++) { 434 if (*start + *size > mp->start && 435 *start < mp->start + mp->size) { 436 if (*start < mp->start) { 437 *size -= mp->start - *start; 438 *start = mp->start; 439 } 440 if (*start + *size > mp->start + mp->size) 441 *size = mp->start + mp->size - *start; 442 return; 443 } 444 } 445 *size = 0; 446 } 447 448 /* 449 * Initialize anything else for pmap handling. 450 * Called during vm_init(). 451 */ 452 void 453 pmap_init(void) 454 { 455 struct pv_entry *pv; 456 vsize_t sz; 457 vaddr_t addr; 458 int i, s; 459 int bank; 460 char *attr; 461 462 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 463 sz = round_page(sz); 464 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); 465 s = splvm(); 466 pv = pv_table = (struct pv_entry *)addr; 467 for (i = npgs; --i >= 0;) 468 pv++->pv_pm = NULL; 469 pmap_attrib = (char *)pv; 470 memset(pv, 0, npgs); 471 472 pv = pv_table; 473 attr = pmap_attrib; 474 for (bank = 0; bank < vm_nphysseg; bank++) { 475 sz = vm_physmem[bank].end - vm_physmem[bank].start; 476 vm_physmem[bank].pmseg.pvent = pv; 477 vm_physmem[bank].pmseg.attrs = attr; 478 pv += sz; 479 attr += sz; 480 } 481 482 pmap_initialized = 1; 483 splx(s); 484 485 /* Setup a pool for additional pvlist structures */ 486 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL, 487 IPL_VM); 488 } 489 490 /* 491 * How much virtual space is available to the kernel? 492 */ 493 void 494 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 495 { 496 497 #if 0 498 /* 499 * Reserve one segment for kernel virtual memory 500 */ 501 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); 502 *end = *start + SEGMENT_LENGTH; 503 #else 504 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 505 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 506 #endif 507 } 508 509 #ifdef PMAP_GROWKERNEL 510 /* 511 * Preallocate kernel page tables to a specified VA. 512 * This simply loops through the first TTE for each 513 * page table from the beginning of the kernel pmap, 514 * reads the entry, and if the result is 515 * zero (either invalid entry or no page table) it stores 516 * a zero there, populating page tables in the process. 517 * This is not the most efficient technique but i don't 518 * expect it to be called that often. 519 */ 520 extern struct vm_page *vm_page_alloc1(void); 521 extern void vm_page_free1(struct vm_page *); 522 523 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 524 525 vaddr_t 526 pmap_growkernel(vaddr_t maxkvaddr) 527 { 528 int s; 529 int seg; 530 paddr_t pg; 531 struct pmap *pm = pmap_kernel(); 532 533 s = splvm(); 534 535 /* Align with the start of a page table */ 536 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; 537 kbreak += PTMAP) { 538 seg = STIDX(kbreak); 539 540 if (pte_find(pm, kbreak)) 541 continue; 542 543 if (uvm.page_init_done) { 544 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 545 } else { 546 if (!uvm_page_physget(&pg)) 547 panic("pmap_growkernel: no memory"); 548 } 549 if (!pg) 550 panic("pmap_growkernel: no pages"); 551 pmap_zero_page((paddr_t)pg); 552 553 /* XXX This is based on all phymem being addressable */ 554 pm->pm_ptbl[seg] = (u_int *)pg; 555 } 556 splx(s); 557 return (kbreak); 558 } 559 560 /* 561 * vm_page_alloc1: 562 * 563 * Allocate and return a memory cell with no associated object. 564 */ 565 struct vm_page * 566 vm_page_alloc1(void) 567 { 568 struct vm_page *pg; 569 570 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 571 if (pg) { 572 pg->wire_count = 1; /* no mappings yet */ 573 pg->flags &= ~PG_BUSY; /* never busy */ 574 } 575 return pg; 576 } 577 578 /* 579 * vm_page_free1: 580 * 581 * Returns the given page to the free list, 582 * disassociating it with any VM object. 583 * 584 * Object and page must be locked prior to entry. 585 */ 586 void 587 vm_page_free1(struct vm_page *pg) 588 { 589 #ifdef DIAGNOSTIC 590 if (pg->flags != (PG_CLEAN|PG_FAKE)) { 591 printf("Freeing invalid page %p\n", pg); 592 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg)); 593 #ifdef DDB 594 Debugger(); 595 #endif 596 return; 597 } 598 #endif 599 pg->flags |= PG_BUSY; 600 pg->wire_count = 0; 601 uvm_pagefree(pg); 602 } 603 #endif 604 605 /* 606 * Create and return a physical map. 607 */ 608 struct pmap * 609 pmap_create(void) 610 { 611 struct pmap *pm; 612 613 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK); 614 memset(pm, 0, sizeof *pm); 615 pm->pm_refs = 1; 616 return pm; 617 } 618 619 /* 620 * Add a reference to the given pmap. 621 */ 622 void 623 pmap_reference(struct pmap *pm) 624 { 625 626 pm->pm_refs++; 627 } 628 629 /* 630 * Retire the given pmap from service. 