1 /* $NetBSD: if_emac.c,v 1.53 2020/07/06 09:34:17 rin Exp $ */ 2 3 /* 4 * Copyright 2001, 2002 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * emac(4) supports following ibm4xx's EMACs. 40 * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet... 41 * 42 * tested 43 * ------ 44 * 405EP - 10/100 x2 45 * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII 46 * 405GP/GPr o 10/100 47 * 440EP - 10/100 x2, ZMII 48 * 440GP - 10/100 x2, ZMII 49 * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3) 50 * 440SP - 10/100/1000 51 * 440SPe - 10/100/1000, STA v2 52 */ 53 54 #include <sys/cdefs.h> 55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.53 2020/07/06 09:34:17 rin Exp $"); 56 57 #ifdef _KERNEL_OPT 58 #include "opt_emac.h" 59 #endif 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/mbuf.h> 64 #include <sys/kernel.h> 65 #include <sys/socket.h> 66 #include <sys/ioctl.h> 67 #include <sys/cpu.h> 68 #include <sys/device.h> 69 70 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_ether.h> 76 77 #include <net/bpf.h> 78 79 #include <powerpc/ibm4xx/cpu.h> 80 #include <powerpc/ibm4xx/dcr4xx.h> 81 #include <powerpc/ibm4xx/mal405gp.h> 82 #include <powerpc/ibm4xx/dev/emacreg.h> 83 #include <powerpc/ibm4xx/dev/if_emacreg.h> 84 #include <powerpc/ibm4xx/dev/if_emacvar.h> 85 #include <powerpc/ibm4xx/dev/malvar.h> 86 #include <powerpc/ibm4xx/dev/opbreg.h> 87 #include <powerpc/ibm4xx/dev/opbvar.h> 88 #include <powerpc/ibm4xx/dev/plbvar.h> 89 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY) 90 #include <powerpc/ibm4xx/dev/rmiivar.h> 91 #endif 92 93 #include <dev/mii/miivar.h> 94 95 #include "locators.h" 96 97 98 /* 99 * Transmit descriptor list size. There are two Tx channels, each with 100 * up to 256 hardware descriptors available. We currently use one Tx 101 * channel. We tell the upper layers that they can queue a lot of 102 * packets, and we go ahead and manage up to 64 of them at a time. We 103 * allow up to 16 DMA segments per packet. 104 */ 105 #define EMAC_NTXSEGS 16 106 #define EMAC_TXQUEUELEN 64 107 #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1) 108 #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4) 109 #define EMAC_NTXDESC 256 110 #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1) 111 #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK) 112 #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK) 113 114 /* 115 * Receive descriptor list size. There is one Rx channel with up to 256 116 * hardware descriptors available. We allocate 64 receive descriptors, 117 * each with a 2k buffer (MCLBYTES). 118 */ 119 #define EMAC_NRXDESC 64 120 #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1) 121 #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK) 122 #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK) 123 124 /* 125 * Transmit/receive descriptors that are DMA'd to the EMAC. 126 */ 127 struct emac_control_data { 128 struct mal_descriptor ecd_txdesc[EMAC_NTXDESC]; 129 struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC]; 130 }; 131 132 #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x) 133 #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)]) 134 #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)]) 135 136 /* 137 * Software state for transmit jobs. 138 */ 139 struct emac_txsoft { 140 struct mbuf *txs_mbuf; /* head of mbuf chain */ 141 bus_dmamap_t txs_dmamap; /* our DMA map */ 142 int txs_firstdesc; /* first descriptor in packet */ 143 int txs_lastdesc; /* last descriptor in packet */ 144 int txs_ndesc; /* # of descriptors used */ 145 }; 146 147 /* 148 * Software state for receive descriptors. 149 */ 150 struct emac_rxsoft { 151 struct mbuf *rxs_mbuf; /* head of mbuf chain */ 152 bus_dmamap_t rxs_dmamap; /* our DMA map */ 153 }; 154 155 /* 156 * Software state per device. 157 */ 158 struct emac_softc { 159 device_t sc_dev; /* generic device information */ 160 int sc_instance; /* instance no. */ 161 bus_space_tag_t sc_st; /* bus space tag */ 162 bus_space_handle_t sc_sh; /* bus space handle */ 163 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 164 struct ethercom sc_ethercom; /* ethernet common data */ 165 void *sc_sdhook; /* shutdown hook */ 166 void *sc_powerhook; /* power management hook */ 167 168 struct mii_data sc_mii; /* MII/media information */ 169 struct callout sc_callout; /* tick callout */ 170 171 uint32_t sc_mr1; /* copy of Mode Register 1 */ 172 uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */ 173 uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */ 174 uint32_t sc_stacr_bits; /* misc bits of STACR */ 175 bool sc_stacr_completed; /* Operation completed of STACR */ 176 int sc_htsize; /* Hash Table size */ 177 178 bus_dmamap_t sc_cddmamap; /* control data dma map */ 179 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 180 181 /* Software state for transmit/receive descriptors. */ 182 struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN]; 183 struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC]; 184 185 /* Control data structures. */ 186 struct emac_control_data *sc_control_data; 187 #define sc_txdescs sc_control_data->ecd_txdesc 188 #define sc_rxdescs sc_control_data->ecd_rxdesc 189 190 #ifdef EMAC_EVENT_COUNTERS 191 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 192 struct evcnt sc_ev_txintr; /* Tx interrupts */ 193 struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */ 194 struct evcnt sc_ev_txde; /* Tx descriptor interrupts */ 195 struct evcnt sc_ev_intr; /* General EMAC interrupts */ 196 197 struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */ 198 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 199 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 200 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */ 201 struct evcnt sc_ev_tu; /* Tx underrun */ 202 #endif /* EMAC_EVENT_COUNTERS */ 203 204 int sc_txfree; /* number of free Tx descriptors */ 205 int sc_txnext; /* next ready Tx descriptor */ 206 207 int sc_txsfree; /* number of free