xref: /netbsd-src/sys/arch/powerpc/booke/e500_tlb.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 
39 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $");
40 
41 #include <sys/param.h>
42 
43 #include <uvm/uvm_extern.h>
44 
45 #include <powerpc/spr.h>
46 #include <powerpc/booke/spr.h>
47 #include <powerpc/booke/cpuvar.h>
48 #include <powerpc/booke/e500var.h>
49 #include <powerpc/booke/pmap.h>
50 
51 struct e500_tlb {
52 	vaddr_t tlb_va;
53 	uint32_t tlb_pte;
54 	uint32_t tlb_asid;
55 	vsize_t tlb_size;
56 };
57 
58 struct e500_hwtlb {
59 	uint32_t hwtlb_mas0;
60 	uint32_t hwtlb_mas1;
61 	uint32_t hwtlb_mas2;
62 	uint32_t hwtlb_mas3;
63 };
64 
65 struct e500_xtlb {
66 	struct e500_tlb e_tlb;
67 	struct e500_hwtlb e_hwtlb;
68 	u_long e_refcnt;
69 };
70 
71 static struct e500_tlb1 {
72 	uint32_t tlb1_maxsize;
73 	uint32_t tlb1_minsize;
74 	u_int tlb1_numentries;
75 	u_int tlb1_numfree;
76 	u_int tlb1_freelist[32];
77 	struct e500_xtlb tlb1_entries[32];
78 } e500_tlb1;
79 
80 static inline register_t mftlb0cfg(void) __pure;
81 static inline register_t mftlb1cfg(void) __pure;
82 
83 static inline register_t
84 mftlb0cfg(void)
85 {
86 	register_t tlb0cfg;
87 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
88 	return tlb0cfg;
89 }
90 
91 static inline register_t
92 mftlb1cfg(void)
93 {
94 	register_t tlb1cfg;
95 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
96 	return tlb1cfg;
97 }
98 
99 static struct e500_tlb
100 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
101 {
102 	struct e500_tlb tlb;
103 	register_t prot_mask;
104 	u_int prot_shift;
105 
106 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
107 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
108 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
109 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
110 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
111 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
112 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
113 		prot_shift = PTE_RWX_SHIFT - 1;
114 	} else {
115 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
116 		prot_shift = PTE_RWX_SHIFT;
117 	}
118 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
119 	return tlb;
120 }
121 
122 static inline struct e500_hwtlb
123 hwtlb_read(uint32_t mas0, u_int slot)
124 {
125 	struct e500_hwtlb hwtlb;
126 	register_t tlbcfg;
127 
128 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
129 		tlbcfg = mftlb0cfg();
130 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
131 		tlbcfg = mftlb1cfg();
132 	} else {
133 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
134 		    __func__, __LINE__, mas0);
135 	}
136 
137 	/*
138 	 * ESEL is the way we want to look up.
139 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
140 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
141 	 * is less then the number of tlb entries, the slot is split in two
142 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
143 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
144 	 */
145 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
146 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
147 	const u_int esel_shift =
148 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
149 
150 	/*
151 	 * Disable interrupts since we don't want anyone else mucking with
152 	 * the MMU Assist registers
153 	 */
154 	const register_t msr = wrtee(0);
155 	const register_t saved_mas0 = mfspr(SPR_MAS0);
156 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
157 
158 	if (__predict_true(tlbassoc > tlbentries))
159 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
160 
161 	/*
162 	 * Now select the entry and grab its contents.
163 	 */
164 	__asm volatile("tlbre");
165 
166 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
167 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
168 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
169 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
170 
171 	mtspr(SPR_MAS0, saved_mas0);
172 	wrtee(msr);	/* restore interrupts */
173 
174 	return hwtlb;
175 }
176 
177 static inline void
178 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
179 {
180 	const register_t msr = wrtee(0);
181 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
182 
183 	/*
184 	 * Need to always write MAS0 and MAS1
185 	 */
186 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
187 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
188 
189 	/*
190 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
191 	 */
192 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
193 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
194 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
195 	}
196 	/*
197 	 * Only need to write the RPN/prot if we are dealing with a valid
198 	 * mapping.
