1 /* $NetBSD: pmap.c,v 1.28 2003/12/18 14:15:55 pk Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 * Copyright (C) 1995, 1996 TooLs GmbH. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by TooLs GmbH. 54 * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.28 2003/12/18 14:15:55 pk Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/user.h> 76 #include <sys/queue.h> 77 #include <sys/systm.h> 78 #include <sys/pool.h> 79 #include <sys/device.h> 80 81 #include <uvm/uvm.h> 82 83 #include <machine/cpu.h> 84 #include <machine/pcb.h> 85 #include <machine/powerpc.h> 86 87 #include <powerpc/spr.h> 88 #include <machine/tlb.h> 89 90 /* 91 * kernmap is an array of PTEs large enough to map in 92 * 4GB. At 16KB/page it is 256K entries or 2MB. 93 */ 94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) 95 caddr_t kernmap; 96 97 #define MINCTX 2 98 #define NUMCTX 256 99 volatile struct pmap *ctxbusy[NUMCTX]; 100 101 #define TLBF_USED 0x1 102 #define TLBF_REF 0x2 103 #define TLBF_LOCKED 0x4 104 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 105 typedef struct tlb_info_s { 106 char ti_flags; 107 char ti_ctx; /* TLB_PID assiciated with the entry */ 108 u_int ti_va; 109 } tlb_info_t; 110 111 volatile tlb_info_t tlb_info[NTLB]; 112 /* We'll use a modified FIFO replacement policy cause it's cheap */ 113 volatile int tlbnext = TLB_NRESERVED; 114 115 u_long dtlb_miss_count = 0; 116 u_long itlb_miss_count = 0; 117 u_long ktlb_miss_count = 0; 118 u_long utlb_miss_count = 0; 119 120 /* Event counters */ 121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 122 NULL, "cpu", "tlbmiss"); 123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 124 NULL, "cpu", "tlbhit"); 125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 126 NULL, "cpu", "tlbflush"); 127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 128 NULL, "cpu", "tlbenter"); 129 130 struct pmap kernel_pmap_; 131 132 int physmem; 133 static int npgs; 134 static u_int nextavail; 135 #ifndef MSGBUFADDR 136 extern paddr_t msgbuf_paddr; 137 #endif 138 139 static struct mem_region *mem, *avail; 140 141 /* 142 * This is a cache of referenced/modified bits. 143 * Bits herein are shifted by ATTRSHFT. 144 */ 145 static char *pmap_attrib; 146 147 #define PV_WIRED 0x1 148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 149 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED))) 150 151 struct pv_entry { 152 struct pv_entry *pv_next; /* Linked list of mappings */ 153 vaddr_t pv_va; /* virtual address of mapping */ 154 struct pmap *pv_pm; 155 }; 156 157 struct pv_entry *pv_table; 158 static struct pool pv_pool; 159 160 static int pmap_initialized; 161 162 static int ctx_flush(int); 163 164 inline struct pv_entry *pa_to_pv(paddr_t); 165 static inline char *pa_to_attr(paddr_t); 166 167 static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 168 static inline int pte_enter(struct pmap *, vaddr_t, u_int); 169 170 static void pmap_pinit(pmap_t); 171 static void pmap_release(pmap_t); 172 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t); 173 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 174 175 176 inline struct pv_entry * 177 pa_to_pv(paddr_t pa) 178 { 179 int bank, pg; 180 181 bank = vm_physseg_find(atop(pa), &pg); 182 if (bank == -1) 183 return NULL; 184 return &vm_physmem[bank].pmseg.pvent[pg]; 185 } 186 187 static inline char * 188 pa_to_attr(paddr_t pa) 189 { 190 int bank, pg; 191 192 bank = vm_physseg_find(atop(pa), &pg); 193 if (bank == -1) 194 return NULL; 195 return &vm_physmem[bank].pmseg.attrs[pg]; 196 } 197 198 /* 199 * Insert PTE into page table. 200 */ 201 int 202 pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 203 { 204 int seg = STIDX(va); 205 int ptn = PTIDX(va); 206 u_int oldpte; 207 208 if (!pm->pm_ptbl[seg]) { 209 /* Don't allocate a page to clear a non-existent mapping. */ 210 if (!pte) return (0); 211 /* Allocate a page XXXX this will sleep! */ 212 pm->pm_ptbl[seg] = 213 (uint *)uvm_km_zalloc(kernel_map, PAGE_SIZE); 214 } 215 oldpte = pm->pm_ptbl[seg][ptn]; 216 pm->pm_ptbl[seg][ptn] = pte; 217 218 /* Flush entry. */ 219 ppc4xx_tlb_flush(va, pm->pm_ctx); 220 if (oldpte != pte) { 221 if (pte == 0) 222 pm->pm_stats.resident_count--; 223 else 224 pm->pm_stats.resident_count++; 225 } 226 return (1); 227 } 228 229 /* 230 * Get a pointer to a PTE in a page table. 231 */ 232 volatile u_int * 233 pte_find(struct pmap *pm, vaddr_t va) 234 { 235 int seg = STIDX(va); 236 int ptn = PTIDX(va); 237 238 if (pm->pm_ptbl[seg]) 239 return (&pm->pm_ptbl[seg][ptn]); 240 241 return (NULL); 242 } 243 244 /* 245 * This is called during initppc, before the system is really initialized. 246 */ 247 void 248 pmap_bootstrap(u_int kernelstart, u_int kernelend) 249 { 250 struct mem_region *mp, *mp1; 251 int cnt, i; 252 u_int s, e, sz; 253 254 /* 255 * Allocate the kernel page table at the end of 256 * kernel space so it's in the locked TTE. 257 */ 258 kernmap = (caddr_t)kernelend; 259 260 /* 261 * Initialize kernel page table. 262 */ 263 for (i = 0; i < STSZ; i++) { 264 pmap_kernel()->pm_ptbl[i] = 0; 265 } 266 ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 267 268 /* 269 * Announce page-size to the VM-system 270 */ 271 uvmexp.pagesize = NBPG; 272 uvm_setpagesize(); 273 274 /* 275 * Get memory. 