Tx jobs */ 208 int sc_txsnext; /* next ready Tx job */ 209 int sc_txsdirty; /* dirty Tx jobs */ 210 211 int sc_rxptr; /* next ready RX descriptor/descsoft */ 212 213 void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */ 214 void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/ 215 void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */ 216 }; 217 218 #ifdef EMAC_EVENT_COUNTERS 219 #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++ 220 #else 221 #define EMAC_EVCNT_INCR(ev) /* nothing */ 222 #endif 223 224 #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x))) 225 #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x))) 226 227 #define EMAC_CDTXSYNC(sc, x, n, ops) \ 228 do { \ 229 int __x, __n; \ 230 \ 231 __x = (x); \ 232 __n = (n); \ 233 \ 234 /* If it will wrap around, sync to the end of the ring. */ \ 235 if ((__x + __n) > EMAC_NTXDESC) { \ 236 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 237 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \ 238 (EMAC_NTXDESC - __x), (ops)); \ 239 __n -= (EMAC_NTXDESC - __x); \ 240 __x = 0; \ 241 } \ 242 \ 243 /* Now sync whatever is left. */ \ 244 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 245 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \ 246 } while (/*CONSTCOND*/0) 247 248 #define EMAC_CDRXSYNC(sc, x, ops) \ 249 do { \ 250 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 251 EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \ 252 } while (/*CONSTCOND*/0) 253 254 #define EMAC_INIT_RXDESC(sc, x) \ 255 do { \ 256 struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 257 struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \ 258 struct mbuf *__m = __rxs->rxs_mbuf; \ 259 \ 260 /* \ 261 * Note: We scoot the packet forward 2 bytes in the buffer \ 262 * so that the payload after the Ethernet header is aligned \ 263 * to a 4-byte boundary. \ 264 */ \ 265 __m->m_data = __m->m_ext.ext_buf + 2; \ 266 \ 267 __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \ 268 __rxd->md_data_len = __m->m_ext.ext_size - 2; \ 269 __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \ 270 /* Set wrap on last descriptor. */ \ 271 (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \ 272 EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ 273 } while (/*CONSTCOND*/0) 274 275 #define EMAC_WRITE(sc, reg, val) \ 276 bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) 277 #define EMAC_READ(sc, reg) \ 278 bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg)) 279 280 #define EMAC_SET_FILTER(aht, crc) \ 281 do { \ 282 (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \ 283 } while (/*CONSTCOND*/0) 284 #define EMAC_SET_FILTER256(aht, crc) \ 285 do { \ 286 (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \ 287 } while (/*CONSTCOND*/0) 288 289 static int emac_match(device_t, cfdata_t, void *); 290 static void emac_attach(device_t, device_t, void *); 291 292 static int emac_intr(void *); 293 static void emac_shutdown(void *); 294 295 static void emac_start(struct ifnet *); 296 static int emac_ioctl(struct ifnet *, u_long, void *); 297 static int emac_init(struct ifnet *); 298 static void emac_stop(struct ifnet *, int); 299 static void emac_watchdog(struct ifnet *); 300 301 static int emac_add_rxbuf(struct emac_softc *, int); 302 static void emac_rxdrain(struct emac_softc *); 303 static int emac_set_filter(struct emac_softc *); 304 static int emac_txreap(struct emac_softc *); 305 306 static void emac_soft_reset(struct emac_softc *); 307 static void emac_smart_reset(struct emac_softc *); 308 309 static int emac_mii_readreg(device_t, int, int, uint16_t *); 310 static int emac_mii_writereg(device_t, int, int, uint16_t); 311 static void emac_mii_statchg(struct ifnet *); 312 static uint32_t emac_mii_wait(struct emac_softc *); 313 static void emac_mii_tick(void *); 314 315 int emac_copy_small = 0; 316 317 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc), 318 emac_match, emac_attach, NULL, NULL); 319 320 321 static int 322 emac_match(device_t parent, cfdata_t cf, void *aux) 323 { 324 struct opb_attach_args *oaa = aux; 325 326 /* match only on-chip ethernet devices */ 327 if (strcmp(oaa->opb_name, cf->cf_name) == 0) 328 return 1; 329 330 return 0; 331 } 332 333 static void 334 emac_attach(device_t parent, device_t self, void *aux) 335 { 336 struct opb_attach_args *oaa = aux; 337 struct emac_softc *sc = device_private(self); 338 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 339 struct mii_data *mii = &sc->sc_mii; 340 const char * xname = device_xname(self); 341 bus_dma_segment_t seg; 342 int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY; 343 const uint8_t *enaddr; 344 prop_dictionary_t dict = device_properties(self); 345 prop_data_t ea; 346 347 bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh); 348 349 sc->sc_dev = self; 350 sc->sc_instance = oaa->opb_instance; 351 sc->sc_st = oaa->opb_bt; 352 sc->sc_dmat = oaa->opb_dmat; 353 354 callout_init(&sc->sc_callout, 0); 355 356 aprint_naive("\n"); 357 aprint_normal(": Ethernet Media Access Controller\n"); 358 359 /* Fetch the Ethernet address. */ 360 ea = prop_dictionary_get(dict, "mac-address"); 361 if (ea == NULL) { 362 aprint_error_dev(self, "unable to get mac-address property\n"); 363 return; 364 } 365 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 366 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 367 enaddr = prop_data_data_nocopy(ea); 368 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr)); 369 370 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY) 371 /* Fetch the MII offset. */ 372 prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy); 373 374 #ifdef EMAC_ZMII_PHY 375 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII) 376 zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable, 377 &sc->sc_rmii_disable, &sc->sc_rmii_speed); 378 #endif 379 #ifdef EMAC_RGMII_PHY 380 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII) 381 rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable, 