xref: /netbsd-src/sys/arch/powerpc/booke/booke_pmap.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: booke_pmap.c,v 1.18 2014/03/18 18:20:41 riastradh Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #define __PMAP_PRIVATE
38 
39 #include <sys/cdefs.h>
40 
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.18 2014/03/18 18:20:41 riastradh Exp $");
42 
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46 
47 #include <uvm/uvm.h>
48 
49 #include <machine/pmap.h>
50 
51 /*
52  * Initialize the kernel pmap.
53  */
54 #ifdef MULTIPROCESSOR
55 #define	PMAP_SIZE	offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
56 #else
57 #define	PMAP_SIZE	sizeof(struct pmap)
58 #endif
59 
60 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
61 
62 pmap_segtab_t pmap_kernel_segtab;
63 
64 void
65 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
66 {
67 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
68 	vsize_t off = va & PAGE_SIZE;
69 
70 	kpreempt_disable();
71 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
72 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
73 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
74 		if (ptep == NULL) {
75 			va = segeva;
76 			continue;
77 		}
78 		pt_entry_t pt_entry = *ptep;
79 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
80 			va = segeva;
81 			continue;
82 		}
83 		kpreempt_enable();
84 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
85 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
86 		kpreempt_disable();
87 		va = segeva;
88 	}
89 	kpreempt_enable();
90 }
91 
92 void
93 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
94 {
95 	/*
96 	 * If onproc is empty, we could do a
97 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
98 	 * mappings of the page and clear its execness.  Then
99 	 * the next time page is faulted, it will get icache
100 	 * synched.  But this is easier. :)
101 	 */
102 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
103 	dcache_wb_page(pa);
104 	icache_inv_page(pa);
105 }
106 
107 vaddr_t
108 pmap_md_direct_map_paddr(paddr_t pa)
109 {
110 	return (vaddr_t) pa;
111 }
112 
113 bool
114 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
115 {
116 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
117 }
118 
119 paddr_t
120 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
121 {
122 	return (paddr_t) va;
123 }
124 
125 #ifdef PMAP_MINIMALTLB
126 static pt_entry_t *
127 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
128 {
129 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
130 	if (ptep == NULL)
131 		return NULL;
132 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
133 }
134 
135 vaddr_t
136 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
137 {
138 	const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
139 	KASSERT(sva == trunc_page(sva));
140 	pt_entry_t *ptep = kvtopte(stp, sva);
141 	for (; sva < eva; sva += NBPG) {
142 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
143 	}
144 	return sva;
145 }
146 #endif
147 
148 /*
149  *	Bootstrap the system enough to run with virtual memory.
150  *	firstaddr is the first unused kseg0 address (not page aligned).
151  */
152 vaddr_t
153 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
154 	phys_ram_seg_t *avail, size_t cnt)
155 {
156 	pmap_segtab_t * const stp = &pmap_kernel_segtab;
157 
158 	/*
159 	 * Initialize the kernel segment table.
160 	 */
161 	pmap_kernel()->pm_segtab = stp;
162 	curcpu()->ci_pmap_kern_segtab = stp;
163 #ifdef MULTIPROCESSOR
164 	pmap_kernel()->pm_active = kcpuset_running;
165 	pmap_kernel()->pm_onproc = kcpuset_running;
166 #endif
167 
168 	KASSERT(endkernel == trunc_page(endkernel));
169 
170 	/*
171 	 * Compute the number of pages kmem_arena will have.
172 	 */
173 	kmeminit_nkmempages();
174 
175 	/*
176 	 * Figure out how many PTE's are necessary to map the kernel.
177 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
178 	 */
179 
180 	/* Get size of buffer cache and set an upper limit */
181 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
182 	vsize_t bufsz = buf_memcalc();
183 	buf_setvalimit(bufsz);
184 
185 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
186 	    + (ubc_nwins << ubc_winshift)
187 	    + bufsz
188 	    + 16 * NCARGS
189 	    + pager_map_size
190 	    + maxproc * USPACE
191 #ifdef SYSVSHM
192 	    + NBPG * shminfo.shmall
193 #endif
194 	    + NBPG * nkmempages) >> SEGSHIFT;
195 
196 	/*
197 	 * Initialize `FYI' variables.	Note we're relying on
198 	 * the fact that BSEARCH sorts the vm_physmem[] array
199 	 * for us.  Must do this before uvm_pageboot_alloc()
200 	 * can be called.
201 	 */
202 	pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
203 	pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
204 	const size_t max_nsegtabs =
205 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
206 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
207 	if (kv_nsegtabs >= max_nsegtabs) {
208 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
209 		kv_nsegtabs = max_nsegtabs;
210 	} else {
211 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
212 		    + kv_nsegtabs * NBSEG;
213 	}
214 
215 	/*
216 	 * Now actually allocate the kernel PTE array (must be done
217 	 * after virtual_end is initialized).
218 	 */
219 	const vaddr_t kv_segtabs = avail[0].start;
220 	KASSERT(kv_segtabs == endkernel);
221 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
222 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
223 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
224 	avail[0].start += NBPG * kv_nsegtabs;
225 	avail[0].size -= NBPG * kv_nsegtabs;
226 	endkernel += NBPG * kv_nsegtabs;
227 
228 	/*
229 	 * Initialize the kernel's two-level page level.  This only wastes
230 	 * an extra page for the segment table and allows the user/kernel
231 	 * access to be common.