631 * Should only be called if the map contains no valid mappings. 632 */ 633 void 634 pmap_destroy(struct pmap *pm) 635 { 636 int i; 637 638 if (--pm->pm_refs > 0) { 639 return; 640 } 641 KASSERT(pm->pm_stats.resident_count == 0); 642 KASSERT(pm->pm_stats.wired_count == 0); 643 for (i = 0; i < STSZ; i++) 644 if (pm->pm_ptbl[i]) { 645 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 646 PAGE_SIZE, UVM_KMF_WIRED); 647 pm->pm_ptbl[i] = NULL; 648 } 649 if (pm->pm_ctx) 650 ctx_free(pm); 651 free(pm, M_VMPMAP); 652 } 653 654 /* 655 * Copy the range specified by src_addr/len 656 * from the source map to the range dst_addr/len 657 * in the destination map. 658 * 659 * This routine is only advisory and need not do anything. 660 */ 661 void 662 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 663 vsize_t len, vaddr_t src_addr) 664 { 665 } 666 667 /* 668 * Require that all active physical maps contain no 669 * incorrect entries NOW. 670 */ 671 void 672 pmap_update(struct pmap *pmap) 673 { 674 } 675 676 /* 677 * Garbage collects the physical map system for 678 * pages which are no longer used. 679 * Success need not be guaranteed -- that is, there 680 * may well be pages which are not referenced, but 681 * others may be collected. 682 * Called by the pageout daemon when pages are scarce. 683 */ 684 void 685 pmap_collect(struct pmap *pm) 686 { 687 } 688 689 /* 690 * Fill the given physical page with zeroes. 691 */ 692 void 693 pmap_zero_page(paddr_t pa) 694 { 695 696 #ifdef PPC_4XX_NOCACHE 697 memset((void *)pa, 0, PAGE_SIZE); 698 #else 699 int i; 700 701 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 702 __asm volatile ("dcbz 0,%0" :: "r"(pa)); 703 pa += CACHELINESIZE; 704 } 705 #endif 706 } 707 708 /* 709 * Copy the given physical source page to its destination. 710 */ 711 void 712 pmap_copy_page(paddr_t src, paddr_t dst) 713 { 714 715 memcpy((void *)dst, (void *)src, PAGE_SIZE); 716 dcache_flush_page(dst); 717 } 718 719 /* 720 * This returns != 0 on success. 721 */ 722 static inline int 723 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags) 724 { 725 struct pv_entry *pv, *npv = NULL; 726 int s; 727 728 if (!pmap_initialized) 729 return 0; 730 731 s = splvm(); 732 pv = pa_to_pv(pa); 733 if (!pv->pv_pm) { 734 /* 735 * No entries yet, use header as the first entry. 736 */ 737 pv->pv_va = va; 738 pv->pv_pm = pm; 739 pv->pv_next = NULL; 740 } else { 741 /* 742 * There is at least one other VA mapping this page. 743 * Place this entry after the header. 744 */ 745 npv = pool_get(&pv_pool, PR_NOWAIT); 746 if (npv == NULL) { 747 if ((flags & PMAP_CANFAIL) == 0) 748 panic("pmap_enter_pv: failed"); 749 splx(s); 750 return 0; 751 } 752 npv->pv_va = va; 753 npv->pv_pm = pm; 754 npv->pv_next = pv->pv_next; 755 pv->pv_next = npv; 756 pv = npv; 757 } 758 if (flags & PMAP_WIRED) { 759 PV_WIRE(pv); 760 pm->pm_stats.wired_count++; 761 } 762 splx(s); 763 return (1); 764 } 765 766 static void 767 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 768 { 769 struct pv_entry *pv, *npv; 770 771 /* 772 * Remove from the PV table. 773 */ 774 pv = pa_to_pv(pa); 775 if (!pv) 776 return; 777 778 /* 779 * If it is the first entry on the list, it is actually 780 * in the header and we must copy the following entry up 781 * to the header. Otherwise we must search the list for 782 * the entry. In either case we free the now unused entry. 783 */ 784 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 785 if (PV_ISWIRED(pv)) { 786 pm->pm_stats.wired_count--; 787 } 788 if ((npv = pv->pv_next)) { 789 *pv = *npv; 790 pool_put(&pv_pool, npv); 791 } else 792 pv->pv_pm = NULL; 793 } else { 794 for (; (npv = pv->pv_next) != NULL; pv = npv) 795 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 796 break; 797 if (npv) { 798 pv->pv_next = npv->pv_next; 799 if (PV_ISWIRED(npv)) { 800 pm->pm_stats.wired_count--; 801 } 802 pool_put(&pv_pool, npv); 803 } 804 } 805 } 806 807 /* 808 * Insert physical page at pa into the given pmap at virtual address va. 809 */ 810 int 811 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 812 { 813 int s; 814 u_int tte; 815 bool managed; 816 817 /* 818 * Have to remove any existing mapping first. 