199 	 */
200 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
201 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
202 	}
203 
204 #if 0
205 	printf("%s->[%x,%x,%x,%x]\n",
206 	    __func__,
207 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
208 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
209 #endif
210 	__asm volatile("tlbwe");
211 	if (needs_sync) {
212 		__asm volatile("tlbsync");
213 		__asm volatile("isync");
214 	}
215 
216 	mtspr(SPR_MAS0, saved_mas0);
217 	wrtee(msr);
218 }
219 
220 static struct e500_hwtlb
221 tlb_to_hwtlb(const struct e500_tlb tlb)
222 {
223 	struct e500_hwtlb hwtlb;
224 
225 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
226 	KASSERT(tlb.tlb_size != 0);
227 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
228 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
229 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
230 		hwtlb.hwtlb_mas0 = 0;
231 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
232 		/*
233 		 * A non-zero ASID means this is a user page so mark it as
234 		 * being in the user's address space.
235 		 */
236 		if (tlb.tlb_asid) {
237 			hwtlb.hwtlb_mas1 |= MAS1_TS
238 			    | MASX_TID_MAKE(tlb.tlb_asid);
239 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
240 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
241 			KASSERT(prot_mask & PTE_xR);
242 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
243 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
244 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
245 		} else {
246 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
247 		}
248 		if (tlb.tlb_pte & PTE_UNMODIFIED)
249 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
250 		if (tlb.tlb_pte & PTE_UNSYNCED)
251 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
252 	} else {
253 		KASSERT(tlb.tlb_asid == 0);
254 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
255 		u_int cntlz = __builtin_clz(tlb.tlb_size);
256 		KASSERT(cntlz & 1);
257 		KASSERT(cntlz <= 19);
258 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
259 		/*
260 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
261 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
262 		 * bits.  Subtracting the leading number of zero bits from 21
263 		 * and dividing by 2 gives us the number that the MMU wants.
264 		 */
265 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
266 		    | MAS1_IPROT | MAS1_V;
267 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
268 	}
269 	/* We are done with MAS1, on to MAS2 ... */
270 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
271 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
272 
273 	return hwtlb;
274 }
275 
276 static int
277 e500_alloc_tlb1_entry(void)
278 {
279 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
280 
281 	if (tlb1->tlb1_numfree == 0)
282 		return -1;
283 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
284 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
285 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
286 	    MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
287 	return slot;
288 }
289 
290 static void
291 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
292 {
293 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
294 	KASSERT(slot < tlb1->tlb1_numentries);
295 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
296 
297 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
298 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
299 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
300 
301 	const register_t msr = wrtee(0);
302 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
303 	wrtee(msr);
304 }
305 
306 static void e500_tlb_set_asid(uint32_t asid)
307 {
308 	mtspr(SPR_PID0, asid);
309 }
310 
311 static void e500_tlb_invalidate_all(void)
312 {
313 	/*
314 	 * This does a flash invalidate of all entries in TLB0.
315 	 * We don't touch TLB1 since we don't expect those to be volatile.
316 	 */
317 #if 1
318 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
319 #else
320 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
321 	while (mfspr(SPR_MMUCSR0) != 0)
322 		;
323 #endif
324 }
325 
326 static void
327 e500_tlb_invalidate_globals(void)
328 {
329 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
330 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
331 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
332 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
333 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
334 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
335 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
336 
337 	const register_t msr = wrtee(0);
338 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
339 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
340 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
341 			mtspr(SPR_MAS2, epn);
342 			__asm volatile("tlbre");
343 			uint32_t mas1 = mfspr(SPR_MAS1);
344 
345 			/*
346 			 * Make sure this is a valid kernel entry first.
347 			 */
348 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
349 				continue;
350 
351 			/*
352 			 * We have a valid kernel TLB entry.  But if it matches
353 			 * the stack we are currently running on, it would
354 			 * unwise to invalidate it.  First see if the epn
355 			 * overlaps the stack.  If it does then get the
356 			 * VA and see if it really is part of the stack.
