xref: /netbsd-src/sys/arch/powerpc/fpu/fpu_explode.c (revision da5f4674a3fc214be3572d358b66af40ab9401e7)
1 /*	$NetBSD: fpu_explode.c,v 1.3 2003/08/07 16:29:18 agc Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * FPU subroutines: `explode' the machine's `packed binary' format numbers
45  * into our internal format.
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.3 2003/08/07 16:29:18 agc Exp $");
50 
51 #include <sys/types.h>
52 #include <sys/systm.h>
53 
54 #include <machine/ieee.h>
55 #include <powerpc/instr.h>
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58 
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 #include <powerpc/fpu/fpu_extern.h>
62 
63 /*
64  * N.B.: in all of the following, we assume the FP format is
65  *
66  *	---------------------------
67  *	| s | exponent | fraction |
68  *	---------------------------
69  *
70  * (which represents -1**s * 1.fraction * 2**exponent), so that the
71  * sign bit is way at the top (bit 31), the exponent is next, and
72  * then the remaining bits mark the fraction.  A zero exponent means
73  * zero or denormalized (0.fraction rather than 1.fraction), and the
74  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
75  *
76  * Since the sign bit is always the topmost bit---this holds even for
77  * integers---we set that outside all the *tof functions.  Each function
78  * returns the class code for the new number (but note that we use
79  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
80  */
81 
82 /*
83  * int -> fpn.
84  */
85 int
86 fpu_itof(struct fpn *fp, u_int i)
87 {
88 
89 	if (i == 0)
90 		return (FPC_ZERO);
91 	/*
92 	 * The value FP_1 represents 2^FP_LG, so set the exponent
93 	 * there and let normalization fix it up.  Convert negative
94 	 * numbers to sign-and-magnitude.  Note that this relies on
95 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
96 	 */
97 	fp->fp_exp = FP_LG;
98 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
99 	fp->fp_mant[1] = 0;
100 	fp->fp_mant[2] = 0;
101 	fp->fp_mant[3] = 0;
102 	fpu_norm(fp);
103 	return (FPC_NUM);
104 }
105 
106 /*
107  * 64-bit int -> fpn.
108  */
109 int
110 fpu_xtof(struct fpn *fp, u_int64_t i)
111 {
112 
113 	if (i == 0)
114 		return (FPC_ZERO);
115 	/*
116 	 * The value FP_1 represents 2^FP_LG, so set the exponent
117 	 * there and let normalization fix it up.  Convert negative
118 	 * numbers to sign-and-magnitude.  Note that this relies on
119 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
120 	 */
121 	fp->fp_exp = FP_LG2;
122 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
123 	fp->fp_mant[2] = 0;
124 	fp->fp_mant[3] = 0;
125 	fpu_norm(fp);
126 	return (FPC_NUM);
127 }
128 
129 #define	mask(nbits) ((1L << (nbits)) - 1)
130 
131 /*
132  * All external floating formats convert to internal in the same manner,
133  * as defined here.  Note that only normals get an implied 1.0 inserted.
134  */
135 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
136 	if (exp == 0) { \
137 		if (allfrac == 0) \
138 			return (FPC_ZERO); \
139 		fp->fp_exp = 1 - expbias; \
140 		fp->fp_mant[0] = f0; \
141 		fp->fp_mant[1] = f1; \
142 		fp->fp_mant[2] = f2; \
143 		fp->fp_mant[3] = f3; \
144 		fpu_norm(fp); \
145 		return (FPC_NUM); \
146 	} \
147 	if (exp == (2 * expbias + 1)) { \
148 		if (allfrac == 0) \
149 			return (FPC_INF); \
150 		fp->fp_mant[0] = f0; \
151 		fp->fp_mant[1] = f1; \
152 		fp->fp_mant[2] = f2; \
153 		fp->fp_mant[3] = f3; \
154 		return (FPC_QNAN); \
155 	} \
156 	fp->fp_exp = exp - expbias; \
157 	fp->fp_mant[0] = FP_1 | f0; \
158 	fp->fp_mant[1] = f1; \
159 	fp->fp_mant[2] = f2; \
160 	fp->fp_mant[3] = f3; \
161 	return (FPC_NUM)
162 
163 /*
164  * 32-bit single precision -> fpn.
