1 /* $NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 */ 42 43 /* 44 * FPU subroutines: `implode' internal format numbers into the machine's 45 * `packed binary' format. 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $"); 50 51 #include <sys/types.h> 52 #include <sys/systm.h> 53 54 #include <powerpc/instr.h> 55 #include <machine/fpu.h> 56 #include <machine/ieee.h> 57 #include <machine/reg.h> 58 59 #include <powerpc/fpu/fpu_arith.h> 60 #include <powerpc/fpu/fpu_emu.h> 61 #include <powerpc/fpu/fpu_extern.h> 62 63 static int round(struct fpemu *, struct fpn *, int *); 64 static int toinf(struct fpemu *, int); 65 static int round_int(struct fpn *, int *, int, int, int); 66 67 static u_int fpu_ftoi(struct fpemu *, struct fpn *, int *, int); 68 static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int *, int); 69 static u_int fpu_ftos(struct fpemu *, struct fpn *, int *); 70 static uint64_t fpu_ftod(struct fpemu *, struct fpn *, int *); 71 72 /* 73 * Round a number (algorithm from Motorola MC68882 manual, modified for 74 * our internal format). Set inexact exception if rounding is required. 75 * Return true iff we rounded up. 76 * 77 * After rounding, we discard the guard and round bits by shifting right 78 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 79 * This saves effort later. 80 * 81 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 82 * responsibility to fix this if necessary. 83 */ 84 static int 85 round(struct fpemu *fe, struct fpn *fp, int *cx) 86 { 87 u_int m0, m1, m2, m3; 88 int gr, s; 89 FPU_DECL_CARRY; 90 91 m0 = fp->fp_mant[0]; 92 m1 = fp->fp_mant[1]; 93 m2 = fp->fp_mant[2]; 94 m3 = fp->fp_mant[3]; 95 gr = m3 & 3; 96 s = fp->fp_sticky; 97 98 /* mant >>= FP_NG */ 99 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); 100 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 101 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 102 m0 >>= FP_NG; 103 104 if ((gr | s) == 0) /* result is exact: no rounding needed */ 105 goto rounddown; 106 107 *cx |= FPSCR_FI; /* inexact */ 108 109 /* Go to rounddown to round down; break to round up. */ 110 switch ((fe->fe_fpscr) & FPSCR_RN) { 111 112 case FSR_RD_RN: 113 default: 114 /* 115 * Round only if guard is set (gr & 2). If guard is set, 116 * but round & sticky both clear, then we want to round 117 * but have a tie, so round to even, i.e., add 1 iff odd. 118 */ 119 if ((gr & 2) == 0) 120 goto rounddown; 121 if ((gr & 1) || fp->fp_sticky || (m3 & 1)) 122 break; 123 goto rounddown; 124 125 case FSR_RD_RZ: 126 /* Round towards zero, i.e., down. */ 127 goto rounddown; 128 129 case FSR_RD_RM: 130 /* Round towards -Inf: up if negative, down if positive. */ 131 if (fp->fp_sign) 132 break; 133 goto rounddown; 134 135 case FSR_RD_RP: 136 /* Round towards +Inf: up if positive, down otherwise. */ 137 if (!fp->fp_sign) 138 break; 139 goto rounddown; 140 } 141 142 /* Bump low bit of mantissa, with carry. */ 143 *cx |= FPSCR_FR; 144 145 FPU_ADDS(m3, m3, 1); 146 FPU_ADDCS(m2, m2, 0); 147 FPU_ADDCS(m1, m1, 0); 148 FPU_ADDC(m0, m0, 0); 149 fp->fp_mant[0] = m0; 150 fp->fp_mant[1] = m1; 151 fp->fp_mant[2] = m2; 152 fp->fp_mant[3] = m3; 153 return (1); 154 155 rounddown: 156 fp->fp_mant[0] = m0; 157 fp->fp_mant[1] = m1; 158 fp->fp_mant[2] = m2; 159 fp->fp_mant[3] = m3; 160 return (0); 161 } 162 163 /* 164 * For overflow: return true if overflow is to go to +/-Inf, according 165 * to the sign of the overflowing result. If false, overflow is to go 166 * to the largest magnitude value instead. 