819 */ 820 pmap_remove(pm, va, va + PAGE_SIZE); 821 822 if (flags & PMAP_WIRED) 823 flags |= prot; 824 825 managed = uvm_pageismanaged(pa); 826 827 /* 828 * Generate TTE. 829 */ 830 tte = TTE_PA(pa); 831 /* XXXX -- need to support multiple page sizes. */ 832 tte |= TTE_SZ_16K; 833 #ifdef DIAGNOSTIC 834 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) == 835 (PME_NOCACHE | PME_WRITETHROUG)) 836 panic("pmap_enter: uncached & writethrough"); 837 #endif 838 if (flags & PME_NOCACHE) 839 /* Must be I/O mapping */ 840 tte |= TTE_I | TTE_G; 841 #ifdef PPC_4XX_NOCACHE 842 tte |= TTE_I; 843 #else 844 else if (flags & PME_WRITETHROUG) 845 /* Uncached and writethrough are not compatible */ 846 tte |= TTE_W; 847 #endif 848 if (pm == pmap_kernel()) 849 tte |= TTE_ZONE(ZONE_PRIV); 850 else 851 tte |= TTE_ZONE(ZONE_USER); 852 853 if (flags & VM_PROT_WRITE) 854 tte |= TTE_WR; 855 856 if (flags & VM_PROT_EXECUTE) 857 tte |= TTE_EX; 858 859 /* 860 * Now record mapping for later back-translation. 861 */ 862 if (pmap_initialized && managed) { 863 char *attr; 864 865 if (!pmap_enter_pv(pm, va, pa, flags)) { 866 /* Could not enter pv on a managed page */ 867 return 1; 868 } 869 870 /* Now set attributes. */ 871 attr = pa_to_attr(pa); 872 #ifdef DIAGNOSTIC 873 if (!attr) 874 panic("managed but no attr"); 875 #endif 876 if (flags & VM_PROT_ALL) 877 *attr |= PMAP_ATTR_REF; 878 if (flags & VM_PROT_WRITE) 879 *attr |= PMAP_ATTR_CHG; 880 } 881 882 s = splvm(); 883 884 /* Insert page into page table. */ 885 pte_enter(pm, va, tte); 886 887 /* If this is a real fault, enter it in the tlb */ 888 if (tte && ((flags & PMAP_WIRED) == 0)) { 889 ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 890 } 891 splx(s); 892 893 /* Flush the real memory from the instruction cache. */ 894 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 895 __syncicache((void *)pa, PAGE_SIZE); 896 897 return 0; 898 } 899 900 void 901 pmap_unwire(struct pmap *pm, vaddr_t va) 902 { 903 struct pv_entry *pv; 904 paddr_t pa; 905 int s; 906 907 if (!pmap_extract(pm, va, &pa)) { 908 return; 909 } 910 911 pv = pa_to_pv(pa); 912 if (!pv) 913 return; 914 915 s = splvm(); 916 while (pv != NULL) { 917 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 918 if (PV_ISWIRED(pv)) { 919 PV_UNWIRE(pv); 920 pm->pm_stats.wired_count--; 921 } 922 break; 923 } 924 pv = pv->pv_next; 925 } 926 splx(s); 927 } 928 929 void 930 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 931 { 932 int s; 933 u_int tte; 934 struct pmap *pm = pmap_kernel(); 935 936 /* 937 * Have to remove any existing mapping first. 938 */ 939 940 /* 941 * Generate TTE. 942 * 943 * XXXX 944 * 945 * Since the kernel does not handle execution privileges properly, 946 * we will handle read and execute permissions together. 947 */ 948 tte = 0; 949 if (prot & VM_PROT_ALL) { 950 951 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 952 /* XXXX -- need to support multiple page sizes. */ 953 tte |= TTE_SZ_16K; 954 #ifdef DIAGNOSTIC 955 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) == 956 (PME_NOCACHE | PME_WRITETHROUG)) 957 panic("pmap_kenter_pa: uncached & writethrough"); 958 #endif 959 if (prot & PME_NOCACHE) 960 /* Must be I/O mapping */ 961 tte |= TTE_I | TTE_G; 962 #ifdef PPC_4XX_NOCACHE 963 tte |= TTE_I; 964 #else 965 else if (prot & PME_WRITETHROUG) 966 /* Uncached and writethrough are not compatible */ 967 tte |= TTE_W; 968 #endif 969 if (prot & VM_PROT_WRITE) 970 tte |= TTE_WR; 971 } 972 973 s = splvm(); 974 975 /* Insert page into page table. */ 976 pte_enter(pm, va, tte); 977 splx(s); 978 } 979 980 void 981 pmap_kremove(vaddr_t va, vsize_t len) 982 { 983 984 while (len > 0) { 985 pte_enter(pmap_kernel(), va, 0); 986 va += PAGE_SIZE; 987 len -= PAGE_SIZE; 988 } 989 } 990 991 /* 992 * Remove the given range of mapping entries. 993 */ 994 void 995 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 996 { 997 int s; 998 paddr_t pa; 999 volatile u_int *ptp; 1000 1001 s = splvm(); 1002 while (va < endva) { 1003 1004 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 1005 pa = TTE_PA(pa); 1006 pmap_remove_pv(pm, va, pa); 1007 *ptp = 0; 1008 ppc4xx_tlb_flush(va, pm->pm_ctx); 1009 pm->pm_stats.resident_count--; 1010 } 1011 va += PAGE_SIZE; 1012 } 1013 1014 splx(s); 1015 } 1016 1017 /* 1018 * Get the physical page address for the given pmap/virtual address. 