xref: /netbsd-src/sys/arch/mips/sibyte/dev/sbmac.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /* $NetBSD: sbmac.c,v 1.9 2003/02/07 17:38:49 cgd Exp $ */
2 
3 /*
4  * Copyright 2000, 2001
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "bpfilter.h"
36 #include "opt_inet.h"
37 #include "opt_ns.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/queue.h>
47 #include <sys/device.h>
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_ether.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #if NBPFILTER > 0
56 #include <net/bpf.h>
57 #endif
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/if_inarp.h>
62 #endif
63 
64 #ifdef NS
65 #include <netns/ns.h>
66 #include <netns/ns_if.h>
67 #endif
68 
69 #include <machine/locore.h>
70 
71 #include "sbobiovar.h"
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 #include <dev/mii/mii_bitbang.h>
76 
77 #include <mips/sibyte/include/sb1250_defs.h>
78 #include <mips/sibyte/include/sb1250_regs.h>
79 #include <mips/sibyte/include/sb1250_mac.h>
80 #include <mips/sibyte/include/sb1250_dma.h>
81 #include <mips/sibyte/include/sb1250_scd.h>
82 
83 
84 /* Simple types */
85 
86 typedef u_long sbmac_port_t;
87 typedef uint64_t sbmac_physaddr_t;
88 typedef uint64_t sbmac_enetaddr_t;
89 
90 typedef enum { sbmac_speed_auto, sbmac_speed_10,
91 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
92 
93 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
94 	       sbmac_duplex_full } sbmac_duplex_t;
95 
96 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
97 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
98 
99 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
100 	       sbmac_state_broken } sbmac_state_t;
101 
102 
103 /* Macros */
104 
105 #define	SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
106 			  (d)->sbdma_dscrtable : (d)->f+1)
107 
108 
109 #define	CACHELINESIZE 32
110 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
111 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
112 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
113 
114 #ifdef SBMACDEBUG
115 #define	dprintf(x)	printf x
116 #else
117 #define	dprintf(x)
118 #endif
119 
120 #define	SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
121 #define	SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
122 
123 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
124 
125 #define	SBMAC_MAX_TXDESCR	64
126 #define	SBMAC_MAX_RXDESCR	64
127 
128 #define	ETHER_ALIGN	2
129 
130 /* DMA Descriptor structure */
131 
132 typedef struct sbdmadscr_s {
133 	uint64_t dscr_a;
134 	uint64_t dscr_b;
135 } sbdmadscr_t;
136 
137 
138 /* DMA Controller structure */
139 
140 typedef struct sbmacdma_s {
141 
142 	/*
143 	 * This stuff is used to identify the channel and the registers
144 	 * associated with it.
145 	 */
146 
147 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
148 	int		sbdma_channel;	/* channel number */
149 	int		sbdma_txdir;	/* direction (1=transmit) */
150 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
151 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
152 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
153 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
154 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
155 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
156 
157 	/*
158 	 * This stuff is for maintenance of the ring
159 	 */
160 
161 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
162 	sbdmadscr_t	*sbdma_dscrtable_end;	/* end of descriptor table */
163 
164 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
165 
166 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
167 	sbdmadscr_t	*sbdma_addptr;		/* next dscr for sw to add */
168 	sbdmadscr_t	*sbdma_remptr;		/* next dscr for sw to remove */
169 } sbmacdma_t;
170 
171 
172 /* Ethernet softc structure */
173 
174 struct sbmac_softc {
175 
176 	/*
177 	 * NetBSD-specific things
178 	 */
179 	struct device	sc_dev;		/* base device (must be first) */
180 	struct ethercom	sc_ethercom;	/* Ethernet common part */
181 	struct mii_data	sc_mii;
182 	struct callout	sc_tick_ch;
183 
184 	int		sbm_if_flags;
185 	void		*sbm_intrhand;
186 
187 	/*
188 	 * Controller-specific things
189 	 */
190 
191 	sbmac_port_t	sbm_base;	/* MAC's base address */
192 	sbmac_state_t	sbm_state;	/* current state */
193 
194 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
195 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
196 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
197 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
198 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
199 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
200 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
201 
202 	sbmac_speed_t	sbm_speed;	/* current speed */
203 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
204 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
205 	int		sbm_rxflags;	/* received packet flags */
206 
207 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