165  * We assume a single occupies at most (64-FP_LG) bits in the internal
166  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
167  */
168 int
169 fpu_stof(struct fpn *fp, u_int i)
170 {
171 	int exp;
172 	u_int frac, f0, f1;
173 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
174 
175 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
176 	frac = i & mask(SNG_FRACBITS);
177 	f0 = frac >> SNG_SHIFT;
178 	f1 = frac << (32 - SNG_SHIFT);
179 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
180 }
181 
182 /*
183  * 64-bit double -> fpn.
184  * We assume this uses at most (96-FP_LG) bits.
185  */
186 int
187 fpu_dtof(struct fpn *fp, u_int i, u_int j)
188 {
189 	int exp;
190 	u_int frac, f0, f1, f2;
191 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
192 
193 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
194 	frac = i & mask(DBL_FRACBITS - 32);
195 	f0 = frac >> DBL_SHIFT;
196 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
197 	f2 = j << (32 - DBL_SHIFT);
198 	frac |= j;
199 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
200 }
201 
202 /*
203  * 128-bit extended -> fpn.
204  */
205 int
206 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
207 {
208 	int exp;
209 	u_int frac, f0, f1, f2, f3;
210 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
211 
212 	/*
213 	 * Note that ext and fpn `line up', hence no shifting needed.
214 	 */
215 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
216 	frac = i & mask(EXT_FRACBITS - 3 * 32);
217 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
218 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
219 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
220 	f3 = l << EXT_SHIFT;
221 	frac |= j | k | l;
222 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
223 }
224 
225 /*
226  * Explode the contents of a register / regpair / regquad.
227  * If the input is a signalling NaN, an NV (invalid) exception
228  * will be set.  (Note that nothing but NV can occur until ALU
229  * operations are performed.)
230  */
231 void
232 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
233 {
234 	u_int s, *space;
235 	u_int64_t l, *xspace;
236 
237 	xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
238 	l = xspace[0];
239 	space = (u_int *)&fe->fe_fpstate->fpreg[reg];
240 	s = space[0];
241 	fp->fp_sign = s >> 31;
242 	fp->fp_sticky = 0;
243 	switch (type) {
244 
245 	case FTYPE_LNG:
246 		s = fpu_xtof(fp, l);
247 		break;
248 
249 	case FTYPE_INT:
250 		s = fpu_itof(fp, space[1]);
251 		break;
252 
253 	case FTYPE_SNG:
254 		s = fpu_stof(fp, s);
255 		break;
256 
257 	case FTYPE_DBL:
258 		s = fpu_dtof(fp, s, space[1]);
259 		break;
260 
261 	case FTYPE_EXT:
262 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
263 		break;
264 
265 	default:
266 		panic("fpu_explode");
267 	}
268 
269 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
270 		/*
271 		 * Input is a signalling NaN.  All operations that return
272 		 * an input NaN operand put it through a ``NaN conversion'',
273 		 * which basically just means ``turn on the quiet bit''.
274 		 * We do this here so that all NaNs internally look quiet
275 		 * (we can tell signalling ones by their class).
276 		 */
277 		fp->fp_mant[0] |= FP_QUIETBIT;
278 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
279 		s = FPC_SNAN;
280 	}
281 	fp->fp_class = s;
282 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
283 		((type == FTYPE_INT) ? 'i' :
284 			((type == FTYPE_SNG) ? 's' :
285 				((type == FTYPE_DBL) ? 'd' :
286 					((type == FTYPE_EXT) ? 'q' : '?')))),
287 		reg));
288 	DUMPFPN(FPE_REG, fp);
289 	DPRINTF(FPE_REG, ("\n"));
290 }
291