276 */ 277 mem_regions(&mem, &avail); 278 for (mp = mem; mp->size; mp++) { 279 physmem += btoc(mp->size); 280 printf("+%lx,",mp->size); 281 } 282 printf("\n"); 283 ppc4xx_tlb_init(); 284 /* 285 * Count the number of available entries. 286 */ 287 for (cnt = 0, mp = avail; mp->size; mp++) 288 cnt++; 289 290 /* 291 * Page align all regions. 292 * Non-page aligned memory isn't very interesting to us. 293 * Also, sort the entries for ascending addresses. 294 */ 295 kernelstart &= ~PGOFSET; 296 kernelend = (kernelend + PGOFSET) & ~PGOFSET; 297 for (mp = avail; mp->size; mp++) { 298 s = mp->start; 299 e = mp->start + mp->size; 300 printf("%08x-%08x -> ",s,e); 301 /* 302 * Check whether this region holds all of the kernel. 303 */ 304 if (s < kernelstart && e > kernelend) { 305 avail[cnt].start = kernelend; 306 avail[cnt++].size = e - kernelend; 307 e = kernelstart; 308 } 309 /* 310 * Look whether this regions starts within the kernel. 311 */ 312 if (s >= kernelstart && s < kernelend) { 313 if (e <= kernelend) 314 goto empty; 315 s = kernelend; 316 } 317 /* 318 * Now look whether this region ends within the kernel. 319 */ 320 if (e > kernelstart && e <= kernelend) { 321 if (s >= kernelstart) 322 goto empty; 323 e = kernelstart; 324 } 325 /* 326 * Now page align the start and size of the region. 327 */ 328 s = round_page(s); 329 e = trunc_page(e); 330 if (e < s) 331 e = s; 332 sz = e - s; 333 printf("%08x-%08x = %x\n",s,e,sz); 334 /* 335 * Check whether some memory is left here. 336 */ 337 if (sz == 0) { 338 empty: 339 memmove(mp, mp + 1, 340 (cnt - (mp - avail)) * sizeof *mp); 341 cnt--; 342 mp--; 343 continue; 344 } 345 /* 346 * Do an insertion sort. 347 */ 348 npgs += btoc(sz); 349 for (mp1 = avail; mp1 < mp; mp1++) 350 if (s < mp1->start) 351 break; 352 if (mp1 < mp) { 353 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 354 mp1->start = s; 355 mp1->size = sz; 356 } else { 357 mp->start = s; 358 mp->size = sz; 359 } 360 } 361 362 /* 363 * We cannot do pmap_steal_memory here, 364 * since we don't run with translation enabled yet. 365 */ 366 #ifndef MSGBUFADDR 367 /* 368 * allow for msgbuf 369 */ 370 sz = round_page(MSGBUFSIZE); 371 mp = NULL; 372 for (mp1 = avail; mp1->size; mp1++) 373 if (mp1->size >= sz) 374 mp = mp1; 375 if (mp == NULL) 376 panic("not enough memory?"); 377 378 npgs -= btoc(sz); 379 msgbuf_paddr = mp->start + mp->size - sz; 380 mp->size -= sz; 381 if (mp->size <= 0) 382 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); 383 #endif 384 385 printf("Loading pages\n"); 386 for (mp = avail; mp->size; mp++) 387 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 388 atop(mp->start), atop(mp->start + mp->size), 389 VM_FREELIST_DEFAULT); 390 391 /* 392 * Initialize kernel pmap and hardware. 393 */ 394 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 395 pmap_kernel()->pm_ctx = KERNEL_PID; 396 nextavail = avail->start; 397 398 399 evcnt_attach_static(&tlbhit_ev); 400 evcnt_attach_static(&tlbmiss_ev); 401 evcnt_attach_static(&tlbflush_ev); 402 evcnt_attach_static(&tlbenter_ev); 403 printf("Done\n"); 404 } 405 406 /* 407 * Restrict given range to physical memory 408 * 409 * (Used by /dev/mem) 410 */ 411 void 412 pmap_real_memory(paddr_t *start, psize_t *size) 413 { 414 struct mem_region *mp; 415 416 for (mp = mem; mp->size; mp++) { 417 if (*start + *size > mp->start && 418 *start < mp->start + mp->size) { 419 if (*start < mp->start) { 420 *size -= mp->start - *start; 421 *start = mp->start; 422 } 423 if (*start + *size > mp->start + mp->size) 424 *size = mp->start + mp->size - *start; 425 return; 426 } 427 } 428 *size = 0; 429 } 430 431 /* 432 * Initialize anything else for pmap handling. 433 * Called during vm_init(). 434 */ 435 void 436 pmap_init(void) 437 { 438 struct pv_entry *pv; 439 vsize_t sz; 440 vaddr_t addr; 441 int i, s; 442 int bank; 443 char *attr; 444 445 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 446 sz = round_page(sz); 447 addr = uvm_km_zalloc(kernel_map, sz); 448 s = splvm(); 449 pv = pv_table = (struct pv_entry *)addr; 450 for (i = npgs; --i >= 0;) 451 pv++->pv_pm = NULL; 452 pmap_attrib = (char *)pv; 453 memset(pv, 0, npgs); 454 455 pv = pv_table; 456 attr = pmap_attrib; 457 for (bank = 0; bank < vm_nphysseg; bank++) { 458 sz = vm_physmem[bank].end - vm_physmem[bank].start; 459 vm_physmem[bank].pmseg.pvent = pv; 460 vm_physmem[bank].pmseg.attrs = attr; 461 pv += sz; 462 attr += sz; 463 } 464 465 pmap_initialized = 1; 466 splx(s); 467 468 /* Setup a pool for additional pvlist structures */ 469 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL); 470 } 471 472 /* 473 * How much virtual space is available to the kernel? 474 */ 475 void 476 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 477 { 478 479 #if 0 480 /* 481 * Reserve one segment for kernel virtual memory 482 */ 483 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); 484 *end = *start + SEGMENT_LENGTH; 485 #else 486 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 487 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 488 #endif 489 } 490 491 #ifdef PMAP_GROWKERNEL 492 /* 493 * Preallocate kernel page tables to a specified VA. 494 * This simply loops through the first TTE for each 495 * page table from the beginning of the kernel pmap, 496 * reads the entry, and if the result is 497 * zero (either invalid entry or no page table) it stores 498 * a zero there, populating page tables in the process. 