232 	 */
233 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
234 	pt_entry_t *ptep = (void *)kv_segtabs;
235 	memset(ptep, 0, NBPG * kv_nsegtabs);
236 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
237 		*ptp++ = ptep;
238 	}
239 
240 #if PMAP_MINIMALTLB
241 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
242 	const vaddr_t dm_segtabs = avail[0].start;
243 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
244 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
245 	KASSERT(dm_segtabs == endkernel);
246 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
247 	avail[0].start += NBPG * dm_nsegtabs;
248 	avail[0].size -= NBPG * dm_nsegtabs;
249 	endkernel += NBPG * dm_nsegtabs;
250 
251 	ptp = stp->seg_tab;
252 	ptep = (void *)dm_segtabs;
253 	memset(ptep, 0, NBPG * dm_nsegtabs);
254 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
255 		*ptp = ptep;
256 	}
257 
258 	/*
259 	 */
260 	extern uint32_t _fdata[], _etext[];
261 	vaddr_t va;
262 
263 	/* Now make everything before the kernel inaccessible. */
264 	va = pmap_kvptefill(NBPG, startkernel, 0);
265 
266 	/* Kernel text is readonly & executable */
267 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
268 	    PTE_M | PTE_xR | PTE_xX);
269 
270 	/* Kernel .rdata is readonly */
271 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
272 
273 	/* Kernel .data/.bss + page tables are read-write */
274 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
275 
276 	/* message buffer page table pages are read-write */
277 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
278 	    PTE_M | PTE_xR | PTE_xW);
279 #endif
280 
281 	for (size_t i = 0; i < cnt; i++) {
282 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
283 		    atop(avail[i].start),
284 		    atop(avail[i].start + avail[i].size) - 1,
285 		    atop(avail[i].start),
286 		    atop(avail[i].start + avail[i].size) - 1,
287 		    VM_FREELIST_DEFAULT);
288 		uvm_page_physload(
289 		    atop(avail[i].start),
290 		    atop(avail[i].start + avail[i].size) - 1,
291 		    atop(avail[i].start),
292 		    atop(avail[i].start + avail[i].size) - 1,
293 		    VM_FREELIST_DEFAULT);
294 	}
295 
296 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
297 
298 	/*
299 	 * Initialize the pools.
300 	 */
301 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
302 	    &pool_allocator_nointr, IPL_NONE);
303 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
304 	    &pmap_pv_page_allocator, IPL_NONE);
305 
306 	tlb_set_asid(0);
307 
308 	return endkernel;
309 }
310 
311 struct vm_page *
312 pmap_md_alloc_poolpage(int flags)
313 {
314 	/*
315 	 * Any managed page works for us.
316 	 */
317 	return uvm_pagealloc(NULL, 0, NULL, flags);
318 }
319 
320 vaddr_t
321 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
322 {
323 	const vaddr_t sva = (vaddr_t) pa;
324 #ifdef PMAP_MINIMALTLB
325 	const vaddr_t eva = sva + size;
326 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
327 #endif
328 	return sva;
329 }
330 
331 void
332 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
333 {
334 #ifdef PMAP_MINIMALTLB
335 	struct pmap * const pm = pmap_kernel();
336 	const vaddr_t eva = va + size;
337 	pmap_kvptefill(va, eva, 0);
338 	for (;va < eva; va += NBPG) {
339 		pmap_tlb_invalidate_addr(pm, va);
340 	}
341 	pmap_update(pm);
342 #endif
343 }
344 
345 void
346 pmap_zero_page(paddr_t pa)
347 {
348 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
349 	dcache_zero_page(va);
350 
351 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
352 	pmap_md_unmap_poolpage(va, NBPG);
353 }
354 
355 void
356 pmap_copy_page(paddr_t src, paddr_t dst)
357 {
358 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
359 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
360 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
361 	const vaddr_t end = src_va + PAGE_SIZE;
362 
363 	while (src_va < end) {
364 		__asm(
365 			"dcbt	%2,%1"	"\n\t"	/* touch next src cachline */
366 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
367 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
368 		for (u_int i = 0;
369 		     i < line_size;
370 		     src_va += 32, dst_va += 32, i += 32) {
371 			register_t tmp;
372 			__asm __volatile(
373 				"mr	%[tmp],31"	"\n\t"
374 				"lmw	24,0(%[src])"	"\n\t"
375 				"stmw	24,0(%[dst])"	"\n\t"
376 				"mr	31,%[tmp]"	"\n\t"
377 			    : [tmp] "=&r"(tmp)
378 			    : [src] "b"(src_va), [dst] "b"(dst_va)
379 			    : "r24", "r25", "r26", "r27",
380 			      "r28", "r29", "r30", "memory");
381 		}
382 	}
383 	pmap_md_unmap_poolpage(src_va, NBPG);
384 	pmap_md_unmap_poolpage(dst_va, NBPG);
385 
386 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
387 }
388 
389 void
390 pmap_md_init(void)
391 {
392 
393 	/* nothing for now */
394 }
395 
396 bool
397 pmap_md_io_vaddr_p(vaddr_t va)
398 {
399 	return va >= pmap_limits.avail_end
400 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
401 }
402 
403 bool
404 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
405 {
406 	pmap_t pm = ctx;
407         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
408 
409 	if (asid != pai->pai_asid)
410 		return true;
411 
412 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
413 	KASSERT(ptep != NULL);
414 	pt_entry_t xpte = *ptep;
415 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
416 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
417 
418 	KASSERTMSG(pte == xpte,
419 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
420 	    pm, va, asid, pte, xpte, *ptep);
421 
422 	return true;
423 }
424 
425 #ifdef MULTIPROCESSOR
426 void
427 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
428 {
429 	/* nothing */
430 }
431 #endif /* MULTIPROCESSOR */
432