1 /* $NetBSD: booke_machdep.c,v 1.23 2015/01/23 07:27:05 nonaka Exp $ */ 2 /*- 3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects 8 * Agency and which was developed by Matt Thomas of 3am Software Foundry. 9 * 10 * This material is based upon work supported by the Defense Advanced Research 11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under 12 * Contract No. N66001-09-C-2073. 13 * Approved for Public Release, Distribution Unlimited 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #define __INTR_PRIVATE 38 #define _POWERPC_BUS_DMA_PRIVATE 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.23 2015/01/23 07:27:05 nonaka Exp $"); 42 43 #include "opt_modular.h" 44 45 #include <sys/param.h> 46 #include <sys/cpu.h> 47 #include <sys/device.h> 48 #include <sys/intr.h> 49 #include <sys/mount.h> 50 #include <sys/msgbuf.h> 51 #include <sys/kernel.h> 52 #include <sys/reboot.h> 53 #include <sys/bus.h> 54 #include <sys/cpu.h> 55 56 #include <uvm/uvm_extern.h> 57 58 #include <powerpc/pcb.h> 59 #include <powerpc/spr.h> 60 #include <powerpc/booke/spr.h> 61 #include <powerpc/booke/cpuvar.h> 62 63 /* 64 * Global variables used here and there 65 */ 66 paddr_t msgbuf_paddr; 67 psize_t pmemsize; 68 struct vm_map *phys_map; 69 70 #ifdef MODULAR 71 register_t cpu_psluserset = PSL_USERSET; 72 register_t cpu_pslusermod = PSL_USERMOD; 73 register_t cpu_pslusermask = PSL_USERMASK; 74 #endif 75 76 static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t); 77 static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t); 78 79 80 struct powerpc_bus_dma_tag booke_bus_dma_tag = { 81 ._dmamap_create = _bus_dmamap_create, 82 ._dmamap_destroy = _bus_dmamap_destroy, 83 ._dmamap_load = _bus_dmamap_load, 84 ._dmamap_load_mbuf = _bus_dmamap_load_mbuf, 85 ._dmamap_load_uio = _bus_dmamap_load_uio, 86 ._dmamap_load_raw = _bus_dmamap_load_raw, 87 ._dmamap_unload = _bus_dmamap_unload, 88 /* 89 * The caches on BookE are coherent so we don't need to do any special 90 * cache synchronization. 91 */ 92 //._dmamap_sync = _bus_dmamap_sync, 93 ._dmamem_alloc = _bus_dmamem_alloc, 94 ._dmamem_free = _bus_dmamem_free, 95 ._dmamem_map = _bus_dmamem_map, 96 ._dmamem_unmap = _bus_dmamem_unmap, 97 ._dmamem_mmap = _bus_dmamem_mmap, 98 ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem, 99 ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys, 100 }; 101 102 static bus_addr_t 103 booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a) 104 { 105 return a; 106 } 107 108 static bus_addr_t 109 booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a) 110 { 111 return a; 112 } 113 114 struct cpu_md_ops cpu_md_ops; 115 116 struct cpu_softc cpu_softc[] = { 117 [0] = { 118 .cpu_ci = &cpu_info[0], 119 }, 120 #ifdef MULTIPROCESSOR 121 [CPU_MAXNUM-1] = { 122 .cpu_ci = &cpu_info[CPU_MAXNUM-1], 123 }, 124 #endif 125 }; 126 struct cpu_info cpu_info[] = { 127 [0] = { 128 .ci_curlwp = &lwp0, 129 .ci_tlb_info = &pmap_tlb0_info, 130 .ci_softc = &cpu_softc[0], 131 .ci_cpl = IPL_HIGH, 132 .ci_idepth = -1, 133 }, 134 #ifdef MULTIPROCESSOR 135 [CPU_MAXNUM-1] = { 136 .ci_curlwp = NULL, 137 .ci_tlb_info = &pmap_tlb0_info, 138 .ci_softc = &cpu_softc[CPU_MAXNUM-1], 139 .ci_cpl = IPL_HIGH, 140 .ci_idepth = -1, 141 }, 142 #endif 143 }; 144 __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc)); 145 146 /* 147 * This should probably be in autoconf! XXX 148 */ 149 char machine[] = MACHINE; /* from <machine/param.h> */ 150 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */ 151 152 char bootpath[256]; 153 154 #if NKSYMS || defined(DDB) || defined(MODULAR) 155 void *startsym, *endsym; 156 #endif 157 158 #if