499 * This is not the most efficient technique but i don't 500 * expect it to be called that often. 501 */ 502 extern struct vm_page *vm_page_alloc1 __P((void)); 503 extern void vm_page_free1 __P((struct vm_page *)); 504 505 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 506 507 vaddr_t 508 pmap_growkernel(maxkvaddr) 509 vaddr_t maxkvaddr; 510 { 511 int s; 512 int seg; 513 paddr_t pg; 514 struct pmap *pm = pmap_kernel(); 515 516 s = splvm(); 517 518 /* Align with the start of a page table */ 519 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; 520 kbreak += PTMAP) { 521 seg = STIDX(kbreak); 522 523 if (pte_find(pm, kbreak)) continue; 524 525 if (uvm.page_init_done) { 526 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 527 } else { 528 if (!uvm_page_physget(&pg)) 529 panic("pmap_growkernel: no memory"); 530 } 531 if (!pg) panic("pmap_growkernel: no pages"); 532 pmap_zero_page((paddr_t)pg); 533 534 /* XXX This is based on all phymem being addressable */ 535 pm->pm_ptbl[seg] = (u_int *)pg; 536 } 537 splx(s); 538 return (kbreak); 539 } 540 541 /* 542 * vm_page_alloc1: 543 * 544 * Allocate and return a memory cell with no associated object. 545 */ 546 struct vm_page * 547 vm_page_alloc1() 548 { 549 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 550 if (pg) { 551 pg->wire_count = 1; /* no mappings yet */ 552 pg->flags &= ~PG_BUSY; /* never busy */ 553 } 554 return pg; 555 } 556 557 /* 558 * vm_page_free1: 559 * 560 * Returns the given page to the free list, 561 * disassociating it with any VM object. 562 * 563 * Object and page must be locked prior to entry. 564 */ 565 void 566 vm_page_free1(mem) 567 struct vm_page *mem; 568 { 569 #ifdef DIAGNOSTIC 570 if (mem->flags != (PG_CLEAN|PG_FAKE)) { 571 printf("Freeing invalid page %p\n", mem); 572 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem)); 573 #ifdef DDB 574 Debugger(); 575 #endif 576 return; 577 } 578 #endif 579 mem->flags |= PG_BUSY; 580 mem->wire_count = 0; 581 uvm_pagefree(mem); 582 } 583 #endif 584 585 /* 586 * Create and return a physical map. 587 */ 588 struct pmap * 589 pmap_create(void) 590 { 591 struct pmap *pm; 592 593 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK); 594 memset((caddr_t)pm, 0, sizeof *pm); 595 pmap_pinit(pm); 596 return pm; 597 } 598 599 /* 600 * Initialize a preallocated and zeroed pmap structure. 601 */ 602 void 603 pmap_pinit(struct pmap *pm) 604 { 605 int i; 606 607 /* 608 * Allocate some segment registers for this pmap. 609 */ 610 pm->pm_refs = 1; 611 for (i = 0; i < STSZ; i++) 612 pm->pm_ptbl[i] = NULL; 613 } 614 615 /* 616 * Add a reference to the given pmap. 617 */ 618 void 619 pmap_reference(struct pmap *pm) 620 { 621 622 pm->pm_refs++; 623 } 624 625 /* 626 * Retire the given pmap from service. 627 * Should only be called if the map contains no valid mappings. 628 */ 629 void 630 pmap_destroy(struct pmap *pm) 631 { 632 633 if (--pm->pm_refs == 0) { 634 pmap_release(pm); 635 free((caddr_t)pm, M_VMPMAP); 636 } 637 } 638 639 /* 640 * Release any resources held by the given physical map. 641 * Called when a pmap initialized by pmap_pinit is being released. 642 */ 643 static void 644 pmap_release(struct pmap *pm) 645 { 646 int i; 647 648 for (i = 0; i < STSZ; i++) 649 if (pm->pm_ptbl[i]) { 650 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 651 PAGE_SIZE); 652 pm->pm_ptbl[i] = NULL; 653 } 654 if (pm->pm_ctx) ctx_free(pm); 655 } 656 657 /* 658 * Copy the range specified by src_addr/len 659 * from the source map to the range dst_addr/len 660 * in the destination map. 661 * 662 * This routine is only advisory and need not do anything. 663 */ 664 void 665 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 666 vsize_t len, vaddr_t src_addr) 667 { 668 } 669 670 /* 671 * Require that all active physical maps contain no 672 * incorrect entries NOW. 673 */ 674 void 675 pmap_update(struct pmap *pmap) 676 { 677 } 678 679 /* 680 * Garbage collects the physical map system for 681 * pages which are no longer used. 682 * Success need not be guaranteed -- that is, there 683 * may well be pages which are not referenced, but 684 * others may be collected. 685 * Called by the pageout daemon when pages are scarce. 686 */ 687 void 688 pmap_collect(struct pmap *pm) 689 { 690 } 691 692 /* 693 * Fill the given physical page with zeroes. 694 */ 695 void 696 pmap_zero_page(paddr_t pa) 697 { 698 699 #ifdef PPC_4XX_NOCACHE 700 memset((caddr_t)pa, 0, PAGE_SIZE); 701 #else 702 int i; 703 704 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 705 __asm __volatile ("dcbz 0,%0" :: "r"(pa)); 706 pa += CACHELINESIZE; 707 } 708 #endif 709 } 710 711 /* 712 * Copy the given physical source page to its destination. 713 */ 714 void 715 pmap_copy_page(paddr_t src, paddr_t dst) 716 { 717 718 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE); 719 dcache_flush_page(dst); 720 } 721 722 /* 723 * This returns whether this is the first mapping of a page. 724 */ 725 static inline int 726 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 727 { 728 struct pv_entry *pv, *npv = NULL; 729 int s; 730 731 if (!pmap_initialized) 732 return 0; 733 734 s = splvm(); 735 736 pv = pa_to_pv(pa); 737 for (npv = pv; npv; npv = npv->pv_next) 738 if (npv->pv_va == va && npv->pv_pm == pm) { 739 printf("Duplicate pv: va %lx pm %p\n", va, pm); 740 #ifdef DDB 741 Debugger(); 742 #endif 743 return (1); 744 } 745 746 if (!pv->pv_pm) { 747 /* 748 * No entries yet, use header as the first entry. 