208 
209 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
210 	sbmacdma_t	sbm_rxdma;
211 
212 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
213 };
214 
215 
216 /* Externs */
217 
218 extern paddr_t kvtophys(vaddr_t);
219 
220 /* Prototypes */
221 
222 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
223     int txrx, int maxdescr);
224 static void sbdma_channel_start(sbmacdma_t *d);
225 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
226 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
227 static void sbdma_emptyring(sbmacdma_t *d);
228 static void sbdma_fillring(sbmacdma_t *d);
229 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
230 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
231 static void sbmac_initctx(struct sbmac_softc *s);
232 static void sbmac_channel_start(struct sbmac_softc *s);
233 static void sbmac_channel_stop(struct sbmac_softc *s);
234 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
235     sbmac_state_t);
236 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
237 static void sbmac_init_and_start(struct sbmac_softc *sc);
238 static uint64_t sbmac_addr2reg(u_char *ptr);
239 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
240 static void sbmac_start(struct ifnet *ifp);
241 static void sbmac_setmulti(struct sbmac_softc *sc);
242 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
243 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
244 static int sbmac_mediachange(struct ifnet *ifp);
245 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
246 static void sbmac_watchdog(struct ifnet *ifp);
247 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
248 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
249 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
250 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
251     sbmac_fc_t fc);
252 static void sbmac_tick(void *arg);
253 
254 
255 /* Globals */
256 
257 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
258     sbmac_match, sbmac_attach, NULL, NULL);
259 
260 static uint32_t sbmac_mii_bitbang_read(struct device *self);
261 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
262 
263 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
264 	sbmac_mii_bitbang_read,
265 	sbmac_mii_bitbang_write,
266 	{
267 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
268 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
269 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
270 		0,				/* MII_BIT_DIR_HOST_PHY */
271 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
272 	}
273 };
274 
275 static uint32_t
276 sbmac_mii_bitbang_read(struct device *self)
277 {
278 	struct sbmac_softc *sc = (void *) self;
279 	sbmac_port_t reg;
280 
281 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
282 	return (uint32_t) SBMAC_READCSR(reg);
283 }
284 
285 static void
286 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
287 {
288 	struct sbmac_softc *sc = (void *) self;
289 	sbmac_port_t reg;
290 
291 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
292 
293 	SBMAC_WRITECSR(reg, (val &
294 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
295 }
296 
297 /*
298  * Read an PHY register through the MII.
299  */
300 static int
301 sbmac_mii_readreg(struct device *self, int phy, int reg)
302 {
303 
304 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
305 }
306 
307 /*
308  * Write to a PHY register through the MII.
309  */
310 static void
311 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
312 {
313 
314 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
315 }
316 
317 static void
318 sbmac_mii_statchg(struct device *self)
319 {
320 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
321 	sbmac_state_t oldstate;
322 
323 	/* Stop the MAC in preparation for changing all of the parameters. */
324 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
325 
326 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
327 	default:		/* if autonegotiation fails, assume 10Mbit */
328 	case IF_Mbps(10):
329 		sbmac_set_speed(sc, sbmac_speed_10);
330 		break;
331 
332 	case IF_Mbps(100):
333 		sbmac_set_speed(sc, sbmac_speed_100);
334 		break;
335 
336 	case IF_Mbps(1000):
337 		sbmac_set_speed(sc, sbmac_speed_1000);
338 		break;
339 	}
340 
341 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
342 		/* Configure for full-duplex */
343 		/* XXX: is flow control right for 10, 100? */
344 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
345 	} else {
346 		/* Configure for half-duplex */
347 		/* XXX: is flow control right? */
348 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
349 	}
350 
351 	/* And put it back into its former state. */
352 	sbmac_set_channel_state(sc, oldstate);
353 }
354 
355 /*
356  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
357  *
358  *  Initialize a DMA channel context.  Since there are potentially
359  *  eight DMA channels per MAC, it's nice to do this in a standard
360  *  way.