167 */ 168 static int 169 toinf(struct fpemu *fe, int sign) 170 { 171 int inf; 172 173 /* look at rounding direction */ 174 switch ((fe->fe_fpscr) & FPSCR_RN) { 175 176 default: 177 case FSR_RD_RN: /* the nearest value is always Inf */ 178 inf = 1; 179 break; 180 181 case FSR_RD_RZ: /* toward 0 => never towards Inf */ 182 inf = 0; 183 break; 184 185 case FSR_RD_RP: /* toward +Inf iff positive */ 186 inf = sign == 0; 187 break; 188 189 case FSR_RD_RM: /* toward -Inf iff negative */ 190 inf = sign; 191 break; 192 } 193 return (inf); 194 } 195 196 static int 197 round_int(struct fpn *fp, int *cx, int rn, int sign, int odd) 198 { 199 int g, rs; 200 201 g = fp->fp_mant[3] & 0x80000000; 202 rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky; 203 204 if ((g | rs) == 0) 205 return 0; /* exact */ 206 207 *cx |= FPSCR_FI; 208 209 switch (rn) { 210 case FSR_RD_RN: 211 if (g && (rs | odd)) 212 break; 213 return 0; 214 case FSR_RD_RZ: 215 return 0; 216 case FSR_RD_RP: 217 if (!sign) 218 break; 219 return 0; 220 case FSR_RD_RM: 221 if (sign) 222 break; 223 return 0; 224 } 225 226 *cx |= FPSCR_FR; 227 return 1; 228 } 229 230 /* 231 * fpn -> int (int value returned as return value). 232 */ 233 static u_int 234 fpu_ftoi(struct fpemu *fe, struct fpn *fp, int *cx, int rn) 235 { 236 u_int i; 237 int sign, exp, tmp_cx; 238 239 sign = fp->fp_sign; 240 switch (fp->fp_class) { 241 case FPC_SNAN: 242 *cx |= FPSCR_VXSNAN; 243 /* FALLTHROUGH */ 244 case FPC_QNAN: 245 sign = 1; 246 break; 247 248 case FPC_ZERO: 249 return (0); 250 251 case FPC_NUM: 252 /* 253 * If exp >= 2^32, overflow. Otherwise shift value right 254 * into last mantissa word (this will not exceed 0xffffffff), 255 * shifting any guard and round bits out into the sticky 256 * bit. Then ``round'' towards zero, i.e., just set an 257 * inexact exception if sticky is set (see round()). 258 * If the result is > 0x80000000, or is positive and equals 259 * 0x80000000, overflow; otherwise the last fraction word 260 * is the result. 261 */ 262 if ((exp = fp->fp_exp) >= 32) 263 break; 264 /* NB: the following includes exp < 0 cases */ 265 (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); 266 i = fp->fp_mant[2]; 267 tmp_cx = 0; 268 i += round_int(fp, &tmp_cx, rn, sign, i & 1); 269 if (i >= ((u_int)0x80000000 + sign)) 270 break; 271 *cx |= tmp_cx; 272 return (sign ? -i : i); 273 274 case FPC_INF: 275 break; 276 } 277 /* overflow: replace any inexact exception with invalid */ 278 *cx |= FPSCR_VXCVI; 279 return (0x7fffffff + sign); 280 } 281 282 /* 283 * fpn -> extended int (high bits of int value returned as return value). 284 */ 285 static uint64_t 286 fpu_ftox(struct fpemu *fe, struct fpn *fp, int *cx, int rn) 287 { 288 uint64_t i; 289 int sign, exp, tmp_cx; 290 291 sign = fp->fp_sign; 292 switch (fp->fp_class) { 293 case FPC_SNAN: 294 *cx |= FPSCR_VXSNAN; 295 /* FALLTHROUGH */ 296 case FPC_QNAN: 297 sign = 1; 298 break; 299 300 case FPC_ZERO: 301 return (0); 302 303 case FPC_NUM: 304 /* 305 * If exp >= 2^64, overflow. Otherwise shift value right 306 * into last mantissa word (this will not exceed 0xffffffffffffffff), 307 * shifting any guard and round bits out into the sticky 308 * bit. Then ``round'' towards zero, i.e., just set an 309 * inexact exception if sticky is set (see round()). 310 * If the result is > 0x8000000000000000, or is positive and equals 311 * 0x8000000000000000, overflow; otherwise the last fraction word 312 * is the result. 