749 */ 750 pv->pv_va = va; 751 pv->pv_pm = pm; 752 pv->pv_next = NULL; 753 } else { 754 /* 755 * There is at least one other VA mapping this page. 756 * Place this entry after the header. 757 */ 758 npv = pool_get(&pv_pool, PR_WAITOK); 759 if (!npv) return (0); 760 npv->pv_va = va; 761 npv->pv_pm = pm; 762 npv->pv_next = pv->pv_next; 763 pv->pv_next = npv; 764 } 765 splx(s); 766 return (1); 767 } 768 769 static void 770 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 771 { 772 struct pv_entry *pv, *npv; 773 774 /* 775 * Remove from the PV table. 776 */ 777 pv = pa_to_pv(pa); 778 if (!pv) return; 779 780 /* 781 * If it is the first entry on the list, it is actually 782 * in the header and we must copy the following entry up 783 * to the header. Otherwise we must search the list for 784 * the entry. In either case we free the now unused entry. 785 */ 786 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 787 if ((npv = pv->pv_next)) { 788 *pv = *npv; 789 pool_put(&pv_pool, npv); 790 } else 791 pv->pv_pm = NULL; 792 } else { 793 for (; (npv = pv->pv_next) != NULL; pv = npv) 794 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 795 break; 796 if (npv) { 797 pv->pv_next = npv->pv_next; 798 pool_put(&pv_pool, npv); 799 } 800 } 801 } 802 803 /* 804 * Insert physical page at pa into the given pmap at virtual address va. 805 */ 806 int 807 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) 808 { 809 int s; 810 u_int tte; 811 int managed; 812 813 /* 814 * Have to remove any existing mapping first. 815 */ 816 pmap_remove(pm, va, va + PAGE_SIZE); 817 818 if (flags & PMAP_WIRED) flags |= prot; 819 820 /* If it has no protections don't bother w/the rest */ 821 if (!(flags & VM_PROT_ALL)) 822 return (0); 823 824 managed = 0; 825 if (vm_physseg_find(atop(pa), NULL) != -1) 826 managed = 1; 827 828 /* 829 * Generate TTE. 830 */ 831 tte = TTE_PA(pa); 832 /* XXXX -- need to support multiple page sizes. */ 833 tte |= TTE_SZ_16K; 834 #ifdef DIAGNOSTIC 835 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) == 836 (PME_NOCACHE | PME_WRITETHROUG)) 837 panic("pmap_enter: uncached & writethrough"); 838 #endif 839 if (flags & PME_NOCACHE) 840 /* Must be I/O mapping */ 841 tte |= TTE_I | TTE_G; 842 #ifdef PPC_4XX_NOCACHE 843 tte |= TTE_I; 844 #else 845 else if (flags & PME_WRITETHROUG) 846 /* Uncached and writethrough are not compatible */ 847 tte |= TTE_W; 848 #endif 849 if (pm == pmap_kernel()) 850 tte |= TTE_ZONE(ZONE_PRIV); 851 else 852 tte |= TTE_ZONE(ZONE_USER); 853 854 if (flags & VM_PROT_WRITE) 855 tte |= TTE_WR; 856 857 if (flags & VM_PROT_EXECUTE) 858 tte |= TTE_EX; 859 860 /* 861 * Now record mapping for later back-translation. 862 */ 863 if (pmap_initialized && managed) { 864 char *attr; 865 866 if (!pmap_enter_pv(pm, va, pa)) { 867 /* Could not enter pv on a managed page */ 868 return 1; 869 } 870 871 /* Now set attributes. */ 872 attr = pa_to_attr(pa); 873 #ifdef DIAGNOSTIC 874 if (!attr) 875 panic("managed but no attr"); 876 #endif 877 if (flags & VM_PROT_ALL) 878 *attr |= PTE_HI_REF; 879 if (flags & VM_PROT_WRITE) 880 *attr |= PTE_HI_CHG; 881 } 882 883 s = splvm(); 884 885 /* Insert page into page table. */ 886 pte_enter(pm, va, tte); 887 888 /* If this is a real fault, enter it in the tlb */ 889 if (tte && ((flags & PMAP_WIRED) == 0)) { 890 ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 891 } 892 splx(s); 893 894 /* Flush the real memory from the instruction cache. */ 895 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 896 __syncicache((void *)pa, PAGE_SIZE); 897 898 return 0; 899 } 900 901 void 902 pmap_unwire(struct pmap *pm, vaddr_t va) 903 { 904 struct pv_entry *pv, *npv; 905 paddr_t pa; 906 int s = splvm(); 907 908 if (pm == NULL) { 909 return; 910 } 911 912 if (!pmap_extract(pm, va, &pa)) { 913 return; 914 } 915 916 va |= PV_WIRED; 917 918 pv = pa_to_pv(pa); 919 if (!pv) return; 920 921 /* 922 * If it is the first entry on the list, it is actually 923 * in the header and we must copy the following entry up 924 * to the header. Otherwise we must search the list for 925 * the entry. In either case we free the now unused entry. 926 */ 927 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) { 928 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) { 929 npv->pv_va &= ~PV_WIRED; 930 break; 931 } 932 } 933 splx(s); 934 } 935 936 void 937 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) 938 { 939 int s; 940 u_int tte; 941 struct pmap *pm = pmap_kernel(); 942 943 /* 944 * Have to remove any existing mapping first. 945 */ 946 947 /* 948 * Generate TTE. 949 * 950 * XXXX 951 * 952 * Since the kernel does not handle execution privileges properly, 953 * we will handle read and execute permissions together. 