defined(MULTIPROCESSOR) 159 volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned; 160 #endif 161 162 int fake_mapiodev = 1; 163 164 void 165 booke_cpu_startup(const char *model) 166 { 167 vaddr_t minaddr, maxaddr; 168 char pbuf[9]; 169 170 cpu_setmodel("%s", model); 171 172 printf("%s%s", copyright, version); 173 174 format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem)); 175 printf("total memory = %s\n", pbuf); 176 177 minaddr = 0; 178 /* 179 * Allocate a submap for physio 180 */ 181 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 182 VM_PHYS_SIZE, 0, false, NULL); 183 184 /* 185 * No need to allocate an mbuf cluster submap. Mbuf clusters 186 * are allocated via the pool allocator, and we use direct-mapped 187 * pool pages. 188 */ 189 190 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free)); 191 printf("avail memory = %s\n", pbuf); 192 193 /* 194 * Register the tlb's evcnts 195 */ 196 pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info); 197 198 /* 199 * Set up the board properties database. 200 */ 201 board_info_init(); 202 203 /* 204 * Now that we have VM, malloc()s are OK in bus_space. 205 */ 206 bus_space_mallocok(); 207 fake_mapiodev = 0; 208 209 #ifdef MULTIPROCESSOR 210 pmap_kernel()->pm_active = kcpuset_running; 211 pmap_kernel()->pm_onproc = kcpuset_running; 212 213 for (size_t i = 1; i < __arraycount(cpu_info); i++) { 214 struct cpu_info * const ci = &cpu_info[i]; 215 struct cpu_softc * const cpu = &cpu_softc[i]; 216 cpu->cpu_ci = ci; 217 cpu->cpu_bst = cpu_softc[0].cpu_bst; 218 cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst; 219 cpu->cpu_bsh = cpu_softc[0].cpu_bsh; 220 cpu->cpu_highmem = cpu_softc[0].cpu_highmem; 221 ci->ci_softc = cpu; 222 ci->ci_tlb_info = &pmap_tlb0_info; 223 ci->ci_cpl = IPL_HIGH; 224 ci->ci_idepth = -1; 225 ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab; 226 } 227 228 kcpuset_create(&cpuset_info.cpus_running, true); 229 kcpuset_create(&cpuset_info.cpus_hatched, true); 230 kcpuset_create(&cpuset_info.cpus_paused, true); 231 kcpuset_create(&cpuset_info.cpus_resumed, true); 232 kcpuset_create(&cpuset_info.cpus_halted, true); 233 234 kcpuset_set(cpuset_info.cpus_running, cpu_number()); 235 #endif /* MULTIPROCESSOR */ 236 } 237 238 static void 239 dumpsys(void) 240 { 241 242 printf("dumpsys: TBD\n"); 243 } 244 245 /* 246 * Halt or reboot the machine after syncing/dumping according to howto. 247 */ 248 void 249 cpu_reboot(int howto, char *what) 250 { 251 static int syncing; 252 static char str[256]; 253 char *ap = str, *ap1 = ap; 254 255 boothowto = howto; 256 if (!cold && !(howto & RB_NOSYNC) && !syncing) { 257 syncing = 1; 258 vfs_shutdown(); /* sync */ 259 resettodr(); /* set wall clock */ 260 } 261 262 splhigh(); 263 264 if (!cold && (howto & RB_DUMP)) 265 dumpsys(); 266 267 doshutdownhooks(); 268 269 pmf_system_shutdown(boothowto); 270 271 if ((howto & RB_POWERDOWN) == RB_POWERDOWN) { 272 /* Power off here if we know how...*/ 273 } 274 275 if (howto & RB_HALT) { 276 printf("halted\n\n"); 277 278 goto reboot; /* XXX for now... */ 279 280 #ifdef DDB 281 printf("dropping to debugger\n"); 282 while(1) 283 Debugger(); 284 #endif 285 } 286 287 printf("rebooting\n\n"); 288 if (what && *what) { 289 if (strlen(what) > sizeof str - 5) 290 printf("boot string too large, ignored\n"); 291 else { 292 strcpy(str, what); 293 ap1 = ap = str + strlen(str); 294 *ap++ = ' '; 295 } 296 } 297 *ap++ = '-'; 298 if (howto & RB_SINGLE) 299 *ap++ = 's'; 300 if (howto & RB_KDB) 301 *ap++ = 'd'; 302 *ap++ = 0; 303 if (ap[-2] == '-') 304 *ap1 = 0; 305 306 /* flush cache for msgbuf */ 307 dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE)); 308 309 reboot: 310 __asm volatile("msync; isync"); 311 (*cpu_md_ops.md_cpu_reset)(); 312 313 printf("%s: md_cpu_reset() failed!