1019 */ 1020 bool 1021 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1022 { 1023 int seg = STIDX(va); 1024 int ptn = PTIDX(va); 1025 u_int pa = 0; 1026 int s; 1027 1028 s = splvm(); 1029 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) { 1030 *pap = TTE_PA(pa) | (va & PGOFSET); 1031 } 1032 splx(s); 1033 return (pa != 0); 1034 } 1035 1036 /* 1037 * Lower the protection on the specified range of this pmap. 1038 * 1039 * There are only two cases: either the protection is going to 0, 1040 * or it is going to read-only. 1041 */ 1042 void 1043 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1044 { 1045 volatile u_int *ptp; 1046 int s, bic; 1047 1048 if ((prot & VM_PROT_READ) == 0) { 1049 pmap_remove(pm, sva, eva); 1050 return; 1051 } 1052 bic = 0; 1053 if ((prot & VM_PROT_WRITE) == 0) { 1054 bic |= TTE_WR; 1055 } 1056 if ((prot & VM_PROT_EXECUTE) == 0) { 1057 bic |= TTE_EX; 1058 } 1059 if (bic == 0) { 1060 return; 1061 } 1062 s = splvm(); 1063 while (sva < eva) { 1064 if ((ptp = pte_find(pm, sva)) != NULL) { 1065 *ptp &= ~bic; 1066 ppc4xx_tlb_flush(sva, pm->pm_ctx); 1067 } 1068 sva += PAGE_SIZE; 1069 } 1070 splx(s); 1071 } 1072 1073 bool 1074 pmap_check_attr(struct vm_page *pg, u_int mask, int clear) 1075 { 1076 paddr_t pa; 1077 char *attr; 1078 int s, rv; 1079 1080 /* 1081 * First modify bits in cache. 1082 */ 1083 pa = VM_PAGE_TO_PHYS(pg); 1084 attr = pa_to_attr(pa); 1085 if (attr == NULL) 1086 return false; 1087 1088 s = splvm(); 1089 rv = ((*attr & mask) != 0); 1090 if (clear) { 1091 *attr &= ~mask; 1092 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0); 1093 } 1094 splx(s); 1095 return rv; 1096 } 1097 1098 1099 /* 1100 * Lower the protection on the specified physical page. 1101 * 1102 * There are only two cases: either the protection is going to 0, 1103 * or it is going to read-only. 1104 */ 1105 void 1106 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1107 { 1108 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1109 vaddr_t va; 1110 struct pv_entry *pvh, *pv, *npv; 1111 struct pmap *pm; 1112 1113 pvh = pa_to_pv(pa); 1114 if (pvh == NULL) 1115 return; 1116 1117 /* Handle extra pvs which may be deleted in the operation */ 1118 for (pv = pvh->pv_next; pv; pv = npv) { 1119 npv = pv->pv_next; 1120 1121 pm = pv->pv_pm; 1122 va = pv->pv_va; 1123 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1124 } 1125 /* Now check the head pv */ 1126 if (pvh->pv_pm) { 1127 pv = pvh; 1128 pm = pv->pv_pm; 1129 va = pv->pv_va; 1130 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1131 } 1132 } 1133 1134 /* 1135 * Activate the address space for the specified process. If the process 1136 * is the current process, load the new MMU context. 1137 */ 1138 void 1139 pmap_activate(struct lwp *l) 1140 { 1141 #if 0 1142 struct pcb *pcb = &l->l_proc->p_addr->u_pcb; 1143 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1144 1145 /* 1146 * XXX Normally performed in cpu_fork(). 1147 */ 1148 printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1149 pcb->pcb_pm = pmap; 1150 #endif 1151 } 1152 1153 /* 1154 * Deactivate the specified process's address space. 1155 */ 1156 void 1157 pmap_deactivate(struct lwp *l) 1158 { 1159 } 1160 1161 /* 1162 * Synchronize caches corresponding to [addr, addr+len) in p. 1163 */ 1164 void 1165 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1166 { 1167 struct pmap *pm = p->p_vmspace->vm_map.pmap; 1168 int msr, ctx, opid, step; 1169 1170 step = CACHELINESIZE; 1171 1172 /* 1173 * Need to turn off IMMU and switch to user context. 1174 * (icbi uses DMMU). 1175 */ 1176 if (!(ctx = pm->pm_ctx)) { 1177 /* No context -- assign it one */ 1178 ctx_alloc(pm); 1179 ctx = pm->pm_ctx; 1180 } 1181 __asm volatile("mfmsr %0;" 1182 "li %1, %7;" 1183 "andc %1,%0,%1;" 1184 "mtmsr %1;" 1185 "sync;isync;" 1186 "mfpid %1;" 1187 "mtpid %2;" 1188 "sync; isync;" 1189 "1:" 1190 "dcbf 0,%3;" 1191 "icbi 0,%3;" 1192 "add %3,%3,%5;" 1193 "addc. %4,%4,%6;" 1194 "bge 1b;" 1195 "mtpid %1;" 1196 "mtmsr %0;" 1197 "sync; isync" 1198 : "=&r" (msr), "=&r" (opid) 1199 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step), 1200 "K" (PSL_IR | PSL_DR)); 1201 } 1202 1203 1204 /* This has to be done in real mode !!! */ 1205 void 1206 ppc4xx_tlb_flush(vaddr_t va, int pid) 1207 { 1208 u_long i, found; 1209 u_long msr; 1210 1211 /* If there's no context then it can't be mapped. */ 1212 if (!pid) 1213 return; 1214 1215 __asm( "mfpid %1;" /* Save PID */ 1216 "mfmsr %2;" /* Save MSR */ 1217 "li %0,0;" /* Now clear MSR */ 1218 "mtmsr %0;" 1219 "mtpid %4;" /* Set PID */ 1220 "sync;" 1221 "tlbsx. %0,0,%3;" /* Search TLB */ 1222 "sync;" 1223 "mtpid %1;" /* Restore PID */ 1224 "mtmsr %2;" /* Restore MSR */ 1225 "sync;isync;" 1226 "li %1,1;" 1227 "beq 1f;" 1228 "li %1,0;" 1229 "1:" 1230 : "=&r" (i), "=&r" (found), "=&r" (msr) 