954 */ 955 tte = 0; 956 if (prot & VM_PROT_ALL) { 957 958 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 959 /* XXXX -- need to support multiple page sizes. */ 960 tte |= TTE_SZ_16K; 961 #ifdef DIAGNOSTIC 962 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) == 963 (PME_NOCACHE | PME_WRITETHROUG)) 964 panic("pmap_kenter_pa: uncached & writethrough"); 965 #endif 966 if (prot & PME_NOCACHE) 967 /* Must be I/O mapping */ 968 tte |= TTE_I | TTE_G; 969 #ifdef PPC_4XX_NOCACHE 970 tte |= TTE_I; 971 #else 972 else if (prot & PME_WRITETHROUG) 973 /* Uncached and writethrough are not compatible */ 974 tte |= TTE_W; 975 #endif 976 if (prot & VM_PROT_WRITE) 977 tte |= TTE_WR; 978 } 979 980 s = splvm(); 981 982 /* Insert page into page table. */ 983 pte_enter(pm, va, tte); 984 splx(s); 985 } 986 987 void 988 pmap_kremove(vaddr_t va, vsize_t len) 989 { 990 991 while (len > 0) { 992 pte_enter(pmap_kernel(), va, 0); 993 va += PAGE_SIZE; 994 len -= PAGE_SIZE; 995 } 996 } 997 998 /* 999 * Remove the given range of mapping entries. 1000 */ 1001 void 1002 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 1003 { 1004 int s; 1005 paddr_t pa; 1006 volatile u_int *ptp; 1007 1008 s = splvm(); 1009 while (va < endva) { 1010 1011 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 1012 pa = TTE_PA(pa); 1013 pmap_remove_pv(pm, va, pa); 1014 *ptp = 0; 1015 ppc4xx_tlb_flush(va, pm->pm_ctx); 1016 pm->pm_stats.resident_count--; 1017 } 1018 va += PAGE_SIZE; 1019 } 1020 1021 splx(s); 1022 } 1023 1024 /* 1025 * Get the physical page address for the given pmap/virtual address. 1026 */ 1027 boolean_t 1028 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1029 { 1030 int seg = STIDX(va); 1031 int ptn = PTIDX(va); 1032 u_int pa = 0; 1033 int s = splvm(); 1034 1035 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) { 1036 *pap = TTE_PA(pa) | (va & PGOFSET); 1037 } 1038 splx(s); 1039 return (pa != 0); 1040 } 1041 1042 /* 1043 * Lower the protection on the specified range of this pmap. 1044 * 1045 * There are only two cases: either the protection is going to 0, 1046 * or it is going to read-only. 1047 */ 1048 void 1049 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1050 { 1051 volatile u_int *ptp; 1052 int s, bic; 1053 1054 if ((prot & VM_PROT_READ) == 0) { 1055 pmap_remove(pm, sva, eva); 1056 return; 1057 } 1058 bic = 0; 1059 if ((prot & VM_PROT_WRITE) == 0) { 1060 bic |= TTE_WR; 1061 } 1062 if ((prot & VM_PROT_EXECUTE) == 0) { 1063 bic |= TTE_EX; 1064 } 1065 if (bic == 0) { 1066 return; 1067 } 1068 s = splvm(); 1069 while (sva < eva) { 1070 if ((ptp = pte_find(pm, sva)) != NULL) { 1071 *ptp &= ~bic; 1072 ppc4xx_tlb_flush(sva, pm->pm_ctx); 1073 } 1074 sva += PAGE_SIZE; 1075 } 1076 splx(s); 1077 } 1078 1079 boolean_t 1080 check_attr(struct vm_page *pg, u_int mask, int clear) 1081 { 1082 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1083 int s; 1084 char *attr; 1085 int rv; 1086 1087 /* 1088 * First modify bits in cache. 1089 */ 1090 s = splvm(); 1091 attr = pa_to_attr(pa); 1092 if (attr == NULL) 1093 return FALSE; 1094 1095 rv = ((*attr & mask) != 0); 1096 if (clear) { 1097 *attr &= ~mask; 1098 pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0); 1099 } 1100 splx(s); 1101 return rv; 1102 } 1103 1104 1105 /* 1106 * Lower the protection on the specified physical page. 1107 * 1108 * There are only two cases: either the protection is going to 0, 1109 * or it is going to read-only. 1110 */ 1111 void 1112 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1113 { 1114 paddr_t pa = VM_PAGE_TO_PHYS(pg); 1115 vaddr_t va; 1116 struct pv_entry *pvh, *pv, *npv; 1117 struct pmap *pm; 1118 1119 pvh = pa_to_pv(pa); 1120 if (pvh == NULL) 1121 return; 1122 1123 /* Handle extra pvs which may be deleted in the operation */ 1124 for (pv = pvh->pv_next; pv; pv = npv) { 1125 npv = pv->pv_next; 1126 1127 pm = pv->pv_pm; 1128 va = pv->pv_va; 1129 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1130 } 1131 /* Now check the head pv */ 1132 if (pvh->pv_pm) { 1133 pv = pvh; 1134 pm = pv->pv_pm; 1135 va = pv->pv_va; 1136 pmap_protect(pm, va, va + PAGE_SIZE, prot); 1137 } 1138 } 1139 1140 /* 1141 * Activate the address space for the specified process. If the process 1142 * is the current process, load the new MMU context. 1143 */ 1144 void 1145 pmap_activate(struct lwp *l) 1146 { 1147 #if 0 1148 struct pcb *pcb = &l->l_proc->p_addr->u_pcb; 1149 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1150 1151 /* 1152 * XXX Normally performed in cpu_fork(). 1153 */ 1154 printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1155 pcb->pcb_pm = pmap; 1156 #endif 1157 } 1158 1159 /* 1160 * Deactivate the specified process's address space. 1161 */ 1162 void 1163 pmap_deactivate(struct lwp *l) 1164 { 1165 } 1166 1167 /* 1168 * Synchronize caches corresponding to [addr, addr+len) in p. 1169 */ 1170 void 1171 pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1172 { 1173 struct pmap *pm = p->p_vmspace->vm_map.pmap; 1174 int msr, ctx, opid, step; 1175 1176 step = CACHELINESIZE; 1177 1178 /* 1179 * Need to turn off IMMU and switch to user context. 1180 * (icbi uses DMMU). 1181 */ 1182 if (!