xref: /netbsd-src/sys/arch/powerpc/booke/booke_pmap.c (revision 75f6d617e282811cb173c2ccfbf5df0dd71f7045)
1 /*	$NetBSD: booke_pmap.c,v 1.23 2015/11/05 06:26:15 pgoyette Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #define __PMAP_PRIVATE
38 
39 #include <sys/cdefs.h>
40 
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.23 2015/11/05 06:26:15 pgoyette Exp $");
42 
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46 #include <sys/mutex.h>
47 
48 #include <uvm/uvm.h>
49 
50 #include <machine/pmap.h>
51 
52 #if defined(MULTIPROCESSOR)
53 kmutex_t pmap_tlb_miss_lock;
54 #endif
55 
56 /*
57  * Initialize the kernel pmap.
58  */
59 #ifdef MULTIPROCESSOR
60 #define	PMAP_SIZE	offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
61 #else
62 #define	PMAP_SIZE	sizeof(struct pmap)
63 #endif
64 
65 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
66 
67 pmap_segtab_t pmap_kernel_segtab;
68 
69 void
70 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
71 {
72 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
73 	vsize_t off = va & PAGE_SIZE;
74 
75 	kpreempt_disable();
76 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
77 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
78 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
79 		if (ptep == NULL) {
80 			va = segeva;
81 			continue;
82 		}
83 		pt_entry_t pt_entry = *ptep;
84 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
85 			va = segeva;
86 			continue;
87 		}
88 		kpreempt_enable();
89 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
90 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
91 		kpreempt_disable();
92 		va = segeva;
93 	}
94 	kpreempt_enable();
95 }
96 
97 void
98 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
99 {
100 	/*
101 	 * If onproc is empty, we could do a
102 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
103 	 * mappings of the page and clear its execness.  Then
104 	 * the next time page is faulted, it will get icache
105 	 * synched.  But this is easier. :)
106 	 */
107 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
108 	dcache_wb_page(pa);
109 	icache_inv_page(pa);
110 }
111 
112 vaddr_t
113 pmap_md_direct_map_paddr(paddr_t pa)
114 {
115 	return (vaddr_t) pa;
116 }
117 
118 bool
119 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
120 {
121 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
122 }
123 
124 paddr_t
125 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
126 {
127 	return (paddr_t) va;
128 }
129 
130 #ifdef PMAP_MINIMALTLB
131 static pt_entry_t *
132 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
133 {
134 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
135 	if (ptep == NULL)
136 		return NULL;
137 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
138 }
139 
140 vaddr_t
141 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
142 {
143 	const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
144 	KASSERT(sva == trunc_page(sva));
145 	pt_entry_t *ptep = kvtopte(stp, sva);
146 	for (; sva < eva; sva += NBPG) {
147 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
148 	}
149 	return sva;
150 }
151 #endif
152 
153 /*
154  *	Bootstrap the system enough to run with virtual memory.
155  *	firstaddr is the first unused kseg0 address (not page aligned).
156  */
157 vaddr_t
158 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
159 	phys_ram_seg_t *avail, size_t cnt)
160 {
161 	pmap_segtab_t * const stp = &pmap_kernel_segtab;
162 
163 	/*
164 	 * Initialize the kernel segment table.
165 	 */
166 	pmap_kernel()->pm_segtab = stp;
167 	curcpu()->ci_pmap_kern_segtab = stp;
168 
169 	KASSERT(endkernel == trunc_page(endkernel));
170 
171 	/* init the lock */
172 	pmap_tlb_info_init(&pmap_tlb0_info);
173 
174 #if defined(MULTIPROCESSOR)
175 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
176 #endif
177 
178 	/*
179 	 * Compute the number of pages kmem_arena will have.
180 	 */
181 	kmeminit_nkmempages();
182 
183 	/*
184 	 * Figure out how many PTE's are necessary to map the kernel.