357 			 */
358 			if (epn_kstack_lo < epn_kstack_hi
359 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
360 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
361 				const uint32_t mas2_epn =
362 				    mfspr(SPR_MAS2) & MAS2_EPN;
363 				if (kstack_lo <= mas2_epn
364 				    && mas2_epn <= kstack_hi)
365 					continue;
366 			}
367 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
368 			__asm volatile("tlbwe");
369 		}
370 	}
371 	__asm volatile("isync");
372 	wrtee(msr);
373 }
374 
375 static void
376 e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
377 {
378 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
379 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
380 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
381 
382 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
383 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
384 
385 	const register_t msr = wrtee(0);
386 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
387 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
388 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
389 			mtspr(SPR_MAS2, epn);
390 			__asm volatile("tlbre");
391 			const uint32_t mas1 = mfspr(SPR_MAS1);
392 			/*
393 			 * If this is a valid entry for AS space 1 and
394 			 * its asid matches the constraints of the caller,
395 			 * clear its valid bit.
396 			 */
397 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
398 			    && asid_lo <= (mas1 & MAS1_TID)
399 			    && (mas1 & MAS1_TID) < asid_hi) {
400 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
401 #if 0
402 				printf("%s[%zu,%zu]->[%x]\n",
403 				    __func__, assoc, epn, mas1);
404 #endif
405 				__asm volatile("tlbwe");
406 			}
407 		}
408 	}
409 	__asm volatile("isync");
410 	wrtee(msr);
411 }
412 
413 static u_int
414 e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
415 {
416 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
417 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
418 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
419 	const size_t nbits = 8 * sizeof(bitmap[0]);
420 	u_int found = 0;
421 
422 	const register_t msr = wrtee(0);
423 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
424 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
425 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
426 			mtspr(SPR_MAS2, epn);
427 			__asm volatile("tlbre");
428 			const uint32_t mas1 = mfspr(SPR_MAS1);
429 			/*
430 			 * If this is a valid entry for AS space 1 and
431 			 * its asid matches the constraints of the caller,
432 			 * clear its valid bit.
433 			 */
434 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
435 				const uint32_t asid = MASX_TID_GET(mas1);
436 				const u_int i = asid / nbits;
437 				const u_long mask = 1UL << (asid & (nbits - 1));
438 				if ((bitmap[i] & mask) == 0) {
439 					bitmap[i] |= mask;
440 					found++;
441 				}
442 			}
443 		}
444 	}
445 	wrtee(msr);
446 
447 	return found;
448 }
449 
450 static void
451 e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
452 {
453 	KASSERT((va & PAGE_MASK) == 0);
454 	/*
455 	 * Bits 60 & 61 have meaning
456 	 */
457 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
458 	__asm volatile("tlbsync");
459 	__asm volatile("tlbsync");
460 }
461 
462 static bool
463 e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
464 {
465 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
466 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
467 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
468 
469 	register_t msr = wrtee(0);
470 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
471 	__asm volatile("tlbsx 0, %0" :: "b"(va));
472 	register_t mas1 = mfspr(SPR_MAS1);
473 	if ((mas1 & MAS1_V) == 0) {
474 		if (!insert) {
475 			wrtee(msr);
476 #if 0
477 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
478 			    __func__, va, asid, pte, insert);
479 #endif
480 			return false;
481 		}
482 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
483 	}
484 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
485 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
486 	__asm volatile("tlbwe");
487 	if (asid == 0)
488 		__asm volatile("isync");
489 	wrtee(msr);
490 #if 0
491 	if (asid)
492 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
493 	    __func__, va, asid, pte, insert,
494 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
495 #endif
496 	return (mas1 & MAS1_V) != 0;
497 }
498 
499 static void
500 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
501 {
502 }
503 
504 static void
505 e500_tlb_dump(void (*pr)(const char *, ...))
506 {
507 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
508 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
509 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
510 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
511 	size_t valid = 0;
512 
513 	if (pr == NULL)
514 		pr = printf;
515 
516 	const register_t msr = wrtee(0);
517 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
518 		struct e500_hwtlb hwtlb;
519 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
520 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
521 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
522 			mtspr(SPR_MAS2, epn);
523 			__asm volatile("tlbre");
524 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
525 			/*
526 			 * If this is a valid entry for AS space 1 and
527 			 * its asid matches the constraints of the caller,
528 			 * clear its valid bit.