1231 : "r" (va), "r" (pid)); 1232 if (found && !TLB_LOCKED(i)) { 1233 1234 /* Now flush translation */ 1235 __asm volatile( 1236 "tlbwe %0,%1,0;" 1237 "sync;isync;" 1238 : : "r" (0), "r" (i)); 1239 1240 tlb_info[i].ti_ctx = 0; 1241 tlb_info[i].ti_flags = 0; 1242 tlbnext = i; 1243 /* Successful flushes */ 1244 tlbflush_ev.ev_count++; 1245 } 1246 } 1247 1248 void 1249 ppc4xx_tlb_flush_all(void) 1250 { 1251 u_long i; 1252 1253 for (i = 0; i < NTLB; i++) 1254 if (!TLB_LOCKED(i)) { 1255 __asm volatile( 1256 "tlbwe %0,%1,0;" 1257 "sync;isync;" 1258 : : "r" (0), "r" (i)); 1259 tlb_info[i].ti_ctx = 0; 1260 tlb_info[i].ti_flags = 0; 1261 } 1262 1263 __asm volatile("sync;isync"); 1264 } 1265 1266 /* Find a TLB entry to evict. */ 1267 static int 1268 ppc4xx_tlb_find_victim(void) 1269 { 1270 int flags; 1271 1272 for (;;) { 1273 if (++tlbnext >= NTLB) 1274 tlbnext = tlb_nreserved; 1275 flags = tlb_info[tlbnext].ti_flags; 1276 if (!(flags & TLBF_USED) || 1277 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1278 u_long va, stack = (u_long)&va; 1279 1280 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && 1281 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1282 (flags & TLBF_USED)) { 1283 /* Kernel stack page */ 1284 flags |= TLBF_USED; 1285 tlb_info[tlbnext].ti_flags = flags; 1286 } else { 1287 /* Found it! */ 1288 return (tlbnext); 1289 } 1290 } else { 1291 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1292 } 1293 } 1294 } 1295 1296 void 1297 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1298 { 1299 u_long th, tl, idx; 1300 tlbpid_t pid; 1301 u_short msr; 1302 paddr_t pa; 1303 int s, sz; 1304 1305 tlbenter_ev.ev_count++; 1306 1307 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1308 pa = (pte & TTE_RPN_MASK(sz)); 1309 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1310 tl = (pte & ~TLB_RPN_MASK) | pa; 1311 tl |= ppc4xx_tlbflags(va, pa); 1312 1313 s = splhigh(); 1314 idx = ppc4xx_tlb_find_victim(); 1315 1316 #ifdef DIAGNOSTIC 1317 if ((idx < tlb_nreserved) || (idx >= NTLB)) { 1318 panic("ppc4xx_tlb_enter: replacing entry %ld", idx); 1319 } 1320 #endif 1321 1322 tlb_info[idx].ti_va = (va & TLB_EPN_MASK); 1323 tlb_info[idx].ti_ctx = ctx; 1324 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; 1325 1326 __asm volatile( 1327 "mfmsr %0;" /* Save MSR */ 1328 "li %1,0;" 1329 "tlbwe %1,%3,0;" /* Invalidate old entry. */ 1330 "mtmsr %1;" /* Clear MSR */ 1331 "mfpid %1;" /* Save old PID */ 1332 "mtpid %2;" /* Load translation ctx */ 1333 "sync; isync;" 1334 #ifdef DEBUG 1335 "andi. %3,%3,63;" 1336 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */ 1337 #endif 1338 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ 1339 "sync; isync;" 1340 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ 1341 "sync; isync;" 1342 : "=&r" (msr), "=&r" (pid) 1343 : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); 1344 splx(s); 1345 } 1346 1347 void 1348 ppc4xx_tlb_init(void) 1349 { 1350 int i; 1351 1352 /* Mark reserved TLB entries */ 1353 for (i = 0; i < tlb_nreserved; i++) { 1354 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1355 tlb_info[i].ti_ctx = KERNEL_PID; 1356 } 1357 1358 /* Setup security zones */ 1359 /* Z0 - accessible by kernel only if TLB entry permissions allow 1360 * Z1,Z2 - access is controlled by TLB entry permissions 1361 * Z3 - full access regardless of TLB entry permissions 1362 */ 1363 1364 __asm volatile( 1365 "mtspr %0,%1;" 1366 "sync;" 1367 :: "K"(SPR_ZPR), "r" (0x1b000000)); 1368 } 1369 1370 /* 1371 * ppc4xx_tlb_size_mask: 1372 * 1373 * Roundup size to supported page size, return TLBHI mask and real size. 1374 */ 1375 static int 1376 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz) 1377 { 1378 int i; 1379 1380 for (i = 0; i < __arraycount(tlbsize); i++) 1381 if (size <= tlbsize[i]) { 1382 *mask = (i << TLB_SIZE_SHFT); 1383 *rsiz = tlbsize[i]; 1384 return (0); 1385 } 1386 return (EINVAL); 1387 } 1388 1389 /* 1390 * ppc4xx_tlb_mapiodev: 1391 * 1392 * Lookup virtual address of mapping previously entered via 1393 * ppc4xx_tlb_reserve. Search TLB directly so that we don't 1394 * need to waste extra storage for reserved mappings. Note 1395 * that reading TLBHI also sets PID, but all reserved mappings 1396 * use KERNEL_PID, so the side effect is nil. 1397 */ 1398 void * 1399 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len) 1400 { 1401 paddr_t pa; 1402 vaddr_t va; 1403 u_int lo, hi, sz; 1404 int i; 1405 1406 /* tlb_nreserved is only allowed to