(ctx = pm->pm_ctx)) { 1183 /* No context -- assign it one */ 1184 ctx_alloc(pm); 1185 ctx = pm->pm_ctx; 1186 } 1187 __asm __volatile("mfmsr %0;" 1188 "li %1, %7;" 1189 "andc %1,%0,%1;" 1190 "mtmsr %1;" 1191 "sync;isync;" 1192 "mfpid %1;" 1193 "mtpid %2;" 1194 "sync; isync;" 1195 "1:" 1196 "dcbf 0,%3;" 1197 "icbi 0,%3;" 1198 "add %3,%3,%5;" 1199 "addc. %4,%4,%6;" 1200 "bge 1b;" 1201 "mtpid %1;" 1202 "mtmsr %0;" 1203 "sync; isync" 1204 : "=&r" (msr), "=&r" (opid) 1205 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step), 1206 "K" (PSL_IR | PSL_DR)); 1207 } 1208 1209 1210 /* This has to be done in real mode !!! */ 1211 void 1212 ppc4xx_tlb_flush(vaddr_t va, int pid) 1213 { 1214 u_long i, found; 1215 u_long msr; 1216 1217 /* If there's no context then it can't be mapped. */ 1218 if (!pid) 1219 return; 1220 1221 asm("mfpid %1;" /* Save PID */ 1222 "mfmsr %2;" /* Save MSR */ 1223 "li %0,0;" /* Now clear MSR */ 1224 "mtmsr %0;" 1225 "mtpid %4;" /* Set PID */ 1226 "sync;" 1227 "tlbsx. %0,0,%3;" /* Search TLB */ 1228 "sync;" 1229 "mtpid %1;" /* Restore PID */ 1230 "mtmsr %2;" /* Restore MSR */ 1231 "sync;isync;" 1232 "li %1,1;" 1233 "beq 1f;" 1234 "li %1,0;" 1235 "1:" 1236 : "=&r" (i), "=&r" (found), "=&r" (msr) 1237 : "r" (va), "r" (pid)); 1238 if (found && !TLB_LOCKED(i)) { 1239 1240 /* Now flush translation */ 1241 asm volatile( 1242 "tlbwe %0,%1,0;" 1243 "sync;isync;" 1244 : : "r" (0), "r" (i)); 1245 1246 tlb_info[i].ti_ctx = 0; 1247 tlb_info[i].ti_flags = 0; 1248 tlbnext = i; 1249 /* Successful flushes */ 1250 tlbflush_ev.ev_count++; 1251 } 1252 } 1253 1254 void 1255 ppc4xx_tlb_flush_all(void) 1256 { 1257 u_long i; 1258 1259 for (i = 0; i < NTLB; i++) 1260 if (!TLB_LOCKED(i)) { 1261 asm volatile( 1262 "tlbwe %0,%1,0;" 1263 "sync;isync;" 1264 : : "r" (0), "r" (i)); 1265 tlb_info[i].ti_ctx = 0; 1266 tlb_info[i].ti_flags = 0; 1267 } 1268 1269 asm volatile("sync;isync"); 1270 } 1271 1272 /* Find a TLB entry to evict. */ 1273 static int 1274 ppc4xx_tlb_find_victim(void) 1275 { 1276 int flags; 1277 1278 for (;;) { 1279 if (++tlbnext >= NTLB) 1280 tlbnext = TLB_NRESERVED; 1281 flags = tlb_info[tlbnext].ti_flags; 1282 if (!(flags & TLBF_USED) || 1283 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1284 u_long va, stack = (u_long)&va; 1285 1286 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && 1287 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1288 (flags & TLBF_USED)) { 1289 /* Kernel stack page */ 1290 flags |= TLBF_USED; 1291 tlb_info[tlbnext].ti_flags = flags; 1292 } else { 1293 /* Found it! */ 1294 return (tlbnext); 1295 } 1296 } else { 1297 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1298 } 1299 } 1300 } 1301 1302 void 1303 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1304 { 1305 u_long th, tl, idx; 1306 tlbpid_t pid; 1307 u_short msr; 1308 paddr_t pa; 1309 int s, sz; 1310 1311 tlbenter_ev.ev_count++; 1312 1313 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1314 pa = (pte & TTE_RPN_MASK(sz)); 1315 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1316 tl = (pte & ~TLB_RPN_MASK) | pa; 1317 tl |= ppc4xx_tlbflags(va, pa); 1318 1319 s = splhigh(); 1320 idx = ppc4xx_tlb_find_victim(); 1321 1322 #ifdef DIAGNOSTIC 1323 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) { 1324 panic("ppc4xx_tlb_enter: repacing entry %ld", idx); 1325 } 1326 #endif 1327 1328 tlb_info[idx].ti_va = (va & TLB_EPN_MASK); 1329 tlb_info[idx].ti_ctx = ctx; 1330 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; 1331 1332 asm volatile( 1333 "mfmsr %0;" /* Save MSR */ 1334 "li %1,0;" 1335 "tlbwe %1,%3,0;" /* Invalidate old entry. */ 1336 "mtmsr %1;" /* Clear MSR */ 1337 "mfpid %1;" /* Save old PID */ 1338 "mtpid %2;" /* Load translation ctx */ 1339 "sync; isync;" 1340 #ifdef DEBUG 1341 "andi. %3,%3,63;" 1342 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */ 1343 #endif 1344 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ 1345 "sync; isync;" 1346 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ 1347 "sync; isync;" 1348 : "=&r" (msr), "=&r" (pid) 1349 : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); 1350 splx(s); 1351 } 1352 1353 void 1354 ppc4xx_tlb_unpin(int i) 1355 { 1356 1357 if (i == -1) 1358 for (i = 0; i < TLB_NRESERVED; i++) 1359 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1360 else 1361 tlb_info[i].ti_flags &= ~TLBF_LOCKED; 1362 } 1363 1364 void 1365 ppc4xx_tlb_init(void) 1366 { 1367 int i; 1368 1369 /* Mark reserved TLB entries */ 1370 for (i = 0; i < TLB_NRESERVED; i++) { 1371 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1372 tlb_info[i].ti_ctx = KERNEL_PID; 1373 } 1374 1375 /* Setup security zones */ 1376 /* Z0 - accessible by kernel only if TLB entry permissions allow 1377 * Z1,Z2 - access is controlled by TLB entry permissions 1378 * Z3 - full access regardless of TLB entry permissions 1379 */ 1380 1381 asm volatile( 1382 "mtspr %0,%1;" 1383 "sync;" 1384 :: "K"(SPR_ZPR), "r" (0x1b000000)); 1385 } 1386 1387 1388 /* 1389 * We should pass the ctx in from trap code. 1390 */ 1391 int 1392 pmap_tlbmiss(vaddr_t va, int ctx) 1393 { 1394 volatile u_int *pte; 1395 u_long tte; 1396 1397 tlbmiss_ev.ev_count++; 1398 1399 /* 1400 * XXXX We will reserve 0-0x80000000 for va==pa mappings. 