361  *
362  *  Input parameters:
363  *	d - sbmacdma_t structure (DMA channel context)
364  *	s - sbmac_softc structure (pointer to a MAC)
365  *	chan - channel number (0..1 right now)
366  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
367  *	maxdescr - number of descriptors
368  *
369  *  Return value:
370  *	nothing
371  */
372 
373 static void
374 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
375     int maxdescr)
376 {
377 	/*
378 	 * Save away interesting stuff in the structure
379 	 */
380 
381 	d->sbdma_eth = s;
382 	d->sbdma_channel = chan;
383 	d->sbdma_txdir = txrx;
384 
385 	/*
386 	 * initialize register pointers
387 	 */
388 
389 	d->sbdma_config0 = PKSEG1(s->sbm_base +
390 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
391 	d->sbdma_config1 = PKSEG1(s->sbm_base +
392 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
393 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
394 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
395 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
396 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
397 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
398 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
399 
400 	/*
401 	 * Allocate memory for the ring
402 	 */
403 
404 	d->sbdma_maxdescr = maxdescr;
405 
406 	d->sbdma_dscrtable = (sbdmadscr_t *)
407 	    KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
408 
409 	bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
410 
411 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
412 
413 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
414 
415 	/*
416 	 * And context table
417 	 */
418 
419 	d->sbdma_ctxtable = (struct mbuf **)
420 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
421 
422 	bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
423 }
424 
425 /*
426  *  SBDMA_CHANNEL_START(d)
427  *
428  *  Initialize the hardware registers for a DMA channel.
429  *
430  *  Input parameters:
431  *	d - DMA channel to init (context must be previously init'd
432  *
433  *  Return value:
434  *	nothing
435  */
436 
437 static void
438 sbdma_channel_start(sbmacdma_t *d)
439 {
440 	/*
441 	 * Turn on the DMA channel
442 	 */
443 
444 	SBMAC_WRITECSR(d->sbdma_config1, 0);
445 
446 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
447 
448 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
449 
450 	/*
451 	 * Initialize ring pointers
452 	 */
453 
454 	d->sbdma_addptr = d->sbdma_dscrtable;
455 	d->sbdma_remptr = d->sbdma_dscrtable;
456 }
457 
458 /*
459  *  SBDMA_ADD_RCVBUFFER(d, m)
460  *
461  *  Add a buffer to the specified DMA channel.   For receive channels,
462  *  this queues a buffer for inbound packets.
463  *
464  *  Input parameters:
465  *	d - DMA channel descriptor
466  *	m - mbuf to add, or NULL if we should allocate one.
467  *
468  *  Return value:
469  *	0 if buffer could not be added (ring is full)
470  *	1 if buffer added successfully
471  */
472 
473 static int
474 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
475 {
476 	sbdmadscr_t *dsc;
477 	sbdmadscr_t *nextdsc;
478 	struct mbuf *m_new = NULL;
479 
480 	/* get pointer to our current place in the ring */
481 
482 	dsc = d->sbdma_addptr;
483 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
484 
485 	/*
486 	 * figure out if the ring is full - if the next descriptor
487 	 * is the same as the one that we're going to remove from
488 	 * the ring, the ring is full
489 	 */
490 
491 	if (nextdsc == d->sbdma_remptr)
492 		return ENOSPC;
493 
494 	/*
495 	 * Allocate an mbuf if we don't already have one.
496 	 * If we do have an mbuf, reset it so that it's empty.
497 	 */
498 
499 	if (m == NULL) {
500 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
501 		if (m_new == NULL) {
502 			printf("%s: mbuf allocation failed\n",
503 			    d->sbdma_eth->sc_dev.dv_xname);
504 			return ENOBUFS;
505 		}
506 
507 		MCLGET(m_new, M_DONTWAIT);
508 		if (!(m_new->m_flags & M_EXT)) {
509 			printf("%s: mbuf cluster allocation failed\n",
510 			    d->sbdma_eth->sc_dev.dv_xname);
511 			m_freem(m_new);
512 			return ENOBUFS;
513 		}
514 
515 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
516 		m_adj(m_new, ETHER_ALIGN);
517 	} else {
518 		m_new = m;
519 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
520 		m_new->m_data = m_new->m_ext.ext_buf;
521 		m_adj(m_new, ETHER_ALIGN);
522 	}
523 
524 	/*
525 	 * fill in the descriptor
526 	 */
527 
528 	dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
529 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
530 	    M_DMA_DSCRA_INTERRUPT;
531 
532 	/* receiving: no options */
533 	dsc->dscr_b = 0;
534 
535 	/*
536 	 * fill in the context
537 	 */
538 
539 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
540 
541 	/*
542 	 * point at next packet
543 	 */
544 
545 	d->sbdma_addptr = nextdsc;
546 
547 	/*
548 	 * Give the buffer to the DMA engine.