382 &sc->sc_rmii_disable, &sc->sc_rmii_speed); 383 #endif 384 #endif 385 386 /* 387 * Allocate the control data structures, and create and load the 388 * DMA map for it. 389 */ 390 if ((error = bus_dmamem_alloc(sc->sc_dmat, 391 sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) { 392 aprint_error_dev(self, 393 "unable to allocate control data, error = %d\n", error); 394 goto fail_0; 395 } 396 397 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, 398 sizeof(struct emac_control_data), (void **)&sc->sc_control_data, 399 BUS_DMA_COHERENT)) != 0) { 400 aprint_error_dev(self, 401 "unable to map control data, error = %d\n", error); 402 goto fail_1; 403 } 404 405 if ((error = bus_dmamap_create(sc->sc_dmat, 406 sizeof(struct emac_control_data), 1, 407 sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 408 aprint_error_dev(self, 409 "unable to create control data DMA map, error = %d\n", 410 error); 411 goto fail_2; 412 } 413 414 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 415 sc->sc_control_data, sizeof(struct emac_control_data), NULL, 416 0)) != 0) { 417 aprint_error_dev(self, 418 "unable to load control data DMA map, error = %d\n", error); 419 goto fail_3; 420 } 421 422 /* 423 * Create the transmit buffer DMA maps. 424 */ 425 for (i = 0; i < EMAC_TXQUEUELEN; i++) { 426 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 427 EMAC_NTXSEGS, MCLBYTES, 0, 0, 428 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 429 aprint_error_dev(self, 430 "unable to create tx DMA map %d, error = %d\n", 431 i, error); 432 goto fail_4; 433 } 434 } 435 436 /* 437 * Create the receive buffer DMA maps. 438 */ 439 for (i = 0; i < EMAC_NRXDESC; i++) { 440 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 441 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 442 aprint_error_dev(self, 443 "unable to create rx DMA map %d, error = %d\n", 444 i, error); 445 goto fail_5; 446 } 447 sc->sc_rxsoft[i].rxs_mbuf = NULL; 448 } 449 450 /* Soft Reset the EMAC. The chip to a known state. */ 451 emac_soft_reset(sc); 452 453 opb_freq = opb_get_frequency(); 454 switch (opb_freq) { 455 case 50000000: opbc = STACR_OPBC_50MHZ; break; 456 case 66666666: opbc = STACR_OPBC_66MHZ; break; 457 case 83333333: opbc = STACR_OPBC_83MHZ; break; 458 case 100000000: opbc = STACR_OPBC_100MHZ; break; 459 460 default: 461 if (opb_freq > 100000000) { 462 opbc = STACR_OPBC_A100MHZ; 463 break; 464 } 465 aprint_error_dev(self, "unsupport OPB frequency %dMHz\n", 466 opb_freq / 1000 / 1000); 467 goto fail_5; 468 } 469 if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) { 470 sc->sc_mr1 = 471 MR1_RFS_GBE(MR1__FS_16KB) | 472 MR1_TFS_GBE(MR1__FS_16KB) | 473 MR1_TR0_MULTIPLE | 474 MR1_OBCI(opbc); 475 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 476 477 if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) { 478 sc->sc_stacr_read = STACR_STAOPC_READ; 479 sc->sc_stacr_write = STACR_STAOPC_WRITE; 480 sc->sc_stacr_bits = STACR_OC; 481 sc->sc_stacr_completed = false; 482 } else { 483 sc->sc_stacr_read = STACR_READ; 484 sc->sc_stacr_write = STACR_WRITE; 485 sc->sc_stacr_completed = true; 486 } 487 } else { 488 /* 489 * Set up Mode Register 1 - set receive and transmit FIFOs to 490 * maximum size, allow transmit of multiple packets (only 491 * channel 0 is used). 492 * 493 * XXX: Allow pause packets?? 494 */ 495 sc->sc_mr1 = 496 MR1_RFS(MR1__FS_4KB) | 497 MR1_TFS(MR1__FS_2KB) | 498 MR1_TR0_MULTIPLE; 499 500 sc->sc_stacr_read = STACR_READ; 501 sc->sc_stacr_write = STACR_WRITE; 502 sc->sc_stacr_bits = STACR_OPBC(opbc); 503 sc->sc_stacr_completed = true; 504 } 505 506 intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc); 507 mal_intr_establish(sc->sc_instance, sc); 508 509 if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256) 510 sc->sc_htsize = 256; 511 else 512 sc->sc_htsize = 64; 513 514 /* Clear all interrupts */ 515 EMAC_WRITE(sc, EMAC_ISR, ISR_ALL); 516 517 /* 518 * Initialise the media structures. 519 */ 520 mii->mii_ifp = ifp; 521 mii->mii_readreg = emac_mii_readreg; 522 mii->mii_writereg = emac_mii_writereg; 523 mii->mii_statchg = emac_mii_statchg; 524 525 sc->sc_ethercom.ec_mii = mii; 526 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 527 mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY, 528 MIIF_DOPAUSE); 529 if (LIST_FIRST(&mii->mii_phys) == NULL) { 530 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 531 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 532 } else 533 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 534 535 ifp = &sc->sc_ethercom.ec_if; 536 strcpy(ifp->if_xname, xname); 537 ifp->if_softc = sc; 538 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 539 ifp->if_start = emac_start; 540 ifp->if_ioctl = emac_ioctl; 541 ifp->if_init = emac_init; 542 ifp->if_stop = emac_stop; 543 ifp->if_watchdog = emac_watchdog; 544 IFQ_SET_READY(&ifp->if_snd); 545 546 /* 547 * We can support 802.1Q VLAN-sized frames. 548 */ 549 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 550 551 /* 552 * Attach the interface. 553 */ 554 if_attach(ifp); 555 if_deferred_start_init(ifp, NULL); 556 ether_ifattach(ifp, enaddr); 557 558 #ifdef EMAC_EVENT_COUNTERS 559 /* 560 * Attach the event counters. 561 */ 562 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, 563 NULL, xname, "txintr"); 564 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 565 NULL, xname, "rxintr"); 566 evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR, 567 NULL, xname, "txde"); 568 evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR, 569 NULL, xname, "rxde"); 570 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, 571 NULL, xname, "intr"); 572 573 evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC, 574 NULL, xname, "txreap"); 575 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 576 NULL, xname, "txsstall"); 577 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 578 NULL, xname, "txdstall"); 579 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC, 580 NULL, xname, "txdrop"); 581 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC, 582 NULL, xname, "tu"); 583 #endif /* EMAC_EVENT_COUNTERS */ 584 585 /* 586 * Make sure the interface is shutdown during reboot. 