1 /* $NetBSD: fpu_explode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93 45 */ 46 47 /* 48 * FPU subroutines: `explode' the machine's `packed binary' format numbers 49 * into our internal format. 50 */ 51 52 #include <sys/cdefs.h> 53 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $"); 54 55 #include <sys/types.h> 56 #include <sys/systm.h> 57 58 #include <machine/ieee.h> 59 #include <powerpc/instr.h> 60 #include <machine/reg.h> 61 #include <machine/fpu.h> 62 63 #include <powerpc/fpu/fpu_arith.h> 64 #include <powerpc/fpu/fpu_emu.h> 65 #include <powerpc/fpu/fpu_extern.h> 66 67 /* 68 * N.B.: in all of the following, we assume the FP format is 69 * 70 * --------------------------- 71 * | s | exponent | fraction | 72 * --------------------------- 73 * 74 * (which represents -1**s * 1.fraction * 2**exponent), so that the 75 * sign bit is way at the top (bit 31), the exponent is next, and 76 * then the remaining bits mark the fraction. A zero exponent means 77 * zero or denormalized (0.fraction rather than 1.fraction), and the 78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN. 79 * 80 * Since the sign bit is always the topmost bit---this holds even for 81 * integers---we set that outside all the *tof functions. Each function 82 * returns the class code for the new number (but note that we use 83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate). 84 */ 85 86 /* 87 * int -> fpn. 88 */ 89 int 90 fpu_itof(struct fpn *fp, u_int i) 91 { 92 93 if (i == 0) 94 return (FPC_ZERO); 95 /* 96 * The value FP_1 represents 2^FP_LG, so set the exponent 97 * there and let normalization fix it up. Convert negative 98 * numbers to sign-and-magnitude. Note that this relies on 99 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 100 */ 101 fp->fp_exp = FP_LG; 102 fp->fp_mant[0] = (int)i < 0 ? -i : i; 103 fp->fp_mant[1] = 0; 104 fp->fp_mant[2] = 0; 105 fp->fp_mant[3] = 0; 106 fpu_norm(fp); 107 return (FPC_NUM); 108 } 109 110 /* 111 * 64-bit int -> fpn. 112 */ 113 int 114 fpu_xtof(struct fpn *fp, u_int64_t i) 115 { 116 117 if (i == 0) 118 return (FPC_ZERO); 119 /* 120 * The value FP_1 represents 2^FP_LG, so set the exponent 121 * there and let normalization fix it up. Convert negative 122 * numbers to sign-and-magnitude. Note that this relies on 123 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 124 */ 125 fp->fp_exp = FP_LG2; 126 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i; 127 fp->fp_mant[2] = 0; 128 fp->fp_mant[3] = 0; 129 fpu_norm(fp); 130 return (FPC_NUM); 131 } 132 133 #define mask(nbits) ((1L << (nbits)) - 1) 134 135 /* 136 * All external floating formats convert to internal in the same manner, 137 * as defined here. Note that only normals get an implied 1.0 inserted. 138 */ 139 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \ 140 if (exp == 0) { \ 141 if (allfrac == 0) \ 142 return (FPC_ZERO); \ 143 fp->fp_exp = 1 - expbias; \ 144 fp->fp_mant[0] = f0; \ 145 fp->fp_mant[1] = f1; \ 146 fp->fp_mant[2] = f2; \ 147 fp->fp_mant[3] = f3; \ 148 fpu_norm(fp); \ 149 return (FPC_NUM); \ 150 } \ 151 if (exp == (2 * expbias + 1)) { \ 152 if (allfrac == 0) \ 153 return (FPC_INF); \ 154 fp->fp_mant[0] = f0; \ 155 fp->fp_mant[1] = f1; \ 156 fp->fp_mant[2] = f2; \ 157 fp->fp_mant[3] = f3; \ 158 return (FPC_QNAN); \ 159 } \ 160 fp->fp_exp = exp - expbias; \ 161 fp->fp_mant[0] = FP_1 | f0; \ 162 fp->fp_mant[1] = f1; \ 163 fp->fp_mant[2] = f2; \ 164 fp->fp_mant[3] = f3; \ 165 return (FPC_NUM) 166 167 /* 168 * 32-bit single precision -> fpn. 169 * We assume a single occupies at most (64-FP_LG) bits in the internal 170 * format: i.e., needs at most fp_mant[0] and fp_mant[1]. 