549 	 */
550 
551 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
552 
553 	return 0;					/* we did it */
554 }
555 
556 /*
557  *  SBDMA_ADD_TXBUFFER(d, m)
558  *
559  *  Add a transmit buffer to the specified DMA channel, causing a
560  *  transmit to start.
561  *
562  *  Input parameters:
563  *	d - DMA channel descriptor
564  *	m - mbuf to add
565  *
566  *  Return value:
567  *	0 transmit queued successfully
568  *	otherwise error code
569  */
570 
571 static int
572 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
573 {
574 	sbdmadscr_t *dsc;
575 	sbdmadscr_t *nextdsc;
576 	sbdmadscr_t *prevdsc;
577 	sbdmadscr_t *origdesc;
578 	int length;
579 	int num_mbufs = 0;
580 	struct sbmac_softc *sc = d->sbdma_eth;
581 
582 	/* get pointer to our current place in the ring */
583 
584 	dsc = d->sbdma_addptr;
585 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
586 
587 	/*
588 	 * figure out if the ring is full - if the next descriptor
589 	 * is the same as the one that we're going to remove from
590 	 * the ring, the ring is full
591 	 */
592 
593 	if (nextdsc == d->sbdma_remptr)
594 		return ENOSPC;
595 
596 #if 0
597 	do {
598 		struct mbuf *m0;
599 
600 		printf("mbuf chain: ");
601 		for (m0 = m; m0 != 0; m0 = m0->m_next) {
602 			printf("%d%c/%X ", m0->m_len,
603 			m0->m_flags & M_EXT ? 'X' : 'N',
604 			mtod(m0, u_int));
605 		}
606 		printf("\n");
607 	} while (0);
608 #endif
609 
610 	/*
611 	 * PASS3 parts do not have buffer alignment restriction.
612 	 * No need to copy/coalesce to new mbuf.  Also has different
613 	 * descriptor format
614 	 */
615 	if (sc->sbm_pass3_dma) {
616 		struct mbuf *m_temp = NULL;
617 
618 		/*
619 		 * Loop thru this mbuf record.
620 		 * The head mbuf will have SOP set.
621 		 */
622 		dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
623 		    M_DMA_DSCRA_INTERRUPT |
624 		    M_DMA_ETHTX_SOP;
625 
626 		/*
627 		 * transmitting: set outbound options,buffer A size(+ low 5
628 		 * bits of start addr),and packet length.
629 		 */
630 		dsc->dscr_b =
631 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
632 		    V_DMA_DSCRB_A_SIZE((m->m_len + (mtod(m,unsigned int) & 0x0000001F))) |
633 		    V_DMA_DSCRB_PKT_SIZE_MSB( (m->m_pkthdr.len & 0xB000) ) |
634 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len);
635 
636 		d->sbdma_addptr = nextdsc;
637 		origdesc = prevdsc = dsc;
638 		dsc = d->sbdma_addptr;
639 		num_mbufs++;
640 
641 		/* Start with first non-head mbuf */
642 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
643 
644 			if (m_temp->m_len == 0)
645 				continue;	/* Skip 0-length mbufs */
646 
647 			/*
648 			 * fill in the descriptor
649 			 */
650 
651 			dsc->dscr_a = KVTOPHYS(mtod(m_temp,caddr_t)) |
652 			    M_DMA_DSCRA_INTERRUPT;
653 
654 			/* transmitting: set outbound options,buffer A size(+ low 5 bits of start addr) */
655 			dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
656 			    V_DMA_DSCRB_A_SIZE( (m_temp->m_len + (mtod(m_temp,unsigned int) & 0x0000001F)) );
657 
658 			d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
659 
660 			/*
661 			 * point at next descriptor
662 			 */
663 			nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
664 			if (nextdsc == d->sbdma_remptr) {
665 				d->sbdma_addptr = origdesc;
666 				return ENOSPC;
667 			}
668 			d->sbdma_addptr = nextdsc;
669 
670 			prevdsc = dsc;
671 			dsc = d->sbdma_addptr;
672 			num_mbufs++;
673 		}
674 
675 		/*Set head mbuf to last context index*/
676 		d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
677 	} else {
678 		struct mbuf *m_new = NULL;
679 		/*
680 		 * [BEGIN XXX]
681 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we assume
682 		 * it will fit).  This is a temporary hack to get us going.