587 */ 588 sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc); 589 if (sc->sc_sdhook == NULL) 590 aprint_error_dev(self, 591 "WARNING: unable to establish shutdown hook\n"); 592 593 return; 594 595 /* 596 * Free any resources we've allocated during the failed attach 597 * attempt. Do this in reverse order and fall through. 598 */ 599 fail_5: 600 for (i = 0; i < EMAC_NRXDESC; i++) { 601 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 602 bus_dmamap_destroy(sc->sc_dmat, 603 sc->sc_rxsoft[i].rxs_dmamap); 604 } 605 fail_4: 606 for (i = 0; i < EMAC_TXQUEUELEN; i++) { 607 if (sc->sc_txsoft[i].txs_dmamap != NULL) 608 bus_dmamap_destroy(sc->sc_dmat, 609 sc->sc_txsoft[i].txs_dmamap); 610 } 611 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 612 fail_3: 613 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 614 fail_2: 615 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 616 sizeof(struct emac_control_data)); 617 fail_1: 618 bus_dmamem_free(sc->sc_dmat, &seg, nseg); 619 fail_0: 620 return; 621 } 622 623 /* 624 * EMAC General interrupt handler 625 */ 626 static int 627 emac_intr(void *arg) 628 { 629 struct emac_softc *sc = arg; 630 uint32_t status; 631 632 EMAC_EVCNT_INCR(&sc->sc_ev_intr); 633 status = EMAC_READ(sc, EMAC_ISR); 634 635 /* Clear the interrupt status bits. */ 636 EMAC_WRITE(sc, EMAC_ISR, status); 637 638 return 1; 639 } 640 641 static void 642 emac_shutdown(void *arg) 643 { 644 struct emac_softc *sc = arg; 645 646 emac_stop(&sc->sc_ethercom.ec_if, 0); 647 } 648 649 650 /* 651 * ifnet interface functions 652 */ 653 654 static void 655 emac_start(struct ifnet *ifp) 656 { 657 struct emac_softc *sc = ifp->if_softc; 658 struct mbuf *m0; 659 struct emac_txsoft *txs; 660 bus_dmamap_t dmamap; 661 int error, firsttx, nexttx, lasttx, ofree, seg; 662 663 lasttx = 0; /* XXX gcc */ 664 665 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 666 return; 667 668 /* 669 * Remember the previous number of free descriptors. 670 */ 671 ofree = sc->sc_txfree; 672 673 /* 674 * Loop through the send queue, setting up transmit descriptors 675 * until we drain the queue, or use up all available transmit 676 * descriptors. 677 */ 678 for (;;) { 679 /* Grab a packet off the queue. */ 680 IFQ_POLL(&ifp->if_snd, m0); 681 if (m0 == NULL) 682 break; 683 684 /* 685 * Get a work queue entry. Reclaim used Tx descriptors if 686 * we are running low. 687 */ 688 if (sc->sc_txsfree < EMAC_TXQUEUE_GC) { 689 emac_txreap(sc); 690 if (sc->sc_txsfree == 0) { 691 EMAC_EVCNT_INCR(&sc->sc_ev_txsstall); 692 break; 693 } 694 } 695 696 txs = &sc->sc_txsoft[sc->sc_txsnext]; 697 dmamap = txs->txs_dmamap; 698 699 /* 700 * Load the DMA map. If this fails, the packet either 701 * didn't fit in the alloted number of segments, or we 702 * were short on resources. In this case, we'll copy 703 * and try again. 704 */ 705 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 706 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 707 if (error) { 708 if (error == EFBIG) { 709 EMAC_EVCNT_INCR(&sc->sc_ev_txdrop); 710 aprint_error_ifnet(ifp, 711 "Tx packet consumes too many " 712 "DMA segments, dropping...\n"); 713 IFQ_DEQUEUE(&ifp->if_snd, m0); 714 m_freem(m0); 715 continue; 716 } 717 /* Short on resources, just stop for now. */ 718 break; 719 } 720 721 /* 722 * Ensure we have enough descriptors free to describe 723 * the packet. 724 */ 725 if (dmamap->dm_nsegs > sc->sc_txfree) { 726 /* 727 * Not enough free descriptors to transmit this 728 * packet. We haven't committed anything yet, 729 * so just unload the DMA map, put the packet 730 * back on the queue, and punt. Notify the upper 731 * layer that there are not more slots left. 732 * 733 */ 734 ifp->if_flags |= IFF_OACTIVE; 735 bus_dmamap_unload(sc->sc_dmat, dmamap); 736 EMAC_EVCNT_INCR(&sc->sc_ev_txdstall); 737 break; 738 } 739 740 IFQ_DEQUEUE(&ifp->if_snd, m0); 741 742 /* 743 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 744 */ 745 746 /* Sync the DMA map. */ 747 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 748 BUS_DMASYNC_PREWRITE); 749 750 /* 751 * Store a pointer to the packet so that we can free it 752 * later. 753 */ 754 txs->txs_mbuf = m0; 755 txs->txs_firstdesc = sc->sc_txnext; 756 txs->txs_ndesc = dmamap->dm_nsegs; 757 758 /* 759 * Initialize the transmit descriptor. 760 */ 761 firsttx = sc->sc_txnext; 762 for (nexttx = sc->sc_txnext, seg = 0; 763 seg < dmamap->dm_nsegs; 764 seg++, nexttx = EMAC_NEXTTX(nexttx)) { 765 struct mal_descriptor *txdesc = 766 &sc->sc_txdescs[nexttx]; 767 768 /* 769 * If this is the first descriptor we're 770 * enqueueing, don't set the TX_READY bit just 771 * yet. That could cause a race condition. 772 * We'll do it below. 773 */ 774 txdesc->md_data = dmamap->dm_segs[seg].ds_addr; 775 txdesc->md_data_len = dmamap->dm_segs[seg].ds_len; 776 txdesc->md_stat_ctrl = 777 (txdesc->md_stat_ctrl & MAL_TX_WRAP) | 778 (nexttx == firsttx ? 0 : MAL_TX_READY) | 779 EMAC_TXC_GFCS | EMAC_TXC_GPAD; 780 lasttx = nexttx; 781 } 782 783 /* Set the LAST bit on the last segment. */ 784 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST; 785 786 /* 787 * Set up last segment descriptor to send an interrupt after 788 * that descriptor is transmitted, and bypass existing Tx 789 * descriptor reaping method (for now...). 790 */ 791 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT; 792 793 794 txs->txs_lastdesc = lasttx; 795 796 /* Sync the descriptors we're using. */ 797 EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 798 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 799 800 /* 801 * The entire packet chain is set up. Give the 802 * first descriptor to the chip now. 803 */ 804 sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY; 805 EMAC_CDTXSYNC(sc, firsttx, 1, 806 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 807 /* 808 * Tell the EMAC that a new packet is available. 