529 			 */
530 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
531 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
532 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
533 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
534 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
535 				    assoc, atop(epn),
536 				    hwtlb.hwtlb_mas1,
537 				    hwtlb.hwtlb_mas2,
538 				    hwtlb.hwtlb_mas3);
539 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
540 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
541 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
542 				    tlb.tlb_pte & PTE_RPN_MASK,
543 				    tlb.tlb_pte & PTE_xR ? "R" : "",
544 				    tlb.tlb_pte & PTE_xW ? "W" : "",
545 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
546 				    tlb.tlb_pte & PTE_xX ? "X" : "",
547 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
548 				    tlb.tlb_pte & PTE_W ? "W" : "",
549 				    tlb.tlb_pte & PTE_I ? "I" : "",
550 				    tlb.tlb_pte & PTE_M ? "M" : "",
551 				    tlb.tlb_pte & PTE_G ? "G" : "",
552 				    tlb.tlb_pte & PTE_E ? "E" : "");
553 				valid++;
554 			}
555 		}
556 	}
557 	mtspr(SPR_MAS0, saved_mas0);
558 	wrtee(msr);
559 	(*pr)("%s: %zu valid entries\n", __func__, valid);
560 }
561 
562 static void
563 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
564 {
565 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
566 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
567 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
568 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
569 
570 	const register_t msr = wrtee(0);
571 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
572 		struct e500_hwtlb hwtlb;
573 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
574 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
575 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
576 			mtspr(SPR_MAS2, epn);
577 			__asm volatile("tlbre");
578 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
579 			/*
580 			 * If this is a valid entry for AS space 1 and
581 			 * its asid matches the constraints of the caller,
582 			 * clear its valid bit.
583 			 */
584 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
585 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
586 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
587 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
588 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
589 				    tlb.tlb_pte))
590 					break;
591 			}
592 		}
593 	}
594 	mtspr(SPR_MAS0, saved_mas0);
595 	wrtee(msr);
596 }
597 
598 static struct e500_xtlb *
599 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
600 {
601 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
602 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
603 
604 	/*
605 	 * See if we have a TLB entry for the pa.
606 	 */
607 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
608 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
609 		    && xtlb->e_tlb.tlb_va <= va
610 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
611 			if (slotp != NULL)
612 				*slotp = i;
613 			return xtlb;
614 		}
615 	}
616 
617 	return NULL;
618 }
619 
620 static struct e500_xtlb *
621 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
622 {
623 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
624 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
625 
626 	/*
627 	 * See if we have a TLB entry for the pa.
628 	 */
629 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
630 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
631 		    && xtlb->e_tlb.tlb_va < va + len
632 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
633 			return xtlb;
634 		}
635 	}
636 
637 	return NULL;
638 }
639 
640 static void *
641 e500_tlb_mapiodev(paddr_t pa, psize_t len)
642 {
643 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
644 
645 	/*
646 	 * See if we have a TLB entry for the pa.  If completely falls within
647 	 * mark the reference and return the pa.