grow, so this is safe. */ 1407 for (i = 0; i < tlb_nreserved; i++) { 1408 __asm volatile ( 1409 " tlbre %0,%2,1 \n" /* TLBLO */ 1410 " tlbre %1,%2,0 \n" /* TLBHI */ 1411 : "=&r" (lo), "=&r" (hi) 1412 : "r" (i)); 1413 1414 KASSERT(hi & TLB_VALID); 1415 KASSERT(mfspr(SPR_PID) == KERNEL_PID); 1416 1417 pa = (lo & TLB_RPN_MASK); 1418 if (base < pa) 1419 continue; 1420 1421 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT]; 1422 if ((base + len) > (pa + sz)) 1423 continue; 1424 1425 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */ 1426 return (void *)(va); 1427 } 1428 1429 return (NULL); 1430 } 1431 1432 /* 1433 * ppc4xx_tlb_reserve: 1434 * 1435 * Map physical range to kernel virtual chunk via reserved TLB entry. 1436 */ 1437 void 1438 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags) 1439 { 1440 u_int lo, hi; 1441 int szmask, rsize; 1442 1443 /* Called before pmap_bootstrap(), va outside kernel space. */ 1444 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS); 1445 KASSERT(! pmap_bootstrap_done); 1446 KASSERT(tlb_nreserved < NTLB); 1447 1448 /* Resolve size. */ 1449 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0) 1450 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large", 1451 size, tlb_nreserved); 1452 1453 /* Real size will be power of two >= 1024, so this is OK. */ 1454 pa &= ~(rsize - 1); /* RPN */ 1455 va &= ~(rsize - 1); /* EPN */ 1456 1457 lo = pa | TLB_WR | flags; 1458 hi = va | TLB_VALID | szmask; 1459 1460 #ifdef PPC_4XX_NOCACHE 1461 lo |= TLB_I; 1462 #endif 1463 1464 __asm volatile( 1465 " tlbwe %1,%0,1 \n" /* write TLBLO */ 1466 " tlbwe %2,%0,0 \n" /* write TLBHI */ 1467 " sync \n" 1468 " isync \n" 1469 : : "r" (tlb_nreserved), "r" (lo), "r" (hi)); 1470 1471 tlb_nreserved++; 1472 } 1473 1474 /* 1475 * We should pass the ctx in from trap code. 1476 */ 1477 int 1478 pmap_tlbmiss(vaddr_t va, int ctx) 1479 { 1480 volatile u_int *pte; 1481 u_long tte; 1482 1483 tlbmiss_ev.ev_count++; 1484 1485 /* 1486 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings. 1487 * Physical RAM is expected to live in this range, care must be taken 1488 * to not clobber 0 upto ${physmem} with device mappings in machdep 1489 * code. 1490 */ 1491 if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) { 1492 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va); 1493 if (pte == NULL) { 1494 /* Map unmanaged addresses directly for kernel access */ 1495 return 1; 1496 } 1497 tte = *pte; 1498 if (tte == 0) { 1499 return 1; 1500 } 1501 } else { 1502 /* Create a 16MB writable mapping. */ 1503 #ifdef PPC_4XX_NOCACHE 1504 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR; 1505 #else 1506 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1507 #endif 1508 } 1509 tlbhit_ev.ev_count++; 1510 ppc4xx_tlb_enter(ctx, va, tte); 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * Flush all the entries matching a context from the TLB. 1517 */ 1518 static int 1519 ctx_flush(int cnum) 1520 { 1521 int i; 1522 1523 /* We gotta steal this context */ 1524 for (i = tlb_nreserved; i < NTLB; i++) { 1525 if (tlb_info[i].ti_ctx == cnum) { 1526 /* Can't steal ctx if it has a locked entry. */ 1527 if (TLB_LOCKED(i)) { 1528 #ifdef DIAGNOSTIC 1529 printf("ctx_flush: can't invalidate " 1530 "locked mapping %d " 1531 "for context %d\n", i, cnum); 1532 #ifdef DDB 1533 Debugger(); 1534 #endif 1535 #endif 1536 return (1); 1537 } 1538 #ifdef DIAGNOSTIC 1539 if (i < tlb_nreserved) 1540 panic("TLB entry %d not locked", i); 1541 #endif 1542 /* Invalidate particular TLB entry regardless of locked status */ 1543 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); 1544 tlb_info[i].ti_flags = 0; 1545 } 1546 } 1547 return (0); 1548 } 1549 1550 /* 1551 * Allocate a context. If necessary, steal one from someone else. 1552 * 1553 * The new context is flushed from the TLB before returning. 1554 */ 1555 int 1556 ctx_alloc(struct pmap *pm) 1557 { 1558 int s, cnum; 1559 static int next = MINCTX; 1560 1561 if (pm == pmap_kernel()) { 1562 #ifdef DIAGNOSTIC 1563 printf("ctx_alloc: kernel pmap!\n"); 1564 #endif 1565 return (0); 1566 } 1567 s = splvm(); 1568 1569 /* Find a likely context. */ 1570 cnum = next; 1571 do { 1572 if ((++cnum) > NUMCTX) 1573 cnum = MINCTX; 1574 } while (ctxbusy[cnum] != NULL && cnum != next); 1575 1576 /* Now clean it out */ 1577 oops: 1578 if (cnum < MINCTX) 1579 cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1580 if (ctx_flush(cnum)) { 1581 /* oops -- something's wired. */ 1582 if ((++cnum) > NUMCTX) 1583 cnum = MINCTX; 1584 goto oops; 1585 } 1586 1587 if (ctxbusy[cnum]) { 1588 #ifdef DEBUG 1589 /* We should identify this pmap and clear it */ 1590 printf("Warning: stealing context %d\n", cnum); 1591 #endif 1592 ctxbusy[cnum]->pm_ctx = 0; 1593 } 1594 ctxbusy[cnum] = pm; 1595 next = cnum; 1596 splx(s); 1597 pm->pm_ctx = cnum; 1598 1599 return cnum; 1600 } 1601 1602 /* 1603 * Give away a context. 