xref: /netbsd-src/sys/arch/powerpc/booke/booke_pmap.c (revision 9fd8799cb5ceb66c69f2eb1a6d26a1d587ba1f1e)
1 /*	$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #define __PMAP_PRIVATE
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $");
41 
42 #ifdef _KERNEL_OPT
43 #include "opt_multiprocessor.h"
44 #include "opt_pmap.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/kcore.h>
49 #include <sys/buf.h>
50 #include <sys/mutex.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <machine/pmap.h>
55 
56 PMAP_COUNTER(zeroed_pages, "pages zeroed");
57 PMAP_COUNTER(copied_pages, "pages copied");
58 
59 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
60 
61 void
62 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
63 {
64 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
65 	vsize_t off = va & PAGE_SIZE;
66 
67 	kpreempt_disable();
68 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
69 		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
70 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
71 		if (ptep == NULL) {
72 			va = segeva;
73 			continue;
74 		}
75 		pt_entry_t pt_entry = *ptep;
76 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
77 			va = segeva;
78 			continue;
79 		}
80 		kpreempt_enable();
81 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
82 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
83 		kpreempt_disable();
84 		va = segeva;
85 	}
86 	kpreempt_enable();
87 }
88 
89 void
90 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
91 {
92 	/*
93 	 * If onproc is empty, we could do a
94 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
95 	 * mappings of the page and clear its execness.  Then
96 	 * the next time page is faulted, it will get icache
97 	 * synched.  But this is easier. :)
98 	 */
99 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
100 	dcache_wb_page(pa);
101 	icache_inv_page(pa);
102 }
103 
104 vaddr_t
105 pmap_md_direct_map_paddr(paddr_t pa)
106 {
107 	return (vaddr_t) pa;
108 }
109 
110 bool
111 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
112 {
113 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
114 }
115 
116 paddr_t
117 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
118 {
119 	return (paddr_t) va;
120 }
121 
122 #ifdef PMAP_MINIMALTLB
123 static pt_entry_t *
124 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
125 {
126 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
127 	if (ptep == NULL)
128 		return NULL;
129 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
130 }
131 
132 vaddr_t
133 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
134 {
135 	pmap_segtab_t * const stp = &pmap_kern_segtab;
136 	KASSERT(sva == trunc_page(sva));
137 	pt_entry_t *ptep = kvtopte(stp, sva);
138 	for (; sva < eva; sva += NBPG) {
139 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
140 	}
141 	return sva;
142 }
143 #endif
144 
145 /*
146  *	Bootstrap the system enough to run with virtual memory.
147  *	firstaddr is the first unused kseg0 address (not page aligned).
148  */
149 vaddr_t
150 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
151 	phys_ram_seg_t *avail, size_t cnt)
152 {
153 	pmap_segtab_t * const stp = &pmap_kern_segtab;
154 
155 	KASSERT(endkernel == trunc_page(endkernel));
156 
157 	/* common initialization */
158 	pmap_bootstrap_common();
159 
160 	/* init the lock */
161 	pmap_tlb_info_init(&pmap_tlb0_info);
162 
163 	/*
164 	 * Compute the number of pages kmem_arena will have.
165 	 */
166 	kmeminit_nkmempages();
167 
168 	/*
169 	 * Figure out how many PTE's are necessary to map the kernel.
170 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
171 	 */
172 
173 	/* Get size of buffer cache and set an upper limit */
174 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
175 	vsize_t bufsz = buf_memcalc();
176 	buf_setvalimit(bufsz);
177 
178 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
179 	    + (ubc_nwins << ubc_winshift)
180 	    + bufsz
181 	    + 16 * NCARGS
182 	    + pager_map_size
183 	    + maxproc * USPACE
184 	    + NBPG * nkmempages) >> SEGSHIFT;
185 
186 	/*
187 	 * Initialize `FYI' variables.	Note we're relying on
188 	 * the fact that BSEARCH sorts the vm_physmem[] array
189 	 * for us.  Must do this before uvm_pageboot_alloc()
190 	 * can be called.
191 	 */
192 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
193 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
194 	const size_t max_nsegtabs =
195 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
196 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
197 	if (kv_nsegtabs >= max_nsegtabs) {
198 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
199 		kv_nsegtabs = max_nsegtabs;
200 	} else {
201 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
202 		    + kv_nsegtabs * NBSEG;
203 	}
204 
205 	/*
206 	 * Now actually allocate the kernel PTE array (must be done
207 	 * after virtual_end is initialized).
208 	 */
209 	const vaddr_t kv_segtabs = avail[0].start;
210 	KASSERT(kv_segtabs == endkernel);
211 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
212 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
213 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
214 	avail[0].start += NBPG * kv_nsegtabs;
215 	avail[0].size -= NBPG * kv_nsegtabs;
216 	endkernel += NBPG * kv_nsegtabs;
217 
218 	/*
219 	 * Initialize the kernel's two-level page level.  This only wastes
220 	 * an extra page for the segment table and allows the user/kernel
221 	 * access to be common.