648 	 */
649 	if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
650 		xtlb->e_refcnt++;
651 		return (void *) pa;
652 	}
653 	return NULL;
654 }
655 
656 static void
657 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
658 {
659 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
660 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
661 		if (xtlb)
662 			xtlb->e_refcnt--;
663 	}
664 }
665 
666 static int
667 e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
668 {
669 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
670 	struct e500_xtlb *xtlb;
671 
672 	KASSERT(len & 0x55555000);
673 	KASSERT((len & ~0x55555000) == 0);
674 	KASSERT(len >= PAGE_SIZE);
675 	KASSERT((len & (len - 1)) == 0);
676 	KASSERT((va & (len - 1)) == 0);
677 	KASSERT((pte & (len - 1)) == 0);
678 
679 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
680 		if (va < xtlb->e_tlb.tlb_va
681 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
682 		    || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
683 			return EBUSY;
684 		xtlb->e_refcnt++;
685 		return 0;
686 	}
687 
688 	const int slot = e500_alloc_tlb1_entry();
689 	if (slot < 0)
690 		return ENOMEM;
691 
692 	xtlb = &tlb1->tlb1_entries[slot];
693 	xtlb->e_tlb.tlb_va = va;
694 	xtlb->e_tlb.tlb_size = len;
695 	xtlb->e_tlb.tlb_pte = pte;
696 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
697 
698 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
699 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
700 	hwtlb_write(xtlb->e_hwtlb, true);
701 	return 0;
702 }
703 
704 static int
705 e500_tlb_iorelease(vaddr_t va)
706 {
707 	u_int slot;
708 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
709 
710 	if (xtlb == NULL)
711 		return ENOENT;
712 
713 	if (xtlb->e_refcnt)
714 		return EBUSY;
715 
716 	e500_free_tlb1_entry(xtlb, slot, true);
717 
718 	return 0;
719 }
720 
721 static u_int
722 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
723 {
724 	u_int slotmask = 0;
725 	u_int slots = 0, nextslot = 0;
726 	KASSERT(tlb1->tlb1_numfree > 1);
727 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
728 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
729 		u_int cnt = __builtin_clz(memsize);
730 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
731 		slots += memsize / size;
732 		if (slots > 4)
733 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
734 			    __func__, __LINE__, memsize, "too fragmented");
735 		if (slots > tlb1->tlb1_numfree - 1)
736 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
737 			    __func__, __LINE__, memsize,
738 			    "insufficent TLB entries");
739 		for (; nextslot < slots; nextslot++) {
740 			const u_int freeslot = e500_alloc_tlb1_entry();
741 			struct e500_xtlb * const xtlb =
742 			    &tlb1->tlb1_entries[freeslot];
743 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
744 			xtlb->e_tlb.tlb_size = size;
745 			xtlb->e_tlb.tlb_va = lastaddr;
746 			xtlb->e_tlb.tlb_pte = lastaddr
747 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
748 			lastaddr += size;
749 			memsize -= size;
750 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
751 		}
752 	}
753 
754 	return nextslot;
755 }
756 static const struct tlb_md_ops e500_tlb_ops = {
757 	.md_tlb_set_asid = e500_tlb_set_asid,
758 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
759 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
760 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
761 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
762 	.md_tlb_update_addr = e500_tlb_update_addr,
763 	.md_tlb_record_asids = e500_tlb_record_asids,
764 	.md_tlb_read_entry = e500_tlb_read_entry,
765 	.md_tlb_mapiodev = e500_tlb_mapiodev,
766 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
767 	.md_tlb_ioreserve = e500_tlb_ioreserve,
768 	.md_tlb_iorelease = e500_tlb_iorelease,
769 	.md_tlb_dump = e500_tlb_dump,
770 	.md_tlb_walk = e500_tlb_walk,
771 };
772 
773 void
774 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
775 {
776 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
777 
778 #if 0
779 	register_t mmucfg = mfspr(SPR_MMUCFG);
780 	register_t mas4 = mfspr(SPR_MAS4);
781 #endif
782 
783 	const uint32_t tlb1cfg = mftlb1cfg();
784 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
785 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
786 	/*
787 	 * Limit maxsize to 1G since 4G isn't really useful to us.
788 	 */
789 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
790 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
791 
792 #ifdef VERBOSE_INITPPC
793 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
794 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
795 	    tlb1->tlb1_maxsize >> 10);
796 #endif
797 
798 	/*
799 	 * Let's see what's in TLB1 and we need to invalidate any entry that
800 	 * would fit within the kernel's mapped address space.