809 */ 810 EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2); 811 812 /* Advance the tx pointer. */ 813 sc->sc_txfree -= txs->txs_ndesc; 814 sc->sc_txnext = nexttx; 815 816 sc->sc_txsfree--; 817 sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext); 818 819 /* 820 * Pass the packet to any BPF listeners. 821 */ 822 bpf_mtap(ifp, m0, BPF_D_OUT); 823 } 824 825 if (sc->sc_txfree == 0) 826 /* No more slots left; notify upper layer. */ 827 ifp->if_flags |= IFF_OACTIVE; 828 829 if (sc->sc_txfree != ofree) 830 /* Set a watchdog timer in case the chip flakes out. */ 831 ifp->if_timer = 5; 832 } 833 834 static int 835 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data) 836 { 837 struct emac_softc *sc = ifp->if_softc; 838 int s, error; 839 840 s = splnet(); 841 842 switch (cmd) { 843 case SIOCSIFMTU: 844 { 845 struct ifreq *ifr = (struct ifreq *)data; 846 int maxmtu; 847 848 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) 849 maxmtu = EMAC_MAX_MTU; 850 else 851 maxmtu = ETHERMTU; 852 853 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 854 error = EINVAL; 855 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 856 break; 857 else if (ifp->if_flags & IFF_UP) 858 error = emac_init(ifp); 859 else 860 error = 0; 861 break; 862 } 863 864 default: 865 error = ether_ioctl(ifp, cmd, data); 866 if (error == ENETRESET) { 867 /* 868 * Multicast list has changed; set the hardware filter 869 * accordingly. 870 */ 871 if (ifp->if_flags & IFF_RUNNING) 872 error = emac_set_filter(sc); 873 else 874 error = 0; 875 } 876 } 877 878 /* try to get more packets going */ 879 emac_start(ifp); 880 881 splx(s); 882 return error; 883 } 884 885 static int 886 emac_init(struct ifnet *ifp) 887 { 888 struct emac_softc *sc = ifp->if_softc; 889 struct emac_rxsoft *rxs; 890 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 891 int error, i; 892 893 error = 0; 894 895 /* Cancel any pending I/O. */ 896 emac_stop(ifp, 0); 897 898 /* Reset the chip to a known state. */ 899 emac_soft_reset(sc); 900 901 /* 902 * Initialise the transmit descriptor ring. 903 */ 904 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 905 /* set wrap on last descriptor */ 906 sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP; 907 EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC, 908 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 909 sc->sc_txfree = EMAC_NTXDESC; 910 sc->sc_txnext = 0; 911 912 /* 913 * Initialise the transmit job descriptors. 914 */ 915 for (i = 0; i < EMAC_TXQUEUELEN; i++) 916 sc->sc_txsoft[i].txs_mbuf = NULL; 917 sc->sc_txsfree = EMAC_TXQUEUELEN; 918 sc->sc_txsnext = 0; 919 sc->sc_txsdirty = 0; 920 921 /* 922 * Initialise the receiver descriptor and receive job 923 * descriptor rings. 924 */ 925 for (i = 0; i < EMAC_NRXDESC; i++) { 926 rxs = &sc->sc_rxsoft[i]; 927 if (rxs->rxs_mbuf == NULL) { 928 if ((error = emac_add_rxbuf(sc, i)) != 0) { 929 aprint_error_ifnet(ifp, 930 "unable to allocate or map rx buffer %d," 931 " error = %d\n", 932 i, error); 933 /* 934 * XXX Should attempt to run with fewer receive 935 * XXX buffers instead of just failing. 936 */ 937 emac_rxdrain(sc); 938 goto out; 939 } 940 } else 941 EMAC_INIT_RXDESC(sc, i); 942 } 943 sc->sc_rxptr = 0; 944 945 /* 946 * Set the current media. 947 */ 948 if ((error = ether_mediachange(ifp)) != 0) 949 goto out; 950 951 /* 952 * Load the MAC address. 953 */ 954 EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]); 955 EMAC_WRITE(sc, EMAC_IALR, 956 enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]); 957 958 /* Enable the transmit and receive channel on the MAL. */ 959 error = mal_start(sc->sc_instance, 960 EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0)); 961 if (error) 962 goto out; 963 964 sc->sc_mr1 &= ~MR1_JPSM; 965 if (ifp->if_mtu > ETHERMTU) 966 /* Enable Jumbo Packet Support Mode */ 967 sc->sc_mr1 |= MR1_JPSM; 968 969 /* Set fifos, media modes. */ 970 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1); 971 972 /* 973 * Enable Individual and (possibly) Broadcast Address modes, 974 * runt packets, and strip padding. 975 */ 976 EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 | 977 (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) | 978 (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0)); 979 980 /* 981 * Set multicast filter. 982 */ 983 emac_set_filter(sc); 984 985 /* 986 * Set low- and urgent-priority request thresholds. 987 */ 988 EMAC_WRITE(sc, EMAC_TMR1, 989 ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */ 990 ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK)); 991 /* 992 * Set Transmit Request Threshold Register. 993 */ 994 EMAC_WRITE(sc, EMAC_TRTR, TRTR_256); 995 996 /* 997 * Set high and low receive watermarks. 998 */ 999 EMAC_WRITE(sc, EMAC_RWMR, 1000 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT); 1001 1002 /* 1003 * Set frame gap. 1004 */ 1005 EMAC_WRITE(sc, EMAC_IPGVR, 8); 1006 1007 /* 1008 * Set interrupt status enable bits for EMAC. 1009 */ 1010 EMAC_WRITE(sc, EMAC_ISER, 1011 ISR_TXPE | /* TX Parity Error */ 1012 ISR_RXPE | /* RX Parity Error */ 1013 ISR_TXUE | /* TX Underrun Event */ 1014 ISR_RXOE | /* RX Overrun Event */ 1015 ISR_OVR | /* Overrun Error */ 1016 ISR_PP | /* Pause Packet */ 1017 ISR_BP | /* Bad Packet */ 1018 ISR_RP | /* Runt Packet */ 1019 ISR_SE | /* Short Event */ 1020 ISR_ALE | /* Alignment Error */ 1021 ISR_BFCS | /* Bad FCS */ 1022 ISR_PTLE | /* Packet Too Long Error */ 1023 ISR_ORE | /* Out of Range Error */ 1024 ISR_IRE | /* In Range Error */ 1025 ISR_SE0 | /* Signal Quality Error 0 (SQE) */ 1026 ISR_TE0 | /* Transmit Error 0 */ 1027 ISR_MOS | /* MMA Operation Succeeded */ 1028 ISR_MOF); /* MMA Operation Failed */ 1029 1030 /* 1031 * Enable the transmit and receive channel on the EMAC. 1032 */ 1033 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE); 1034 1035 /* 1036 * Start the one second MII clock. 