1604 */ 1605 void 1606 ctx_free(struct pmap *pm) 1607 { 1608 int oldctx; 1609 1610 oldctx = pm->pm_ctx; 1611 1612 if (oldctx == 0) 1613 panic("ctx_free: freeing kernel context"); 1614 #ifdef DIAGNOSTIC 1615 if (ctxbusy[oldctx] == 0) 1616 printf("ctx_free: freeing free context %d\n", oldctx); 1617 if (ctxbusy[oldctx] != pm) { 1618 printf("ctx_free: freeing someone esle's context\n " 1619 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", 1620 oldctx, (void *)(u_long)ctxbusy[oldctx], pm); 1621 #ifdef DDB 1622 Debugger(); 1623 #endif 1624 } 1625 #endif 1626 /* We should verify it has not been stolen and reallocated... */ 1627 ctxbusy[oldctx] = NULL; 1628 ctx_flush(oldctx); 1629 } 1630 1631 1632 #ifdef DEBUG 1633 /* 1634 * Test ref/modify handling. 1635 */ 1636 void pmap_testout(void); 1637 void 1638 pmap_testout(void) 1639 { 1640 vaddr_t va; 1641 volatile int *loc; 1642 int val = 0; 1643 paddr_t pa; 1644 struct vm_page *pg; 1645 int ref, mod; 1646 1647 /* Allocate a page */ 1648 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 1649 UVM_KMF_WIRED | UVM_KMF_ZERO); 1650 loc = (int*)va; 1651 1652 pmap_extract(pmap_kernel(), va, &pa); 1653 pg = PHYS_TO_VM_PAGE(pa); 1654 pmap_unwire(pmap_kernel(), va); 1655 1656 pmap_kremove(va, PAGE_SIZE); 1657 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1658 pmap_update(pmap_kernel()); 1659 1660 /* Now clear reference and modify */ 1661 ref = pmap_clear_reference(pg); 1662 mod = pmap_clear_modify(pg); 1663 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1664 (void *)(u_long)va, (long)pa, 1665 ref, mod); 1666 1667 /* Check it's properly cleared */ 1668 ref = pmap_is_referenced(pg); 1669 mod = pmap_is_modified(pg); 1670 printf("Checking cleared page: ref %d, mod %d\n", 1671 ref, mod); 1672 1673 /* Reference page */ 1674 val = *loc; 1675 1676 ref = pmap_is_referenced(pg); 1677 mod = pmap_is_modified(pg); 1678 printf("Referenced page: ref %d, mod %d val %x\n", 1679 ref, mod, val); 1680 1681 /* Now clear reference and modify */ 1682 ref = pmap_clear_reference(pg); 1683 mod = pmap_clear_modify(pg); 1684 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1685 (void *)(u_long)va, (long)pa, 1686 ref, mod); 1687 1688 /* Modify page */ 1689 *loc = 1; 1690 1691 ref = pmap_is_referenced(pg); 1692 mod = pmap_is_modified(pg); 1693 printf("Modified page: ref %d, mod %d\n", 1694 ref, mod); 1695 1696 /* Now clear reference and modify */ 1697 ref = pmap_clear_reference(pg); 1698 mod = pmap_clear_modify(pg); 1699 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1700 (void *)(u_long)va, (long)pa, 1701 ref, mod); 1702 1703 /* Check it's properly cleared */ 1704 ref = pmap_is_referenced(pg); 1705 mod = pmap_is_modified(pg); 1706 printf("Checking cleared page: ref %d, mod %d\n", 1707 ref, mod); 1708 1709 /* Modify page */ 1710 *loc = 1; 1711 1712 ref = pmap_is_referenced(pg); 1713 mod = pmap_is_modified(pg); 1714 printf("Modified page: ref %d, mod %d\n", 1715 ref, mod); 1716 1717 /* Check pmap_protect() */ 1718 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); 1719 pmap_update(pmap_kernel()); 1720 ref = pmap_is_referenced(pg); 1721 mod = pmap_is_modified(pg); 1722 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", 1723 ref, mod); 1724 1725 /* Now clear reference and modify */ 1726 ref = pmap_clear_reference(pg); 1727 mod = pmap_clear_modify(pg); 1728 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1729 (void *)(u_long)va, (long)pa, 1730 ref, mod); 1731 1732 /* Reference page */ 1733 val = *loc; 1734 1735 ref = pmap_is_referenced(pg); 1736 mod = pmap_is_modified(pg); 1737 printf("Referenced page: ref %d, mod %d val %x\n", 1738 ref, mod, val); 1739 1740 /* Now clear reference and modify */ 1741 ref = pmap_clear_reference(pg); 1742 mod = pmap_clear_modify(pg); 1743 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1744 (void *)(u_long)va, (long)pa, 1745 ref, mod); 1746 1747 /* Modify page */ 1748 #if 0 1749 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1750 pmap_update(pmap_kernel()); 1751 #endif 1752 *loc = 1; 1753 1754 ref = pmap_is_referenced(pg); 