xref: /netbsd-src/sys/arch/powerpc/fpu/fpu_explode.c (revision 8e6ab8837d8d6b9198e67c1c445300b483e2f304)
1 /*	$NetBSD: fpu_explode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
49  * into our internal format.
50  */
51 
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $");
54 
55 #include <sys/types.h>
56 #include <sys/systm.h>
57 
58 #include <machine/ieee.h>
59 #include <powerpc/instr.h>
60 #include <machine/reg.h>
61 #include <machine/fpu.h>
62 
63 #include <powerpc/fpu/fpu_arith.h>
64 #include <powerpc/fpu/fpu_emu.h>
65 #include <powerpc/fpu/fpu_extern.h>
66 
67 /*
68  * N.B.: in all of the following, we assume the FP format is
69  *
70  *	---------------------------
71  *	| s | exponent | fraction |
72  *	---------------------------
73  *
74  * (which represents -1**s * 1.fraction * 2**exponent), so that the
75  * sign bit is way at the top (bit 31), the exponent is next, and
76  * then the remaining bits mark the fraction.  A zero exponent means
77  * zero or denormalized (0.fraction rather than 1.fraction), and the
78  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79  *
80  * Since the sign bit is always the topmost bit---this holds even for
81  * integers---we set that outside all the *tof functions.  Each function
82  * returns the class code for the new number (but note that we use
83  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
84  */
85 
86 /*
87  * int -> fpn.
88  */
89 int
90 fpu_itof(struct fpn *fp, u_int i)
91 {
92 
93 	if (i == 0)
94 		return (FPC_ZERO);
95 	/*
96 	 * The value FP_1 represents 2^FP_LG, so set the exponent
97 	 * there and let normalization fix it up.  Convert negative
98 	 * numbers to sign-and-magnitude.  Note that this relies on
99 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
100 	 */
101 	fp->fp_exp = FP_LG;
102 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
103 	fp->fp_mant[1] = 0;
104 	fp->fp_mant[2] = 0;
105 	fp->fp_mant[3] = 0;
106 	fpu_norm(fp);
107 	return (FPC_NUM);
108 }
109 
110 /*
111  * 64-bit int -> fpn.
112  */
113 int
114 fpu_xtof(struct fpn *fp, u_int64_t i)
115 {
116 
117 	if (i == 0)
118 		return (FPC_ZERO);
119 	/*
120 	 * The value FP_1 represents 2^FP_LG, so set the exponent
121 	 * there and let normalization fix it up.  Convert negative
122 	 * numbers to sign-and-magnitude.  Note that this relies on
123 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
124 	 */
125 	fp->fp_exp = FP_LG2;
126 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
127 	fp->fp_mant[2] = 0;
128 	fp->fp_mant[3] = 0;
129 	fpu_norm(fp);
130 	return (FPC_NUM);
131 }
132 
133 #define	mask(nbits) ((1L << (nbits)) - 1)
134 
135 /*
136  * All external floating formats convert to internal in the same manner,
137  * as defined here.  Note that only normals get an implied 1.0 inserted.
138  */
139 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
140 	if (exp == 0) { \
141 		if (allfrac == 0) \
142 			return (FPC_ZERO); \
143 		fp->fp_exp = 1 - expbias; \
144 		fp->fp_mant[0] = f0; \
145 		fp->fp_mant[1] = f1; \
146 		fp->fp_mant[2] = f2; \
147 		fp->fp_mant[3] = f3; \
148 		fpu_norm(fp); \
149 		return (FPC_NUM); \
150 	} \
151 	if (exp == (2 * expbias + 1)) { \
152 		if (allfrac == 0) \
153 			return (FPC_INF); \
154 		fp->fp_mant[0] = f0; \
155 		fp->fp_mant[1] = f1; \
156 		fp->fp_mant[2] = f2; \
157 		fp->fp_mant[3] = f3; \
158 		return (FPC_QNAN); \
159 	} \
160 	fp->fp_exp = exp - expbias; \
161 	fp->fp_mant[0] = FP_1 | f0; \
162 	fp->fp_mant[1] = f1; \
163 	fp->fp_mant[2] = f2; \
164 	fp->fp_mant[3] = f3; \
165 	return (FPC_NUM)
166 
167 /*
168  * 32-bit single precision -> fpn.