1037 */ 1038 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc); 1039 1040 /* 1041 * ... all done! 1042 */ 1043 ifp->if_flags |= IFF_RUNNING; 1044 ifp->if_flags &= ~IFF_OACTIVE; 1045 1046 out: 1047 if (error) { 1048 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1049 ifp->if_timer = 0; 1050 aprint_error_ifnet(ifp, "interface not running\n"); 1051 } 1052 return error; 1053 } 1054 1055 static void 1056 emac_stop(struct ifnet *ifp, int disable) 1057 { 1058 struct emac_softc *sc = ifp->if_softc; 1059 struct emac_txsoft *txs; 1060 int i; 1061 1062 /* Stop the one second clock. */ 1063 callout_stop(&sc->sc_callout); 1064 1065 /* Down the MII */ 1066 mii_down(&sc->sc_mii); 1067 1068 /* Disable interrupts. */ 1069 EMAC_WRITE(sc, EMAC_ISER, 0); 1070 1071 /* Disable the receive and transmit channels. */ 1072 mal_stop(sc->sc_instance); 1073 1074 /* Disable the transmit enable and receive MACs. */ 1075 EMAC_WRITE(sc, EMAC_MR0, 1076 EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE)); 1077 1078 /* Release any queued transmit buffers. */ 1079 for (i = 0; i < EMAC_TXQUEUELEN; i++) { 1080 txs = &sc->sc_txsoft[i]; 1081 if (txs->txs_mbuf != NULL) { 1082 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1083 m_freem(txs->txs_mbuf); 1084 txs->txs_mbuf = NULL; 1085 } 1086 } 1087 1088 if (disable) 1089 emac_rxdrain(sc); 1090 1091 /* 1092 * Mark the interface down and cancel the watchdog timer. 1093 */ 1094 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1095 ifp->if_timer = 0; 1096 } 1097 1098 static void 1099 emac_watchdog(struct ifnet *ifp) 1100 { 1101 struct emac_softc *sc = ifp->if_softc; 1102 1103 /* 1104 * Since we're not interrupting every packet, sweep 1105 * up before we report an error. 1106 */ 1107 emac_txreap(sc); 1108 1109 if (sc->sc_txfree != EMAC_NTXDESC) { 1110 aprint_error_ifnet(ifp, 1111 "device timeout (txfree %d txsfree %d txnext %d)\n", 1112 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext); 1113 if_statinc(ifp, if_oerrors); 1114 1115 /* Reset the interface. */ 1116 (void)emac_init(ifp); 1117 } else if (ifp->if_flags & IFF_DEBUG) 1118 aprint_error_ifnet(ifp, "recovered from device timeout\n"); 1119 1120 /* try to get more packets going */ 1121 emac_start(ifp); 1122 } 1123 1124 static int 1125 emac_add_rxbuf(struct emac_softc *sc, int idx) 1126 { 1127 struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1128 struct mbuf *m; 1129 int error; 1130 1131 MGETHDR(m, M_DONTWAIT, MT_DATA); 1132 if (m == NULL) 1133 return ENOBUFS; 1134 1135 MCLGET(m, M_DONTWAIT); 1136 if ((m->m_flags & M_EXT) == 0) { 1137 m_freem(m); 1138 return ENOBUFS; 1139 } 1140 1141 if (rxs->rxs_mbuf != NULL) 1142 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1143 1144 rxs->rxs_mbuf = m; 1145 1146 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1147 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); 1148 if (error) { 1149 aprint_error_dev(sc->sc_dev, 1150 "can't load rx DMA map %d, error = %d\n", idx, error); 1151 panic("emac_add_rxbuf"); /* XXX */ 1152 } 1153 1154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1156 1157 EMAC_INIT_RXDESC(sc, idx); 1158 1159 return 0; 1160 } 1161 1162 static void 1163 emac_rxdrain(struct emac_softc *sc) 1164 { 1165 struct emac_rxsoft *rxs; 1166 int i; 1167 1168 for (i = 0; i < EMAC_NRXDESC; i++) { 1169 rxs = &sc->sc_rxsoft[i]; 1170 if (rxs->rxs_mbuf != NULL) { 1171 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1172 m_freem(rxs->rxs_mbuf); 1173 rxs->rxs_mbuf = NULL; 1174 } 1175 } 1176 } 1177 1178 static int 1179 emac_set_filter(struct emac_softc *sc) 1180 { 1181 struct ethercom *ec = &sc->sc_ethercom; 1182 struct ether_multistep step; 1183 struct ether_multi *enm; 1184 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1185 uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1186 int regs, cnt = 0, i; 1187 1188 if (sc->sc_htsize == 256) { 1189 reg = EMAC_GAHT256(0); 1190 regs = 8; 1191 } else { 1192 reg = EMAC_GAHT64(0); 1193 regs = 4; 1194 } 1195 mask = (1ULL << (sc->sc_htsize / regs)) - 1; 1196 1197 rmr = EMAC_READ(sc, EMAC_RMR); 1198 rmr &= ~(RMR_PMME | RMR_MAE); 1199 ifp->if_flags &= ~IFF_ALLMULTI; 1200 1201 ETHER_LOCK(ec); 1202 ETHER_FIRST_MULTI(step, ec, enm); 1203 while (enm != NULL) { 1204 if (memcmp(enm->enm_addrlo, 1205 enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { 1206 /* 1207 * We must listen to a range of multicast addresses. 1208 * For now, just accept all multicasts, rather than 1209 * trying to set only those filter bits needed to match 1210 * the range. (At this time, the only use of address 1211 * ranges is for IP multicast routing, for which the 1212 * range is big enough to require all bits set.) 1213 */ 1214 gaht[0] = gaht[1] = gaht[2] = gaht[3] = 1215 gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask; 1216 break; 1217 } 1218 1219 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1220 1221 if (sc->sc_htsize == 256) 1222 EMAC_SET_FILTER256(gaht, crc); 1223 else 1224 EMAC_SET_FILTER(gaht, crc); 1225 1226 ETHER_NEXT_MULTI(step, enm); 1227 cnt++; 1228 } 1229 ETHER_UNLOCK(ec); 1230 1231 for (i = 1, tmp = gaht[0]; i < regs; i++) 1232 tmp &= gaht[i]; 1233 if (tmp == mask) { 1234 /* All categories are true. */ 1235 ifp->if_flags |= IFF_ALLMULTI; 1236 rmr |= RMR_PMME; 1237 } else if (cnt != 0) { 1238 /* Some categories are true. */ 1239 for (i = 0; i < regs; i++) 1240 EMAC_WRITE(sc, reg + (i << 2), gaht[i]); 1241 rmr |= RMR_MAE; 1242 } 1243 EMAC_WRITE(sc, EMAC_RMR, rmr); 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * Reap completed Tx descriptors. 1250 */ 1251 static int 1252 emac_txreap(struct emac_softc *sc) 1253 { 1254 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1255 struct emac_txsoft *txs; 1256 int handled, i; 1257 uint32_t txstat; 1258 1259 EMAC_EVCNT_INCR(&sc->sc_ev_txreap); 1260 handled = 0; 1261 1262 ifp->if_flags &= ~IFF_OACTIVE; 1263 1264 /* 1265 * Go through our Tx list and free mbufs for those 1266 * frames that have been transmitted. 