1401 */ 1402 if (ctx != KERNEL_PID || (va & 0x80000000)) { 1403 pte = pte_find((struct pmap *)ctxbusy[ctx], va); 1404 if (pte == NULL) { 1405 /* Map unmanaged addresses directly for kernel access */ 1406 return 1; 1407 } 1408 tte = *pte; 1409 if (tte == 0) { 1410 return 1; 1411 } 1412 } else { 1413 /* Create a 16MB writable mapping. */ 1414 #ifdef PPC_4XX_NOCACHE 1415 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR; 1416 #else 1417 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1418 #endif 1419 } 1420 tlbhit_ev.ev_count++; 1421 ppc4xx_tlb_enter(ctx, va, tte); 1422 1423 return 0; 1424 } 1425 1426 /* 1427 * Flush all the entries matching a context from the TLB. 1428 */ 1429 static int 1430 ctx_flush(int cnum) 1431 { 1432 int i; 1433 1434 /* We gotta steal this context */ 1435 for (i = TLB_NRESERVED; i < NTLB; i++) { 1436 if (tlb_info[i].ti_ctx == cnum) { 1437 /* Can't steal ctx if it has a locked entry. */ 1438 if (TLB_LOCKED(i)) { 1439 #ifdef DIAGNOSTIC 1440 printf("ctx_flush: can't invalidate " 1441 "locked mapping %d " 1442 "for context %d\n", i, cnum); 1443 #ifdef DDB 1444 Debugger(); 1445 #endif 1446 #endif 1447 return (1); 1448 } 1449 #ifdef DIAGNOSTIC 1450 if (i < TLB_NRESERVED) 1451 panic("TLB entry %d not locked", i); 1452 #endif 1453 /* Invalidate particular TLB entry regardless of locked status */ 1454 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); 1455 tlb_info[i].ti_flags = 0; 1456 } 1457 } 1458 return (0); 1459 } 1460 1461 /* 1462 * Allocate a context. If necessary, steal one from someone else. 1463 * 1464 * The new context is flushed from the TLB before returning. 1465 */ 1466 int 1467 ctx_alloc(struct pmap *pm) 1468 { 1469 int s, cnum; 1470 static int next = MINCTX; 1471 1472 if (pm == pmap_kernel()) { 1473 #ifdef DIAGNOSTIC 1474 printf("ctx_alloc: kernel pmap!\n"); 1475 #endif 1476 return (0); 1477 } 1478 s = splvm(); 1479 1480 /* Find a likely context. */ 1481 cnum = next; 1482 do { 1483 if ((++cnum) > NUMCTX) 1484 cnum = MINCTX; 1485 } while (ctxbusy[cnum] != NULL && cnum != next); 1486 1487 /* Now clean it out */ 1488 oops: 1489 if (cnum < MINCTX) 1490 cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1491 if (ctx_flush(cnum)) { 1492 /* oops -- something's wired. */ 1493 if ((++cnum) > NUMCTX) 1494 cnum = MINCTX; 1495 goto oops; 1496 } 1497 1498 if (ctxbusy[cnum]) { 1499 #ifdef DEBUG 1500 /* We should identify this pmap and clear it */ 1501 printf("Warning: stealing context %d\n", cnum); 1502 #endif 1503 ctxbusy[cnum]->pm_ctx = 0; 1504 } 1505 ctxbusy[cnum] = pm; 1506 next = cnum; 1507 splx(s); 1508 pm->pm_ctx = cnum; 1509 1510 return cnum; 1511 } 1512 1513 /* 1514 * Give away a context. 1515 */ 1516 void 1517 ctx_free(struct pmap *pm) 1518 { 1519 int oldctx; 1520 1521 oldctx = pm->pm_ctx; 1522 1523 if (oldctx == 0) 1524 panic("ctx_free: freeing kernel context"); 1525 #ifdef DIAGNOSTIC 1526 if (ctxbusy[oldctx] == 0) 1527 printf("ctx_free: freeing free context %d\n", oldctx); 1528 if (ctxbusy[oldctx] != pm) { 1529 printf("ctx_free: freeing someone esle's context\n " 1530 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", 1531 oldctx, (void *)(u_long)ctxbusy[oldctx], pm); 1532 #ifdef DDB 1533 Debugger(); 1534 #endif 1535 } 1536 #endif 1537 /* We should verify it has not been stolen and reallocated... */ 1538 ctxbusy[oldctx] = NULL; 1539 ctx_flush(oldctx); 1540 } 1541 1542 1543 #ifdef DEBUG 1544 /* 1545 * Test ref/modify handling. 1546 */ 1547 void pmap_testout __P((void)); 1548 void 1549 pmap_testout() 1550 { 1551 vaddr_t va; 1552 volatile int *loc; 1553 int val = 0; 1554 paddr_t pa; 1555 struct vm_page *pg; 1556 int ref, mod; 1557 1558 /* Allocate a page */ 1559 va = (vaddr_t)uvm_km_zalloc(kernel_map, PAGE_SIZE); 1560 loc = (int*)va; 1561 1562 pmap_extract(pmap_kernel(), va, &pa); 1563 pg = PHYS_TO_VM_PAGE(pa); 1564 pmap_unwire(pmap_kernel(), va); 1565 1566 pmap_remove(pmap_kernel(), va, va+1); 1567 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1568 pmap_update(pmap_kernel()); 1569 1570 /* Now clear reference and modify */ 1571 ref = pmap_clear_reference(pg); 1572 mod = pmap_clear_modify(pg); 1573 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1574 (void *)(u_long)va, (long)pa, 1575 ref, mod); 1576 1577 /* Check it's properly cleared */ 1578 ref = pmap_is_referenced(pg); 1579 mod = pmap_is_modified(pg); 1580 printf("Checking cleared page: ref %d, mod %d\n", 1581 ref, mod); 1582 1583 /* Reference page */ 1584 val = *loc; 1585 1586 ref = pmap_is_referenced(pg); 1587 mod = pmap_is_modified(pg); 1588 printf("Referenced page: ref %d, mod %d val %x\n", 1589 ref, mod, val); 1590 1591 /* Now clear reference and modify */ 1592 ref = pmap_clear_reference(pg); 1593 mod = pmap_clear_modify(pg); 1594 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1595 (void *)(u_long)va, (long)pa, 1596 ref, mod); 1597 1598 /* Modify page */ 1599 *loc = 1; 1600 1601 ref = pmap_is_referenced(pg); 1602 mod = pmap_is_modified(pg); 1603 printf("Modified page: ref %d, mod %d\n", 1604 ref, mod); 1605 1606 /* Now clear reference and modify */ 1607 ref = pmap_clear_reference(pg); 1608 mod = pmap_clear_modify(pg); 1609 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1610 (void *)(u_long)va, (long)pa, 1611 ref, mod); 1612 1613 /* Check it's properly cleared */ 1614 ref = pmap_is_referenced(pg); 1615 mod = pmap_is_modified(pg); 1616 printf("Checking cleared page: ref %d, mod %d\n", 1617 ref, mod); 1618 1619 /* Modify page */ 1620 *loc = 1; 1621 1622 ref = pmap_is_referenced(pg); 1623 mod = pmap_is_modified(pg); 1624 printf("Modified page: ref %d, mod %d\n", 1625 ref, mod); 1626 1627 /* Check pmap_protect() */ 1628 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); 1629 pmap_update(pmap_kernel()); 1630 ref = pmap_is_referenced(pg); 1631 mod = pmap_is_modified(pg); 1632 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", 1633 ref, mod); 1634 1635 /* Now clear reference and modify */ 1636 ref = pmap_clear_reference(pg); 1637 mod = pmap_clear_modify(pg); 1638 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1639 (void *)(u_long)va, (long)pa, 1640 ref, mod); 1641 1642 /* Reference page */ 1643 val = *loc; 1644 1645 ref = pmap_is_referenced(pg); 1646 mod = pmap_is_modified(pg); 1647 printf("Referenced page: ref %d, mod %d val %x\n", 1648 ref, mod, val); 1649 1650 /* Now clear reference and modify */ 1651 ref = pmap_clear_reference(pg); 1652 mod = pmap_clear_modify(pg); 1653 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1654 (void *)(u_long)va, (long)pa, 1655 ref, mod); 1656 1657 /* Modify page */ 1658 #if 0 1659 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1660 pmap_update(pmap_kernel()); 1661 #endif 1662 *loc = 1; 1663 1664 ref = pmap_is_referenced(pg); 1665 mod = pmap_is_modified(pg); 1666 printf("Modified page: ref %d, mod %d\n", 1667 ref, mod); 1668 1669 /* Check pmap_protect() */ 1670 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); 1671 pmap_update(pmap_kernel()); 1672 ref = pmap_is_referenced(pg); 1673 mod = pmap_is_modified(pg); 1674 printf("pmap_protect(): ref %d, mod %d\n", 1675 ref, mod); 1676 1677 /* Now clear reference and modify */ 1678 ref = pmap_clear_reference(pg); 1679 mod = pmap_clear_modify(pg); 1680 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1681 (void *)(u_long)va, (long)pa, 1682 ref, mod); 1683 1684 /* Reference page */ 1685 val = *loc; 1686 1687 ref = pmap_is_referenced(pg); 1688 mod = pmap_is_modified(pg); 1689 printf("Referenced page: ref %d, mod %d val %x\n", 1690 ref, mod, val); 1691 1692 /* Now clear reference and modify */ 1693 ref = pmap_clear_reference(pg); 1694 mod = pmap_clear_modify(pg); 1695 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1696 (void *)(u_long)va, (long)pa, 1697 ref, mod); 1698 1699 /* Modify page */ 1700 #if 0 1701 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1702 pmap_update(pmap_kernel()); 1703 #endif 1704 *loc = 1; 1705 1706 ref = pmap_is_referenced(pg); 1707 mod = pmap_is_modified(pg); 1708 printf("Modified page: ref %d, mod %d\n", 1709 ref, mod); 1710 1711 /* Check pmap_pag_protect() */ 1712 pmap_page_protect(pg, VM_PROT_READ); 1713 ref = pmap_is_referenced(pg); 1714 mod = pmap_is_modified(pg); 1715 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", 1716 ref, mod); 1717 1718 /* Now clear reference and modify */ 1719 ref = pmap_clear_reference(pg); 1720 mod = pmap_clear_modify(pg); 1721 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1722 (void *)(u_long)va, (long)pa, 1723 ref, mod); 1724 1725 /* Reference page */ 1726 val = *loc; 1727 1728 ref = pmap_is_referenced(pg); 1729 mod = pmap_is_modified(pg); 1730 printf("Referenced page: ref %d, mod %d val %x\n", 1731 ref, mod, val); 1732 1733 /* Now clear reference and modify */ 1734 ref = pmap_clear_reference(pg); 1735 mod = pmap_clear_modify(pg); 1736 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1737 (void *)(u_long)va, (long)pa, 1738 ref, mod); 1739 1740 /* Modify page */ 1741 #if 0 1742 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1743 pmap_update(pmap_kernel()); 1744 #endif 1745 *loc = 1; 1746 1747 ref = pmap_is_referenced(pg); 1748 mod = pmap_is_modified(pg); 1749 printf("Modified page: ref %d, mod %d\n", 1750 ref, mod); 1751 1752 /* Check pmap_pag_protect() */ 1753 pmap_page_protect(pg, VM_PROT_NONE); 1754 ref = pmap_is_referenced(pg); 1755 mod = pmap_is_modified(pg); 1756 printf("pmap_page_protect(): ref %d, mod %d\n", 1757 ref, mod); 1758 1759 /* Now clear reference and modify */ 1760 ref = pmap_clear_reference(pg); 1761 mod = pmap_clear_modify(pg); 1762 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1763 (void *)(u_long)va, (long)pa, 1764 ref, mod); 1765 1766 1767 /* Reference page */ 1768 val = *loc; 1769 1770 ref = pmap_is_referenced(pg); 1771 mod = pmap_is_modified(pg); 1772 printf("Referenced page: ref %d, mod %d val %x\n", 1773 ref, mod, val); 1774 1775 /* Now clear reference and modify */ 1776 ref = pmap_clear_reference(pg); 1777 mod = pmap_clear_modify(pg); 1778 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1779 (void *)(u_long)va, (long)pa, 1780 ref, mod); 1781 1782 /* Modify page */ 1783 #if 0 1784 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1785 pmap_update(pmap_kernel()); 1786 #endif 1787 *loc = 1; 1788 1789 ref = pmap_is_referenced(pg); 1790 mod = pmap_is_modified(pg); 1791 printf("Modified page: ref %d, mod %d\n", 1792 ref, mod); 1793 1794 /* Unmap page */ 1795 pmap_remove(pmap_kernel(), va, va+1); 1796 pmap_update(pmap_kernel()); 1797 ref = pmap_is_referenced(pg); 1798 mod = pmap_is_modified(pg); 1799 printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1800 1801 /* Now clear reference and modify */ 1802 ref = pmap_clear_reference(pg); 1803 mod = pmap_clear_modify(pg); 1804 printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1805 (void *)(u_long)va, (long)pa, ref, mod); 1806 1807 /* Check it's properly cleared */ 1808 ref = pmap_is_referenced(pg); 1809 mod = pmap_is_modified(pg); 1810 printf("Checking cleared page: ref %d, mod %d\n", 1811 ref, mod); 1812 1813 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 1814 VM_PROT_ALL|PMAP_WIRED); 1815 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE); 1816 } 1817 #endif 1818