1755 mod = pmap_is_modified(pg); 1756 printf("Modified page: ref %d, mod %d\n", 1757 ref, mod); 1758 1759 /* Check pmap_protect() */ 1760 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); 1761 pmap_update(pmap_kernel()); 1762 ref = pmap_is_referenced(pg); 1763 mod = pmap_is_modified(pg); 1764 printf("pmap_protect(): ref %d, mod %d\n", 1765 ref, mod); 1766 1767 /* Now clear reference and modify */ 1768 ref = pmap_clear_reference(pg); 1769 mod = pmap_clear_modify(pg); 1770 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1771 (void *)(u_long)va, (long)pa, 1772 ref, mod); 1773 1774 /* Reference page */ 1775 val = *loc; 1776 1777 ref = pmap_is_referenced(pg); 1778 mod = pmap_is_modified(pg); 1779 printf("Referenced page: ref %d, mod %d val %x\n", 1780 ref, mod, val); 1781 1782 /* Now clear reference and modify */ 1783 ref = pmap_clear_reference(pg); 1784 mod = pmap_clear_modify(pg); 1785 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1786 (void *)(u_long)va, (long)pa, 1787 ref, mod); 1788 1789 /* Modify page */ 1790 #if 0 1791 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1792 pmap_update(pmap_kernel()); 1793 #endif 1794 *loc = 1; 1795 1796 ref = pmap_is_referenced(pg); 1797 mod = pmap_is_modified(pg); 1798 printf("Modified page: ref %d, mod %d\n", 1799 ref, mod); 1800 1801 /* Check pmap_pag_protect() */ 1802 pmap_page_protect(pg, VM_PROT_READ); 1803 ref = pmap_is_referenced(pg); 1804 mod = pmap_is_modified(pg); 1805 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", 1806 ref, mod); 1807 1808 /* Now clear reference and modify */ 1809 ref = pmap_clear_reference(pg); 1810 mod = pmap_clear_modify(pg); 1811 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1812 (void *)(u_long)va, (long)pa, 1813 ref, mod); 1814 1815 /* Reference page */ 1816 val = *loc; 1817 1818 ref = pmap_is_referenced(pg); 1819 mod = pmap_is_modified(pg); 1820 printf("Referenced page: ref %d, mod %d val %x\n", 1821 ref, mod, val); 1822 1823 /* Now clear reference and modify */ 1824 ref = pmap_clear_reference(pg); 1825 mod = pmap_clear_modify(pg); 1826 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1827 (void *)(u_long)va, (long)pa, 1828 ref, mod); 1829 1830 /* Modify page */ 1831 #if 0 1832 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1833 pmap_update(pmap_kernel()); 1834 #endif 1835 *loc = 1; 1836 1837 ref = pmap_is_referenced(pg); 1838 mod = pmap_is_modified(pg); 1839 printf("Modified page: ref %d, mod %d\n", 1840 ref, mod); 1841 1842 /* Check pmap_pag_protect() */ 1843 pmap_page_protect(pg, VM_PROT_NONE); 1844 ref = pmap_is_referenced(pg); 1845 mod = pmap_is_modified(pg); 1846 printf("pmap_page_protect(): ref %d, mod %d\n", 1847 ref, mod); 1848 1849 /* Now clear reference and modify */ 1850 ref = pmap_clear_reference(pg); 1851 mod = pmap_clear_modify(pg); 1852 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1853 (void *)(u_long)va, (long)pa, 1854 ref, mod); 1855 1856 1857 /* Reference page */ 1858 val = *loc; 1859 1860 ref = pmap_is_referenced(pg); 1861 mod = pmap_is_modified(pg); 1862 printf("Referenced page: ref %d, mod %d val %x\n", 1863 ref, mod, val); 1864 1865 /* Now clear reference and modify */ 1866 ref = pmap_clear_reference(pg); 1867 mod = pmap_clear_modify(pg); 1868 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1869 (void *)(u_long)va, (long)pa, 1870 ref, mod); 1871 1872 /* Modify page */ 1873 #if 0 1874 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1875 pmap_update(pmap_kernel()); 1876 #endif 1877 *loc = 1; 1878 1879 ref = pmap_is_referenced(pg); 1880 mod = pmap_is_modified(pg); 1881 printf("Modified page: ref %d, mod %d\n", 1882 ref, mod); 1883 1884 /* Unmap page */ 1885 pmap_remove(pmap_kernel(), va, va+1); 1886 pmap_update(pmap_kernel()); 1887 ref = pmap_is_referenced(pg); 1888 mod = pmap_is_modified(pg); 1889 printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1890 1891 /* Now clear reference and modify */ 1892 ref = pmap_clear_reference(pg); 1893 mod = pmap_clear_modify(pg); 1894 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1895 (void *)(u_long)va, (long)pa, ref, mod); 1896 1897 /* Check it's properly cleared */ 1898 ref = pmap_is_referenced(pg); 1899 mod = pmap_is_modified(pg); 1900 printf("Checking cleared page: ref %d, mod %d\n", 1901 ref, mod); 1902 1903 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); 1904 pmap_kenter_pa(va, pa, VM_PROT_ALL); 1905 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED); 1906 } 1907 #endif 1908