801 	 */
802 	psize_t memmapped = 0;
803 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
804 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
805 
806 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
807 
808 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
809 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
810 #ifdef VERBOSE_INITPPC
811 			printf(" TLB1[%u]=<unused>", i);
812 #endif
813 			continue;
814 		}
815 
816 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
817 #ifdef VERBOSE_INITPPC
818 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
819 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
820 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
821 #endif
822 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
823 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
824 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
825 		        && VM_MIN_KERNEL_ADDRESS <
826 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
827 #ifdef VERBOSE_INITPPC
828 			printf("free");
829 #endif
830 			e500_free_tlb1_entry(xtlb, i, false);
831 #ifdef VERBOSE_INITPPC
832 			printf("d");
833 #endif
834 			continue;
835 		}
836 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
837 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
838 			hwtlb_write(xtlb->e_hwtlb, false);
839 #ifdef VERBOSE_INITPPC
840 			printf("+iprot");
841 #endif
842 		}
843 		if (xtlb->e_tlb.tlb_pte & PTE_I)
844 			continue;
845 
846 		if (xtlb->e_tlb.tlb_va == 0
847 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
848 			memmapped += xtlb->e_tlb.tlb_size;
849 		}
850 	}
851 
852 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
853 
854 	if (__predict_false(memmapped < memsize)) {
855 		/*
856 		 * Let's see how many TLB entries are needed to map memory.
857 		 */
858 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
859 
860 		/*
861 		 * To map main memory into the TLB, we need to flush any
862 		 * existing entries from the TLB that overlap the virtual
863 		 * address space needed to map physical memory.  That may
864 		 * include the entries for the pages currently used by the
865 		 * stack or that we are executing.  So to avoid problems, we
866 		 * are going to temporarily map the kernel and stack into AS 1,
867 		 * switch to it, and clear out the TLB entries from AS 0,
868 		 * install the new TLB entries to map memory, and then switch
869 		 * back to AS 0 and free the temp entry used for AS1.
870 		 */
871 		u_int b = __builtin_clz(endkernel);
872 
873 		/*
874 		 * If the kernel doesn't end on a clean power of 2, we need
875 		 * to round the size up (by decrementing the number of leading
876 		 * zero bits).  If the size isn't a power of 4KB, decrement
877 		 * again to make it one.
878 		 */
879 		if (endkernel & (endkernel - 1))
880 			b--;
881 		if ((b & 1) == 0)
882 			b--;
883 
884 		/*
885 		 * Create a TLB1 mapping for the kernel in AS1.
886 		 */
887 		const u_int kslot = e500_alloc_tlb1_entry();
888 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
889 		kxtlb->e_tlb.tlb_va = 0;
890 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
891 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
892 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
893 
894 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
895 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
896 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
897 		hwtlb_write(kxtlb->e_hwtlb, true);
898 
899 		/*
900 		 * Now that we have a TLB mapping in AS1 for the kernel and its
901 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
902 		 */
903 		const register_t saved_msr = mfmsr();
904 		mtmsr(saved_msr | PSL_DS | PSL_IS);
905 		__asm volatile("isync");
906 
907 		/*
908 		 *** Invalidate all the TLB0 entries.
909 		 */
910 		e500_tlb_invalidate_all();
911 
912 		/*
913 		 *** Now let's see if we have any entries in TLB1 that would
914 		 *** overlap the ones we are about to install.  If so, nuke 'em.
915 		 */
916 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
917 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
918 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
919 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
920 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
921 				e500_free_tlb1_entry(xtlb, i, false);
922 			}
923 		}
924 
925 		/*
926 		 *** Now we can add the TLB entries that will map physical
927 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
928 		 *** entry 0 contains a mapping for physical memory...
929 		 */
930 		struct e500_xtlb *entries = tlb1->tlb1_entries;
931 		while (slotmask != 0) {
932 			const u_int slot = __builtin_clz(slotmask);
933 			hwtlb_write(entries[slot].e_hwtlb, false);
934 			entries += slot + 1;
935 			slotmask <<= slot + 1;
936 		}
937 
938 		/*
939 		 *** Synchronize the TLB and the instruction stream.
940 		 */
941 		__asm volatile("tlbsync");
942 		__asm volatile("isync");
943 
944 		/*
945 		 *** Switch back to AS 0.
946 		 */
947 		mtmsr(saved_msr);
948 		__asm volatile("isync");
949 
950 		/*
951 		 * Free the temporary TLB1 entry.
952 		 */
953 		e500_free_tlb1_entry(kxtlb, kslot, true);
954 	}
955 
956 	/*
957 	 * Finally set the MAS4 defaults.
958 	 */
959 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
960 
961 	/*
962 	 * Invalidate all the TLB0 entries.
963 	 */
964 	e500_tlb_invalidate_all();
965 }
966