1267 */ 1268 for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN; 1269 i = EMAC_NEXTTXS(i), sc->sc_txsfree++) { 1270 txs = &sc->sc_txsoft[i]; 1271 1272 EMAC_CDTXSYNC(sc, txs->txs_lastdesc, 1273 txs->txs_dmamap->dm_nsegs, 1274 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1275 1276 txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl; 1277 if (txstat & MAL_TX_READY) 1278 break; 1279 1280 handled = 1; 1281 1282 /* 1283 * Check for errors and collisions. 1284 */ 1285 if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED)) 1286 if_statinc(ifp, if_oerrors); 1287 1288 #ifdef EMAC_EVENT_COUNTERS 1289 if (txstat & EMAC_TXS_UR) 1290 EMAC_EVCNT_INCR(&sc->sc_ev_tu); 1291 #endif /* EMAC_EVENT_COUNTERS */ 1292 1293 if (txstat & 1294 (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) { 1295 if (txstat & EMAC_TXS_EC) 1296 if_statadd(ifp, if_collisions, 16); 1297 else if (txstat & EMAC_TXS_MC) 1298 if_statadd(ifp, if_collisions, 2); /* XXX? */ 1299 else if (txstat & EMAC_TXS_SC) 1300 if_statinc(ifp, if_collisions); 1301 if (txstat & EMAC_TXS_LC) 1302 if_statinc(ifp, if_collisions); 1303 } else 1304 if_statinc(ifp, if_opackets); 1305 1306 if (ifp->if_flags & IFF_DEBUG) { 1307 if (txstat & EMAC_TXS_ED) 1308 aprint_error_ifnet(ifp, "excessive deferral\n"); 1309 if (txstat & EMAC_TXS_EC) 1310 aprint_error_ifnet(ifp, 1311 "excessive collisions\n"); 1312 } 1313 1314 sc->sc_txfree += txs->txs_ndesc; 1315 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1316 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1317 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1318 m_freem(txs->txs_mbuf); 1319 txs->txs_mbuf = NULL; 1320 } 1321 1322 /* Update the dirty transmit buffer pointer. */ 1323 sc->sc_txsdirty = i; 1324 1325 /* 1326 * If there are no more pending transmissions, cancel the watchdog 1327 * timer. 1328 */ 1329 if (sc->sc_txsfree == EMAC_TXQUEUELEN) 1330 ifp->if_timer = 0; 1331 1332 return handled; 1333 } 1334 1335 1336 /* 1337 * Reset functions 1338 */ 1339 1340 static void 1341 emac_soft_reset(struct emac_softc *sc) 1342 { 1343 uint32_t sdr; 1344 int t = 0; 1345 1346 /* 1347 * The PHY must provide a TX Clk in order perform a soft reset the 1348 * EMAC. If none is present, select the internal clock, 1349 * SDR0_MFR[E0CS, E1CS]. After the soft reset, select the external 1350 * clock. 1351 */ 1352 1353 sdr = mfsdr(DCR_SDR0_MFR); 1354 sdr |= SDR0_MFR_ECS(sc->sc_instance); 1355 mtsdr(DCR_SDR0_MFR, sdr); 1356 1357 EMAC_WRITE(sc, EMAC_MR0, MR0_SRST); 1358 1359 sdr = mfsdr(DCR_SDR0_MFR); 1360 sdr &= ~SDR0_MFR_ECS(sc->sc_instance); 1361 mtsdr(DCR_SDR0_MFR, sdr); 1362 1363 delay(5); 1364 1365 /* wait finish */ 1366 while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) { 1367 if (++t == 1000000 /* 1sec XXXXX */) { 1368 aprint_error_dev(sc->sc_dev, "Soft Reset failed\n"); 1369 return; 1370 } 1371 delay(1); 1372 } 1373 } 1374 1375 static void 1376 emac_smart_reset(struct emac_softc *sc) 1377 { 1378 uint32_t mr0; 1379 int t = 0; 1380 1381 mr0 = EMAC_READ(sc, EMAC_MR0); 1382 if (mr0 & (MR0_TXE | MR0_RXE)) { 1383 mr0 &= ~(MR0_TXE | MR0_RXE); 1384 EMAC_WRITE(sc, EMAC_MR0, mr0); 1385 1386 /* wait idel state */ 1387 while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) != 1388 (MR0_TXI | MR0_RXI)) { 1389 if (++t == 1000000 /* 1sec XXXXX */) { 1390 aprint_error_dev(sc->sc_dev, 1391 "Smart Reset failed\n"); 1392 return; 1393 } 1394 delay(1); 1395 } 1396 } 1397 } 1398 1399 1400 /* 1401 * MII related functions 1402 */ 1403 1404 static int 1405 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 1406 { 1407 struct emac_softc *sc = device_private(self); 1408 uint32_t sta_reg; 1409 int rv; 1410 1411 if (sc->sc_rmii_enable) 1412 sc->sc_rmii_enable(device_parent(self), sc->sc_instance); 1413 1414 /* wait for PHY data transfer to complete */ 1415 if ((rv = emac_mii_wait(sc)) != 0) 1416 goto fail; 1417 1418 sta_reg = 1419 sc->sc_stacr_read | 1420 (reg << STACR_PRA_SHIFT) | 1421 (phy << STACR_PCDA_SHIFT) | 1422 sc->sc_stacr_bits; 1423 EMAC_WRITE(sc, EMAC_STACR, sta_reg); 1424 1425 if ((rv = emac_mii_wait(sc)) != 0) 1426 goto fail; 1427 sta_reg = EMAC_READ(sc, EMAC_STACR); 1428 1429 if (sta_reg & STACR_PHYE) { 1430 rv = -1; 1431 goto fail; 1432 } 1433 *val = sta_reg >> STACR_PHYD_SHIFT; 1434 1435 fail: 1436 if (sc->sc_rmii_disable) 1437 sc->sc_rmii_disable(device_parent(self), sc->sc_instance); 1438 return rv; 1439 } 1440 1441 static int 1442 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val) 1443 { 1444 struct emac_softc *sc = device_private(self); 1445 uint32_t sta_reg; 1446 int rv; 1447 1448 if (sc->sc_rmii_enable) 1449 sc->sc_rmii_enable(device_parent(self), sc->sc_instance); 1450 1451 /* wait for PHY data transfer to complete */ 1452 if ((rv = emac_mii_wait(sc)) != 0) 1453 goto out; 1454 1455 sta_reg = 1456 (val << STACR_PHYD_SHIFT) | 1457 sc->sc_stacr_write | 1458 (reg << STACR_PRA_SHIFT) | 1459 (phy << STACR_PCDA_SHIFT) | 1460 sc->sc_stacr_bits; 1461 EMAC_WRITE(sc, EMAC_STACR, sta_reg); 1462 1463 if ((rv = emac_mii_wait(sc)) != 0) 1464 goto out; 1465 if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) { 1466 aprint_error_dev(sc->sc_dev, "MII PHY Error\n"); 1467 rv = -1; 1468 } 1469 1470 out: 1471 if (sc->sc_rmii_disable) 1472 sc->sc_rmii_disable(device_parent(self), sc->sc_instance); 1473 1474 return rv; 1475 } 1476 1477 static void 1478 emac_mii_statchg(struct ifnet *ifp) 1479 { 1480 struct emac_softc *sc = ifp->if_softc; 1481 struct mii_data *mii = &sc->sc_mii; 1482 1483 /* 1484 * MR1 can only be written immediately after a reset... 