185 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
186 	 */
187 
188 	/* Get size of buffer cache and set an upper limit */
189 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
190 	vsize_t bufsz = buf_memcalc();
191 	buf_setvalimit(bufsz);
192 
193 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
194 	    + (ubc_nwins << ubc_winshift)
195 	    + bufsz
196 	    + 16 * NCARGS
197 	    + pager_map_size
198 	    + maxproc * USPACE
199 	    + NBPG * nkmempages) >> SEGSHIFT;
200 
201 	/*
202 	 * Initialize `FYI' variables.	Note we're relying on
203 	 * the fact that BSEARCH sorts the vm_physmem[] array
204 	 * for us.  Must do this before uvm_pageboot_alloc()
205 	 * can be called.
206 	 */
207 	pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
208 	pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
209 	const size_t max_nsegtabs =
210 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
211 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
212 	if (kv_nsegtabs >= max_nsegtabs) {
213 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
214 		kv_nsegtabs = max_nsegtabs;
215 	} else {
216 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
217 		    + kv_nsegtabs * NBSEG;
218 	}
219 
220 	/*
221 	 * Now actually allocate the kernel PTE array (must be done
222 	 * after virtual_end is initialized).
223 	 */
224 	const vaddr_t kv_segtabs = avail[0].start;
225 	KASSERT(kv_segtabs == endkernel);
226 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
227 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
228 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
229 	avail[0].start += NBPG * kv_nsegtabs;
230 	avail[0].size -= NBPG * kv_nsegtabs;
231 	endkernel += NBPG * kv_nsegtabs;
232 
233 	/*
234 	 * Initialize the kernel's two-level page level.  This only wastes
235 	 * an extra page for the segment table and allows the user/kernel
236 	 * access to be common.
237 	 */
238 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
239 	pt_entry_t *ptep = (void *)kv_segtabs;
240 	memset(ptep, 0, NBPG * kv_nsegtabs);
241 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
242 		*ptp++ = ptep;
243 	}
244 
245 #if PMAP_MINIMALTLB
246 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
247 	const vaddr_t dm_segtabs = avail[0].start;
248 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
249 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
250 	KASSERT(dm_segtabs == endkernel);
251 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
252 	avail[0].start += NBPG * dm_nsegtabs;
253 	avail[0].size -= NBPG * dm_nsegtabs;
254 	endkernel += NBPG * dm_nsegtabs;
255 
256 	ptp = stp->seg_tab;
257 	ptep = (void *)dm_segtabs;
258 	memset(ptep, 0, NBPG * dm_nsegtabs);
259 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
260 		*ptp = ptep;
261 	}
262 
263 	/*
264 	 */
265 	extern uint32_t _fdata[], _etext[];
266 	vaddr_t va;
267 
268 	/* Now make everything before the kernel inaccessible. */
269 	va = pmap_kvptefill(NBPG, startkernel, 0);
270 
271 	/* Kernel text is readonly & executable */
272 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
273 	    PTE_M | PTE_xR | PTE_xX);
274 
275 	/* Kernel .rdata is readonly */
276 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
277 
278 	/* Kernel .data/.bss + page tables are read-write */
279 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
280 
281 	/* message buffer page table pages are read-write */
282 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
283 	    PTE_M | PTE_xR | PTE_xW);
284 #endif
285 
286 	for (size_t i = 0; i < cnt; i++) {
287 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
288 		    atop(avail[i].start),
289 		    atop(avail[i].start + avail[i].size) - 1,
290 		    atop(avail[i].start),
291 		    atop(avail[i].start + avail[i].size) - 1,
292 		    VM_FREELIST_DEFAULT);
293 		uvm_page_physload(
294 		    atop(avail[i].start),
295 		    atop(avail[i].start + avail[i].size) - 1,
296 		    atop(avail[i].start),
297 		    atop(avail[i].start + avail[i].size) - 1,
298 		    VM_FREELIST_DEFAULT);
299 	}
300 
301 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
302 
303 	/*
304 	 * Initialize the pools.