313 */ 314 if ((exp = fp->fp_exp) >= 64) 315 break; 316 /* NB: the following includes exp < 0 cases */ 317 (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); 318 i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2]; 319 tmp_cx = 0; 320 i += round_int(fp, &tmp_cx, rn, sign, i & 1); 321 if (i >= ((uint64_t)0x8000000000000000LL + sign)) 322 break; 323 *cx |= tmp_cx; 324 return (sign ? -i : i); 325 326 case FPC_INF: 327 break; 328 } 329 /* overflow: replace any inexact exception with invalid */ 330 *cx |= FPSCR_VXCVI; 331 return (0x7fffffffffffffffLL + sign); 332 } 333 334 #define FPRF_SIGN(sign) ((sign) ? FPSCR_FL : FPSCR_FG) 335 336 /* 337 * fpn -> single (32 bit single returned as return value). 338 * We assume <= 29 bits in a single-precision fraction (1.f part). 339 */ 340 static u_int 341 fpu_ftos(struct fpemu *fe, struct fpn *fp, int *cx) 342 { 343 u_int sign = fp->fp_sign << 31; 344 int exp; 345 346 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 347 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 348 349 /* Take care of non-numbers first. */ 350 if (ISNAN(fp)) { 351 *cx |= FPSCR_C | FPSCR_FU; 352 /* 353 * Preserve upper bits of NaN, per SPARC V8 appendix N. 354 * Note that fp->fp_mant[0] has the quiet bit set, 355 * even if it is classified as a signalling NaN. 356 */ 357 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 358 exp = SNG_EXP_INFNAN; 359 goto done; 360 } 361 if (ISINF(fp)) { 362 *cx |= FPRF_SIGN(sign) | FPSCR_FU; 363 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 364 } 365 if (ISZERO(fp)) { 366 *cx |= FPSCR_FE; 367 if (sign) 368 *cx |= FPSCR_C; 369 return (sign); 370 } 371 372 /* 373 * Normals (including subnormals). Drop all the fraction bits 374 * (including the explicit ``implied'' 1 bit) down into the 375 * single-precision range. If the number is subnormal, move 376 * the ``implied'' 1 into the explicit range as well, and shift 377 * right to introduce leading zeroes. Rounding then acts 378 * differently for normals and subnormals: the largest subnormal 379 * may round to the smallest normal (1.0 x 2^minexp), or may 380 * remain subnormal. In the latter case, signal an underflow 381 * if the result was inexact or if underflow traps are enabled. 382 * 383 * Rounding a normal, on the other hand, always produces another 384 * normal (although either way the result might be too big for 385 * single precision, and cause an overflow). If rounding a 386 * normal produces 2.0 in the fraction, we need not adjust that 387 * fraction at all, since both 1.0 and 2.0 are zero under the 388 * fraction mask. 389 * 390 * Note that the guard and round bits vanish from the number after 391 * rounding. 392 */ 393 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 394 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 395 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 396 if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(1)) { 397 *cx |= FPRF_SIGN(sign); 398 return (sign | SNG_EXP(1) | 0); 399 } 400 if (*cx & FPSCR_FI) { 401 *cx |= FPSCR_UX; 402 if (fp->fp_mant[3] == 0) { 403 *cx |= FPSCR_FE; 404 return sign; 405 } 406 } 407 *cx |= FPSCR_C | FPRF_SIGN(sign); 408 return (sign | SNG_EXP(0) | fp->fp_mant[3]); 409 } 410 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 411 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 412 #ifdef DIAGNOSTIC 413 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) 414 panic("fpu_ftos"); 415 #endif 416 if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(2)) 417 exp++; 418 if (exp >= SNG_EXP_INFNAN) { 419 *cx |= FPSCR_OX | FPSCR_FI; 420 /* overflow to inf or to max single */ 421 if (toinf(fe, sign)) { 422 *cx |= FPRF_SIGN(sign) | FPSCR_FU; 423 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 424 } 425 *cx |= FPRF_SIGN(sign); 426 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 427 } 428 *cx |= FPRF_SIGN(sign); 429 done: 430 /* phew, made it */ 431 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); 432 } 433 434 /* 435 * fpn -> double. Assumes <= 61 bits in double precision fraction. 