\n", __func__); 314 #ifdef DDB 315 for (;;) 316 Debugger(); 317 #else 318 for (;;) 319 /* nothing */; 320 #endif 321 } 322 323 /* 324 * mapiodev: 325 * 326 * Allocate vm space and mapin the I/O address. Use reserved TLB 327 * mapping if one is found. 328 */ 329 void * 330 mapiodev(paddr_t pa, psize_t len, bool prefetchable) 331 { 332 const vsize_t off = pa & PAGE_MASK; 333 334 /* 335 * See if we have reserved TLB entry for the pa. This needs to be 336 * true for console as we can't use uvm during early bootstrap. 337 */ 338 void * const p = tlb_mapiodev(pa, len, prefetchable); 339 if (p != NULL) 340 return p; 341 342 if (fake_mapiodev) 343 panic("mapiodev: no TLB entry reserved for %llx+%llx", 344 (long long)pa, (long long)len); 345 346 const paddr_t orig_pa = pa; 347 const psize_t orig_len = len; 348 vsize_t align = 0; 349 pa = trunc_page(pa); 350 len = round_page(off + len); 351 /* 352 * If we are allocating a large amount (>= 1MB) try to get an 353 * aligned VA region for it so try to do a large mapping for it. 354 */ 355 if ((len & (len - 1)) == 0 && len >= 0x100000) 356 align = len; 357 358 vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY); 359 360 if (va == 0 && align > 0) { 361 /* 362 * Large aligned request failed. Let's just get anything. 363 */ 364 align = 0; 365 va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY); 366 } 367 if (va == 0) 368 return NULL; 369 370 if (align) { 371 /* 372 * Now try to map that via one big TLB entry. 373 */ 374 pt_entry_t pte = pte_make_kenter_pa(pa, NULL, 375 VM_PROT_READ|VM_PROT_WRITE, 376 prefetchable ? 0 : PMAP_NOCACHE); 377 if (!tlb_ioreserve(va, len, pte)) { 378 void * const p0 = tlb_mapiodev(orig_pa, orig_len, 379 prefetchable); 380 KASSERT(p0 != NULL); 381 return p0; 382 } 383 } 384 385 for (va += len, pa += len; len > 0; len -= PAGE_SIZE) { 386 va -= PAGE_SIZE; 387 pa -= PAGE_SIZE; 388 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 389 prefetchable ? 0 : PMAP_NOCACHE); 390 } 391 pmap_update(pmap_kernel()); 392 return (void *)(va + off); 393 } 394 395 void 396 unmapiodev(vaddr_t va, vsize_t len) 397 { 398 /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */ 399 if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) { 400 tlb_unmapiodev(va, len); 401 return; 402 } 403 404 len = round_page((va & PAGE_MASK) + len); 405 va = trunc_page(va); 406 407 pmap_kremove(va, len); 408 uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY); 409 } 410 411 void 412 cpu_evcnt_attach(struct cpu_info *ci) 413 { 414 struct cpu_softc * const cpu = ci->ci_softc; 415 const char * const xname = ci->ci_data.cpu_name; 416 417 evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR, 418 NULL, xname, "clock"); 419 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR, 420 NULL, xname, "late clock"); 421 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP, 422 NULL, xname, "exec pages synced (trap)"); 423 evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP, 424 NULL, xname, "traps"); 425 evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP, 426 &ci->ci_ev_traps, xname, "kernel DSI traps"); 427 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP, 428 &ci->ci_ev_traps, xname, "user DSI traps"); 429 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP, 430 &ci->ci_ev_udsi, xname, "user DSI failures"); 431 evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP, 432 &ci->ci_ev_traps, xname, "kernel ISI traps"); 433 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP, 