222 	 */
223 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
224 	pt_entry_t *ptep = (void *)kv_segtabs;
225 	memset(ptep, 0, NBPG * kv_nsegtabs);
226 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
227 		*ptp++ = ptep;
228 	}
229 
230 #if PMAP_MINIMALTLB
231 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
232 	const vaddr_t dm_segtabs = avail[0].start;
233 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
234 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
235 	KASSERT(dm_segtabs == endkernel);
236 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
237 	avail[0].start += NBPG * dm_nsegtabs;
238 	avail[0].size -= NBPG * dm_nsegtabs;
239 	endkernel += NBPG * dm_nsegtabs;
240 
241 	ptp = stp->seg_tab;
242 	ptep = (void *)dm_segtabs;
243 	memset(ptep, 0, NBPG * dm_nsegtabs);
244 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
245 		*ptp = ptep;
246 	}
247 
248 	/*
249 	 */
250 	extern uint32_t _fdata[], _etext[];
251 	vaddr_t va;
252 
253 	/* Now make everything before the kernel inaccessible. */
254 	va = pmap_kvptefill(NBPG, startkernel, 0);
255 
256 	/* Kernel text is readonly & executable */
257 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
258 	    PTE_M | PTE_xR | PTE_xX);
259 
260 	/* Kernel .rdata is readonly */
261 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
262 
263 	/* Kernel .data/.bss + page tables are read-write */
264 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
265 
266 	/* message buffer page table pages are read-write */
267 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
268 	    PTE_M | PTE_xR | PTE_xW);
269 #endif
270 
271 	for (size_t i = 0; i < cnt; i++) {
272 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
273 		    atop(avail[i].start),
274 		    atop(avail[i].start + avail[i].size) - 1,
275 		    atop(avail[i].start),
276 		    atop(avail[i].start + avail[i].size) - 1,
277 		    VM_FREELIST_DEFAULT);
278 		uvm_page_physload(
279 		    atop(avail[i].start),
280 		    atop(avail[i].start + avail[i].size) - 1,
281 		    atop(avail[i].start),
282 		    atop(avail[i].start + avail[i].size) - 1,
283 		    VM_FREELIST_DEFAULT);
284 	}
285 
286 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
287 
288 	/*
289 	 * Initialize the pools.
290 	 */
291 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
292 	    &pool_allocator_nointr, IPL_NONE);
293 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
294 	    &pmap_pv_page_allocator, IPL_NONE);
295 
296 	tlb_set_asid(0);
297 
298 	return endkernel;
299 }
300 
301 struct vm_page *
302 pmap_md_alloc_poolpage(int flags)
303 {
304 	/*
305 	 * Any managed page works for us.
306 	 */
307 	return uvm_pagealloc(NULL, 0, NULL, flags);
308 }
309 
310 vaddr_t
311 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
312 {
313 	const vaddr_t sva = (vaddr_t) pa;
314 #ifdef PMAP_MINIMALTLB
315 	const vaddr_t eva = sva + size;
316 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
317 #endif
318 	return sva;
319 }
320 
321 void
322 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
323 {
324 #ifdef PMAP_MINIMALTLB
325 	struct pmap * const pm = pmap_kernel();
326 	const vaddr_t eva = va + size;
327 	pmap_kvptefill(va, eva, 0);
328 	for (;va < eva; va += NBPG) {
329 		pmap_tlb_invalidate_addr(pm, va);
330 	}
331 	pmap_update(pm);
332 #endif
333 }
334 
335 void
336 pmap_zero_page(paddr_t pa)
337 {
338 	PMAP_COUNT(zeroed_pages);
339 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
340 	dcache_zero_page(va);
341 
342 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
343 	pmap_md_unmap_poolpage(va, NBPG);
344 }
345 
346 void
347 pmap_copy_page(paddr_t src, paddr_t dst)
348 {
349 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
350 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
351 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
352 	const vaddr_t end = src_va + PAGE_SIZE;
353 
354 	PMAP_COUNT(copied_pages);
355 
356 	while (src_va < end) {
357 		__asm __volatile(
358 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
359 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
360 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
361 		for (u_int i = 0;
362 		     i < line_size;
363 		     src_va += 32, dst_va += 32, i += 32) {
364 			register_t tmp;
365 			__asm __volatile(
366 				"mr	%[tmp],31"	"\n\t"
367 				"lmw	24,0(%[src])"	"\n\t"
368 				"stmw	24,0(%[dst])"	"\n\t"
369 				"mr	31,%[tmp]"	"\n\t"
370 			    : [tmp] "=&r"(tmp)
371 			    : [src] "b"(src_va), [dst] "b"(dst_va)
372 			    : "r24", "r25", "r26", "r27",
373 			      "r28", "r29", "r30", "memory");
374 		}
375 	}
376 	pmap_md_unmap_poolpage(src_va, NBPG);
377 	pmap_md_unmap_poolpage(dst_va, NBPG);
378 
379 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
380 }
381 
382 void
383 pmap_md_init(void)
384 {
385 
386 	/* nothing for now */
387 }
388 
389 bool
390 pmap_md_io_vaddr_p(vaddr_t va)
391 {
392 	return va >= pmap_limits.avail_end
393 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
394 }
395 
396 bool
397 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
398 {
399 	pmap_t pm = ctx;
400         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
401 
402 	if (asid != pai->pai_asid)
403 		return true;
404 
405 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
406 	KASSERT(ptep != NULL);
407 	pt_entry_t xpte = *ptep;
408 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
409 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
410 
411 	KASSERTMSG(pte == xpte,
412 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
413 	    pm, va, asid, pte, xpte, *ptep);
414 
415 	return true;
416 }
417 
418 #ifdef MULTIPROCESSOR
419 void
420 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
421 {
422 	/* nothing */
423 }
424 #endif /* MULTIPROCESSOR */
425