436 * 437 * This code mimics fpu_ftos; see it for comments. 438 */ 439 static uint64_t 440 fpu_ftod(struct fpemu *fe, struct fpn *fp, int *cx) 441 { 442 u_int sign = fp->fp_sign << 31; 443 int exp; 444 445 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 446 #define DBL_MASK (DBL_EXP(1) - 1) 447 #define HI_WORD(i) ((uint64_t)(i) << 32) 448 #define LO_WORD(i) ((uint32_t)(i)) 449 450 if (ISNAN(fp)) { 451 *cx |= FPSCR_C | FPSCR_FU; 452 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 453 exp = DBL_EXP_INFNAN; 454 goto done; 455 } 456 if (ISINF(fp)) { 457 *cx |= FPRF_SIGN(sign) | FPSCR_FU; 458 return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN)); 459 } 460 if (ISZERO(fp)) { 461 *cx |= FPSCR_FE; 462 if (sign) 463 *cx |= FPSCR_C; 464 return HI_WORD(sign); 465 } 466 467 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 468 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 469 if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(1)) { 470 *cx |= FPRF_SIGN(sign); 471 return HI_WORD(sign | DBL_EXP(1) | 0); 472 } 473 if (*cx & FPSCR_FI) { 474 *cx |= FPSCR_UX; 475 if ((fp->fp_mant[2] & DBL_MASK) == 0 && 476 fp->fp_mant[3] == 0) { 477 *cx |= FPSCR_FE; 478 return HI_WORD(sign); 479 } 480 } 481 *cx |= FPSCR_C | FPRF_SIGN(sign); 482 exp = 0; 483 goto done; 484 } 485 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 486 if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(2)) 487 exp++; 488 if (exp >= DBL_EXP_INFNAN) { 489 *cx |= FPSCR_OX | FPSCR_FI; 490 /* overflow to inf or to max double */ 491 if (toinf(fe, sign)) { 492 *cx |= FPRF_SIGN(sign) | FPSCR_FU; 493 return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 494 } 495 *cx |= FPRF_SIGN(sign); 496 return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK) | 497 LO_WORD(~0); 498 } 499 *cx |= FPRF_SIGN(sign); 500 done: 501 return HI_WORD(sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)) | 502 LO_WORD(fp->fp_mant[3]); 503 } 504 505 /* 506 * Implode an fpn, writing the result into the given space. 507 */ 508 void 509 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint64_t *p) 510 { 511 u_int *hi, *lo; 512 int cx, rn; 513 bool fpscr; 514 515 hi = (u_int *)p; 516 lo = hi + 1; 517 518 if (type & FTYPE_RD_RZ) 519 rn = FSR_RD_RZ; 520 else 521 rn = fe->fe_fpscr & FPSCR_RN; 522 fpscr = type & FTYPE_FPSCR; 523 type &= ~FTYPE_FLAG_MASK; 524 525 cx = 0; 526 switch (type) { 527 528 case FTYPE_LNG: 529 /* FPRF is undefined. */ 530 *p = fpu_ftox(fe, fp, &cx, rn); 531 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", *hi, *lo)); 532 break; 533 534 case FTYPE_INT: 535 /* FPRF is undefined. */ 536 *hi = 0; 537 *lo = fpu_ftoi(fe, fp, &cx, rn); 538 DPRINTF(FPE_REG, ("fpu_implode: int %x\n", *lo)); 539 break; 540 541 case FTYPE_SNG: 542 *hi = fpu_ftos(fe, fp, &cx); 543 *lo = 0; 544 DPRINTF(FPE_REG, ("fpu_implode: single %x\n", *hi)); 545 break; 546 547 case FTYPE_DBL: 548 *p = fpu_ftod(fe, fp, &cx); 549 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", *hi, *lo)); 550 break; 551 552 default: 553 panic("fpu_implode: invalid type %d", type); 554 } 555 556 if (fpscr) { 557 fe->fe_fpscr &= ~(FPSCR_FR | FPSCR_FI | FPSCR_FPRF); 558 fe->fe_cx |= cx; 559 if (cx & FPSCR_FI) 560 fe->fe_cx |= FPSCR_XX; 561 } 562 } 563