305 	 */
306 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
307 	    &pool_allocator_nointr, IPL_NONE);
308 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
309 	    &pmap_pv_page_allocator, IPL_NONE);
310 
311 	tlb_set_asid(0);
312 
313 	return endkernel;
314 }
315 
316 struct vm_page *
317 pmap_md_alloc_poolpage(int flags)
318 {
319 	/*
320 	 * Any managed page works for us.
321 	 */
322 	return uvm_pagealloc(NULL, 0, NULL, flags);
323 }
324 
325 vaddr_t
326 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
327 {
328 	const vaddr_t sva = (vaddr_t) pa;
329 #ifdef PMAP_MINIMALTLB
330 	const vaddr_t eva = sva + size;
331 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
332 #endif
333 	return sva;
334 }
335 
336 void
337 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
338 {
339 #ifdef PMAP_MINIMALTLB
340 	struct pmap * const pm = pmap_kernel();
341 	const vaddr_t eva = va + size;
342 	pmap_kvptefill(va, eva, 0);
343 	for (;va < eva; va += NBPG) {
344 		pmap_tlb_invalidate_addr(pm, va);
345 	}
346 	pmap_update(pm);
347 #endif
348 }
349 
350 void
351 pmap_zero_page(paddr_t pa)
352 {
353 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
354 	dcache_zero_page(va);
355 
356 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
357 	pmap_md_unmap_poolpage(va, NBPG);
358 }
359 
360 void
361 pmap_copy_page(paddr_t src, paddr_t dst)
362 {
363 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
364 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
365 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
366 	const vaddr_t end = src_va + PAGE_SIZE;
367 
368 	while (src_va < end) {
369 		__asm __volatile(
370 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
371 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
372 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
373 		for (u_int i = 0;
374 		     i < line_size;
375 		     src_va += 32, dst_va += 32, i += 32) {
376 			register_t tmp;
377 			__asm __volatile(
378 				"mr	%[tmp],31"	"\n\t"
379 				"lmw	24,0(%[src])"	"\n\t"
380 				"stmw	24,0(%[dst])"	"\n\t"
381 				"mr	31,%[tmp]"	"\n\t"
382 			    : [tmp] "=&r"(tmp)
383 			    : [src] "b"(src_va), [dst] "b"(dst_va)
384 			    : "r24", "r25", "r26", "r27",
385 			      "r28", "r29", "r30", "memory");
386 		}
387 	}
388 	pmap_md_unmap_poolpage(src_va, NBPG);
389 	pmap_md_unmap_poolpage(dst_va, NBPG);
390 
391 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
392 }
393 
394 void
395 pmap_md_init(void)
396 {
397 
398 	/* nothing for now */
399 }
400 
401 bool
402 pmap_md_io_vaddr_p(vaddr_t va)
403 {
404 	return va >= pmap_limits.avail_end
405 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
406 }
407 
408 bool
409 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
410 {
411 	pmap_t pm = ctx;
412         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
413 
414 	if (asid != pai->pai_asid)
415 		return true;
416 
417 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
418 	KASSERT(ptep != NULL);
419 	pt_entry_t xpte = *ptep;
420 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
421 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
422 
423 	KASSERTMSG(pte == xpte,
424 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
425 	    pm, va, asid, pte, xpte, *ptep);
426 
427 	return true;
428 }
429 
430 #ifdef MULTIPROCESSOR
431 void
432 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
433 {
434 	/* nothing */
435 }
436 
437 void
438 pmap_md_tlb_miss_lock_enter(void)
439 {
440 
441 	mutex_spin_enter(&pmap_tlb_miss_lock);
442 }
443 
444 void
445 pmap_md_tlb_miss_lock_exit(void)
446 {
447 
448 	mutex_spin_exit(&pmap_tlb_miss_lock);
449 }
450 #endif /* MULTIPROCESSOR */
451