434 &ci->ci_ev_traps, xname, "user ISI traps"); 435 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP, 436 &ci->ci_ev_isi, xname, "user ISI failures"); 437 evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP, 438 &ci->ci_ev_traps, xname, "system call traps"); 439 evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP, 440 &ci->ci_ev_traps, xname, "PGM traps"); 441 evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP, 442 &ci->ci_ev_traps, xname, "debug traps"); 443 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP, 444 &ci->ci_ev_traps, xname, "FPU unavailable traps"); 445 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC, 446 &ci->ci_ev_fpu, xname, "FPU context switches"); 447 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP, 448 &ci->ci_ev_traps, xname, "user alignment traps"); 449 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP, 450 &ci->ci_ev_ali, xname, "user alignment traps"); 451 evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP, 452 &ci->ci_ev_umchk, xname, "user MCHK failures"); 453 evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP, 454 &ci->ci_ev_traps, xname, "SPE unavailable"); 455 evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC, 456 &ci->ci_ev_vec, xname, "SPE context switches"); 457 evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR, 458 NULL, xname, "IPIs"); 459 evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP, 460 &ci->ci_ev_traps, xname, "soft tlb misses"); 461 evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP, 462 &ci->ci_ev_traps, xname, "data tlb misses"); 463 evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP, 464 &ci->ci_ev_traps, xname, "inst tlb misses"); 465 } 466 467 #ifdef MULTIPROCESSOR 468 register_t 469 cpu_hatch(void) 470 { 471 struct cpuset_info * const csi = &cpuset_info; 472 const size_t id = cpu_number(); 473 474 /* 475 * We've hatched so tell the spinup code. 476 */ 477 kcpuset_set(csi->cpus_hatched, id); 478 479 /* 480 * Loop until running bit for this cpu is set. 481 */ 482 while (!kcpuset_isset(csi->cpus_running, id)) { 483 continue; 484 } 485 486 /* 487 * Now that we are active, start the clocks. 488 */ 489 cpu_initclocks(); 490 491 /* 492 * Return sp of the idlelwp. Which we should be already using but ... 493 */ 494 return curcpu()->ci_curpcb->pcb_sp; 495 } 496 497 void 498 cpu_boot_secondary_processors(void) 499 { 500 volatile struct cpuset_info * const csi = &cpuset_info; 501 CPU_INFO_ITERATOR cii; 502 struct cpu_info *ci; 503 kcpuset_t *running; 504 505 kcpuset_create(&running, true); 506 507 for (CPU_INFO_FOREACH(cii, ci)) { 508 /* 509 * Skip this CPU if it didn't sucessfully hatch. 510 */ 511 if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci))) 512 continue; 513 514 KASSERT(!CPU_IS_PRIMARY(ci)); 515 KASSERT(ci->ci_data.cpu_idlelwp); 516 517 kcpuset_set(running, cpu_index(ci)); 518 } 519 KASSERT(kcpuset_match(csi->cpus_hatched, running)); 520 if (!kcpuset_iszero(running)) { 521 kcpuset_merge(csi->cpus_running, running); 522 } 523 kcpuset_destroy(running); 524 } 525 #endif 526 527 uint32_t 528 cpu_read_4(bus_addr_t a) 529 { 530 struct cpu_softc * const cpu = curcpu()->ci_softc; 531 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a); 532 return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a); 533 } 534 535 uint8_t 536 cpu_read_1(bus_addr_t a) 537 { 538 struct cpu_softc * const cpu = curcpu()->ci_softc; 539 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a); 540 return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a); 541 } 542 543 void 544 cpu_write_4(bus_addr_t a, uint32_t v) 545 { 546 struct cpu_softc * const cpu = curcpu()->ci_softc; 547 bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v); 548 } 549 550 void 551 cpu_write_1(bus_addr_t a, uint8_t v) 552 { 553 struct cpu_softc * const cpu = curcpu()->ci_softc; 554 bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v); 555 } 556 557 void 558 booke_sstep(struct trapframe *tf) 559 { 560 KASSERT(tf->tf_srr1 & PSL_DE); 561 const uint32_t insn = ufetch_32((const void *)tf->tf_srr0); 562 register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM; 563 register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1; 564 if ((insn >> 28) == 4) { 565 uint32_t iac2 = 0; 566 if ((insn >> 26) == 0x12) { 567 const int32_t off = (((int32_t)insn << 6) >> 6) & ~3; 568 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off; 569 dbcr0 |= DBCR0_IAC2; 570 } else if ((insn >> 26) == 0x10) { 571 const int16_t off = insn & ~3; 572 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off; 573 dbcr0 |= DBCR0_IAC2; 574 } else if ((insn & 0xfc00fffe) == 0x4c000420) { 575 iac2 = tf->tf_ctr; 576 dbcr0 |= DBCR0_IAC2; 577 } else if ((insn & 0xfc00fffe) == 0x4c000020) { 578 iac2 = tf->tf_lr; 579 dbcr0 |= DBCR0_IAC2; 580 } 581 if (dbcr0 & DBCR0_IAC2) { 582 dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1; 583 mtspr(SPR_IAC2, iac2); 584 } 585 } 586 mtspr(SPR_IAC1, tf->tf_srr0 + 4); 587 mtspr(SPR_DBCR1, dbcr1); 588 mtspr(SPR_DBCR0, dbcr0); 589 } 590 591 #ifdef DIAGNOSTIC 592 static inline void 593 swap_data(uint64_t *data, size_t a, size_t b) 594 { 595 uint64_t swap = data[a]; 596 data[a] = data[b]; 597 data[b] = swap; 598 } 599 600 static void 601 sort_data(uint64_t *data, size_t count) 602 { 603 #if 0 604 /* 605 * Mostly classic bubble sort 606 */ 607 do { 608 size_t new_count = 0; 609 for (size_t i = 1; i < count; i++) { 610 if (tbs[i - 1] > tbs[i]) { 611 swap_tbs(tbs, i - 1, i); 612 new_count = i; 613 } 614 } 615 count = new_count; 616 } while (count > 0); 617 #else 618 /* 619 * Comb sort 620 */ 621 size_t gap = count; 622 bool swapped = false; 623 while (gap > 1 || swapped) { 624 if (gap > 1) { 625 /* 626 * phi = (1 + sqrt(5)) / 2 [golden ratio] 627 * N = 1 / (1 - e^-phi)) = 1.247330950103979 628 * 629 * We want to but can't use floating point to calculate 630 * gap = (size_t)((double)gap / N) 631 * 632 * So we will use the multicative inverse of N 633 * (module 65536) to achieve the division. 634 * 635 * iN = 2^16 / 1.24733... = 52540 636 * x / N == (x * iN) / 65536 637 */ 638 gap = (gap * 52540) / 65536; 639 } 640 641 swapped = false; 642 643 for (size_t i = 0; gap + i < count; i++) { 644 if (data[i] > data[i + gap]) { 645 swap_data(data, i, i + gap); 646 swapped = true; 647 } 648 } 649 } 650 #endif 651 } 652 #endif 653 654 void 655 dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...)) 656 { 657 #ifdef DIAGNOSTIC 658 struct cpu_softc * const cpu = ci->ci_softc; 659 uint64_t tbs[NIPL*NIPL]; 660 size_t ntbs = 0; 661 for (size_t to = 0; to < NIPL; to++) { 662 for (size_t from = 0; from < NIPL; from++) { 663 uint64_t tb = cpu->cpu_spl_tb[to][from]; 664 if (tb == 0) 665 continue; 666 tbs[ntbs++] = (tb << 8) | (to << 4) | from; 667 } 668 } 669 sort_data(tbs, ntbs); 670 671 if (pr == NULL) 672 pr = printf; 673 uint64_t last_tb = 0; 674 for (size_t i = 0; i < ntbs; i++) { 675 uint64_t tb = tbs[i]; 676 size_t from = tb & 15; 677 size_t to = (tb >> 4) & 15; 678 tb >>= 8; 679 (*pr)("%s(%zu) from %zu at %"PRId64"", 680 from < to ? "splraise" : "splx", 681 to, from, tb); 682 if (last_tb && from != IPL_NONE) 683 (*pr)(" (+%"PRId64")", tb - last_tb); 684 (*pr)("\n"); 685 last_tb = tb; 686 } 687 #endif 688 } 689