171 */ 172 int 173 fpu_stof(struct fpn *fp, u_int i) 174 { 175 int exp; 176 u_int frac, f0, f1; 177 #define SNG_SHIFT (SNG_FRACBITS - FP_LG) 178 179 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS); 180 frac = i & mask(SNG_FRACBITS); 181 f0 = frac >> SNG_SHIFT; 182 f1 = frac << (32 - SNG_SHIFT); 183 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0); 184 } 185 186 /* 187 * 64-bit double -> fpn. 188 * We assume this uses at most (96-FP_LG) bits. 189 */ 190 int 191 fpu_dtof(struct fpn *fp, u_int i, u_int j) 192 { 193 int exp; 194 u_int frac, f0, f1, f2; 195 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG) 196 197 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS); 198 frac = i & mask(DBL_FRACBITS - 32); 199 f0 = frac >> DBL_SHIFT; 200 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT); 201 f2 = j << (32 - DBL_SHIFT); 202 frac |= j; 203 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0); 204 } 205 206 /* 207 * 128-bit extended -> fpn. 208 */ 209 int 210 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l) 211 { 212 int exp; 213 u_int frac, f0, f1, f2, f3; 214 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */ 215 216 /* 217 * Note that ext and fpn `line up', hence no shifting needed. 218 */ 219 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS); 220 frac = i & mask(EXT_FRACBITS - 3 * 32); 221 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT)); 222 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT)); 223 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT)); 224 f3 = l << EXT_SHIFT; 225 frac |= j | k | l; 226 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3); 227 } 228 229 /* 230 * Explode the contents of a register / regpair / regquad. 231 * If the input is a signalling NaN, an NV (invalid) exception 232 * will be set. (Note that nothing but NV can occur until ALU 233 * operations are performed.) 234 */ 235 void 236 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg) 237 { 238 u_int s, *space; 239 u_int64_t l, *xspace; 240 241 xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg]; 242 l = xspace[0]; 243 space = (u_int *)&fe->fe_fpstate->fpreg[reg]; 244 s = space[0]; 245 fp->fp_sign = s >> 31; 246 fp->fp_sticky = 0; 247 switch (type) { 248 249 case FTYPE_LNG: 250 s = fpu_xtof(fp, l); 251 break; 252 253 case FTYPE_INT: 254 s = fpu_itof(fp, space[1]); 255 break; 256 257 case FTYPE_SNG: 258 s = fpu_stof(fp, s); 259 break; 260 261 case FTYPE_DBL: 262 s = fpu_dtof(fp, s, space[1]); 263 break; 264 265 case FTYPE_EXT: 266 s = fpu_qtof(fp, s, space[1], space[2], space[3]); 267 break; 268 269 default: 270 panic("fpu_explode"); 271 } 272 273 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) { 274 /* 275 * Input is a signalling NaN. All operations that return 276 * an input NaN operand put it through a ``NaN conversion'', 277 * which basically just means ``turn on the quiet bit''. 278 * We do this here so that all NaNs internally look quiet 279 * (we can tell signalling ones by their class). 280 */ 281 fp->fp_mant[0] |= FP_QUIETBIT; 282 fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */ 283 s = FPC_SNAN; 284 } 285 fp->fp_class = s; 286 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' : 287 ((type == FTYPE_INT) ? 'i' : 288 ((type == FTYPE_SNG) ? 's' : 289 ((type == FTYPE_DBL) ? 'd' : 290 ((type == FTYPE_EXT) ? 'q' : '?')))), 291 reg)); 292 DUMPFPN(FPE_REG, fp); 293 DPRINTF(FPE_REG, ("\n")); 294 } 295