1485 */ 1486 emac_smart_reset(sc); 1487 1488 sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST); 1489 if (mii->mii_media_active & IFM_FDX) 1490 sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST); 1491 if (mii->mii_media_active & IFM_FLOW) 1492 sc->sc_mr1 |= MR1_EIFC; 1493 if (mii->mii_media_active & IFM_LOOP) 1494 sc->sc_mr1 |= MR1_ILE; 1495 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1496 case IFM_1000_T: 1497 sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST); 1498 break; 1499 1500 case IFM_100_TX: 1501 sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST); 1502 break; 1503 1504 case IFM_10_T: 1505 sc->sc_mr1 |= MR1_MF_10MBS; 1506 break; 1507 1508 case IFM_NONE: 1509 break; 1510 1511 default: 1512 aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n", 1513 IFM_SUBTYPE(mii->mii_media_active)); 1514 break; 1515 } 1516 if (sc->sc_rmii_speed) 1517 sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance, 1518 IFM_SUBTYPE(mii->mii_media_active)); 1519 1520 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1); 1521 1522 /* Enable TX and RX if already RUNNING */ 1523 if (ifp->if_flags & IFF_RUNNING) 1524 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE); 1525 } 1526 1527 static uint32_t 1528 emac_mii_wait(struct emac_softc *sc) 1529 { 1530 int i; 1531 uint32_t oc; 1532 1533 /* wait for PHY data transfer to complete */ 1534 i = 0; 1535 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC; 1536 while ((oc == STACR_OC) != sc->sc_stacr_completed) { 1537 delay(7); 1538 if (i++ > 5) { 1539 aprint_error_dev(sc->sc_dev, "MII timed out\n"); 1540 return ETIMEDOUT; 1541 } 1542 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC; 1543 } 1544 return 0; 1545 } 1546 1547 static void 1548 emac_mii_tick(void *arg) 1549 { 1550 struct emac_softc *sc = arg; 1551 int s; 1552 1553 if (!device_is_active(sc->sc_dev)) 1554 return; 1555 1556 s = splnet(); 1557 mii_tick(&sc->sc_mii); 1558 splx(s); 1559 1560 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc); 1561 } 1562 1563 int 1564 emac_txeob_intr(void *arg) 1565 { 1566 struct emac_softc *sc = arg; 1567 int handled = 0; 1568 1569 EMAC_EVCNT_INCR(&sc->sc_ev_txintr); 1570 handled |= emac_txreap(sc); 1571 1572 /* try to get more packets going */ 1573 if_schedule_deferred_start(&sc->sc_ethercom.ec_if); 1574 1575 return handled; 1576 } 1577 1578 int 1579 emac_rxeob_intr(void *arg) 1580 { 1581 struct emac_softc *sc = arg; 1582 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1583 struct emac_rxsoft *rxs; 1584 struct mbuf *m; 1585 uint32_t rxstat; 1586 int i, len; 1587 1588 EMAC_EVCNT_INCR(&sc->sc_ev_rxintr); 1589 1590 for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) { 1591 rxs = &sc->sc_rxsoft[i]; 1592 1593 EMAC_CDRXSYNC(sc, i, 1594 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1595 1596 rxstat = sc->sc_rxdescs[i].md_stat_ctrl; 1597 1598 if (rxstat & MAL_RX_EMPTY) { 1599 /* 1600 * We have processed all of the receive buffers. 1601 */ 1602 /* Flush current empty descriptor */ 1603 EMAC_CDRXSYNC(sc, i, 1604 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1605 break; 1606 } 1607 1608 /* 1609 * If an error occurred, update stats, clear the status 1610 * word, and leave the packet buffer in place. It will 1611 * simply be reused the next time the ring comes around. 1612 */ 1613 if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE | 1614 EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE | 1615 EMAC_RXS_IRE)) { 1616 #define PRINTERR(bit, str) \ 1617 if (rxstat & (bit)) \ 1618 aprint_error_ifnet(ifp, \ 1619 "receive error: %s\n", str) 1620 if_statinc(ifp, if_ierrors); 1621 PRINTERR(EMAC_RXS_OE, "overrun error"); 1622 PRINTERR(EMAC_RXS_BP, "bad packet"); 1623 PRINTERR(EMAC_RXS_RP, "runt packet"); 1624 PRINTERR(EMAC_RXS_SE, "short event"); 1625 PRINTERR(EMAC_RXS_AE, "alignment error"); 1626 PRINTERR(EMAC_RXS_BFCS, "bad FCS"); 1627 PRINTERR(EMAC_RXS_PTL, "packet too long"); 1628 PRINTERR(EMAC_RXS_ORE, "out of range error"); 1629 PRINTERR(EMAC_RXS_IRE, "in range error"); 1630 #undef PRINTERR 1631 EMAC_INIT_RXDESC(sc, i); 1632 continue; 1633 } 1634 1635 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1636 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1637 1638 /* 1639 * No errors; receive the packet. Note, the 405GP emac 1640 * includes the CRC with every packet. 1641 */ 1642 len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN; 1643 1644 /* 1645 * If the packet is small enough to fit in a 1646 * single header mbuf, allocate one and copy 1647 * the data into it. This greatly reduces 1648 * memory consumption when we receive lots 1649 * of small packets. 1650 * 1651 * Otherwise, we add a new buffer to the receive 1652 * chain. If this fails, we drop the packet and 1653 * recycle the old buffer. 1654 */ 1655 if (emac_copy_small != 0 && len <= MHLEN) { 1656 MGETHDR(m, M_DONTWAIT, MT_DATA); 1657 if (m == NULL) 1658 goto dropit; 1659 memcpy(mtod(m, void *), 1660 mtod(rxs->rxs_mbuf, void *), len); 1661 EMAC_INIT_RXDESC(sc, i); 1662 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1663 rxs->rxs_dmamap->dm_mapsize, 1664 BUS_DMASYNC_PREREAD); 1665 } else { 1666 m = rxs->rxs_mbuf; 1667 if (emac_add_rxbuf(sc, i) != 0) { 1668 dropit: 1669 if_statinc(ifp, if_ierrors); 1670 EMAC_INIT_RXDESC(sc, i); 1671 bus_dmamap_sync(sc->sc_dmat, 1672 rxs->rxs_dmamap, 0, 1673 rxs->rxs_dmamap->dm_mapsize, 1674 BUS_DMASYNC_PREREAD); 1675 continue; 1676 } 1677 } 1678 1679 m_set_rcvif(m, ifp); 1680 m->m_pkthdr.len = m->m_len = len; 1681 1682 /* Pass it on. */ 1683 if_percpuq_enqueue(ifp->if_percpuq, m); 1684 } 1685 1686 /* Update the receive pointer. */ 1687 sc->sc_rxptr = i; 1688 1689 return 1; 1690 } 1691 1692 int 1693 emac_txde_intr(void *arg) 1694 { 1695 struct emac_softc *sc = arg; 1696 1697 EMAC_EVCNT_INCR(&sc->sc_ev_txde); 1698 aprint_error_dev(sc->sc_dev, "emac_txde_intr\n"); 1699 return 1; 1700 } 1701 1702 int 1703 emac_rxde_intr(void *arg) 1704 { 1705 struct emac_softc *sc = arg; 1706 int i; 1707 1708 EMAC_EVCNT_INCR(&sc->sc_ev_rxde); 1709 aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n"); 1710 /* 1711 * XXX! 1712 * This is a bit drastic; we just drop all descriptors that aren't 1713 * "clean". We should probably send any that are up the stack. 1714 */ 1715 for (i = 0; i < EMAC_NRXDESC; i++) { 1716 EMAC_CDRXSYNC(sc, i, 1717 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1718 1719 if (sc->sc_rxdescs[i].md_data_len != MCLBYTES) 1720 EMAC_INIT_RXDESC(sc, i); 1721 } 1722 1723 return 1; 1724 } 1725