169  * We assume a single occupies at most (64-FP_LG) bits in the internal
170  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
171  */
172 int
173 fpu_stof(struct fpn *fp, u_int i)
174 {
175 	int exp;
176 	u_int frac, f0, f1;
177 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
178 
179 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
180 	frac = i & mask(SNG_FRACBITS);
181 	f0 = frac >> SNG_SHIFT;
182 	f1 = frac << (32 - SNG_SHIFT);
183 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
184 }
185 
186 /*
187  * 64-bit double -> fpn.
188  * We assume this uses at most (96-FP_LG) bits.
189  */
190 int
191 fpu_dtof(struct fpn *fp, u_int i, u_int j)
192 {
193 	int exp;
194 	u_int frac, f0, f1, f2;
195 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
196 
197 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
198 	frac = i & mask(DBL_FRACBITS - 32);
199 	f0 = frac >> DBL_SHIFT;
200 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
201 	f2 = j << (32 - DBL_SHIFT);
202 	frac |= j;
203 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
204 }
205 
206 /*
207  * 128-bit extended -> fpn.
208  */
209 int
210 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
211 {
212 	int exp;
213 	u_int frac, f0, f1, f2, f3;
214 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
215 
216 	/*
217 	 * Note that ext and fpn `line up', hence no shifting needed.
218 	 */
219 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
220 	frac = i & mask(EXT_FRACBITS - 3 * 32);
221 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
222 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
223 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
224 	f3 = l << EXT_SHIFT;
225 	frac |= j | k | l;
226 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
227 }
228 
229 /*
230  * Explode the contents of a register / regpair / regquad.
231  * If the input is a signalling NaN, an NV (invalid) exception
232  * will be set.  (Note that nothing but NV can occur until ALU
233  * operations are performed.)
234  */
235 void
236 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
237 {
238 	u_int s, *space;
239 	u_int64_t l, *xspace;
240 
241 	xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
242 	l = xspace[0];
243 	space = (u_int *)&fe->fe_fpstate->fpreg[reg];
244 	s = space[0];
245 	fp->fp_sign = s >> 31;
246 	fp->fp_sticky = 0;
247 	switch (type) {
248 
249 	case FTYPE_LNG:
250 		s = fpu_xtof(fp, l);
251 		break;
252 
253 	case FTYPE_INT:
254 		s = fpu_itof(fp, space[1]);
255 		break;
256 
257 	case FTYPE_SNG:
258 		s = fpu_stof(fp, s);
259 		break;
260 
261 	case FTYPE_DBL:
262 		s = fpu_dtof(fp, s, space[1]);
263 		break;
264 
265 	case FTYPE_EXT:
266 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
267 		break;
268 
269 	default:
270 		panic("fpu_explode");
271 	}
272 
273 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
274 		/*
275 		 * Input is a signalling NaN.  All operations that return
276 		 * an input NaN operand put it through a ``NaN conversion'',
277 		 * which basically just means ``turn on the quiet bit''.
278 		 * We do this here so that all NaNs internally look quiet
279 		 * (we can tell signalling ones by their class).
280 		 */
281 		fp->fp_mant[0] |= FP_QUIETBIT;
282 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
283 		s = FPC_SNAN;
284 	}
285 	fp->fp_class = s;
286 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
287 		((type == FTYPE_INT) ? 'i' :
288 			((type == FTYPE_SNG) ? 's' :
289 				((type == FTYPE_DBL) ? 'd' :
290 					((type == FTYPE_EXT) ? 'q' : '?')))),
291 		reg));
292 	DUMPFPN(FPE_REG, fp);
293 	DPRINTF(FPE_REG, ("\n"));
294 }
295