683 		 */
684 
685 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
686 		if (m_new == NULL) {
687 			printf("%s: mbuf allocation failed\n",
688 			    d->sbdma_eth->sc_dev.dv_xname);
689 			return ENOBUFS;
690 		}
691 
692 		MCLGET(m_new,M_DONTWAIT);
693 		if (!(m_new->m_flags & M_EXT)) {
694 			printf("%s: mbuf cluster allocation failed\n",
695 			    d->sbdma_eth->sc_dev.dv_xname);
696 			m_freem(m_new);
697 			return ENOBUFS;
698 		}
699 
700 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
701 		/*m_adj(m_new,ETHER_ALIGN);*/
702 
703 		/*
704 		 * XXX Don't forget to include the offset portion in the
705 		 * XXX cache block calculation when this code is rewritten!
706 		 */
707 
708 		/*
709 		 * Copy data
710 		 */
711 
712 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
713 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
714 
715 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
716 
717 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
718 		// XXX: function succeeds.
719 		// m_freem(m);
720 		length = m_new->m_len;
721 
722 		/* [END XXX] */
723 		/*
724 		 * fill in the descriptor
725 		 */
726 
727 		dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
728 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
729 		    M_DMA_DSCRA_INTERRUPT |
730 		    M_DMA_ETHTX_SOP;
731 
732 		/* transmitting: set outbound options and length */
733 		dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
734 		    V_DMA_DSCRB_PKT_SIZE(length);
735 
736 		num_mbufs++;
737 
738 		/*
739 		 * fill in the context
740 		 */
741 
742 		d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
743 
744 		/*
745 		 * point at next packet
746 		 */
747 		d->sbdma_addptr = nextdsc;
748 	}
749 
750 	/*
751 	 * Give the buffer to the DMA engine.
752 	 */
753 
754 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
755 
756 	return 0;					/* we did it */
757 }
758 
759 /*
760  *  SBDMA_EMPTYRING(d)
761  *
762  *  Free all allocated mbufs on the specified DMA channel;
763  *
764  *  Input parameters:
765  *	d  - DMA channel
766  *
767  *  Return value:
768  *	nothing
769  */
770 
771 static void
772 sbdma_emptyring(sbmacdma_t *d)
773 {
774 	int idx;
775 	struct mbuf *m;
776 
777 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
778 		m = d->sbdma_ctxtable[idx];
779 		if (m) {
780 			m_freem(m);
781 			d->sbdma_ctxtable[idx] = NULL;
782 		}
783 	}
784 }
785 
786 /*
787  *  SBDMA_FILLRING(d)
788  *
789  *  Fill the specified DMA channel (must be receive channel)
790  *  with mbufs
791  *
792  *  Input parameters:
793  *	d - DMA channel
794  *
795  *  Return value:
796  *	nothing
797  */
798 
799 static void
800 sbdma_fillring(sbmacdma_t *d)
801 {
802 	int idx;
803 
804 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
805 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
806 			break;
807 }
808 
809 /*
810  *  SBDMA_RX_PROCESS(sc, d)
811  *
812  *  Process "completed" receive buffers on the specified DMA channel.
813  *  Note that this isn't really ideal for priority channels, since
814  *  it processes all of the packets on a given channel before
815  *  returning.
816  *
817  *  Input parameters:
818  *	sc - softc structure
819  *	d - DMA channel context
820  *
821  *  Return value:
822  *	nothing
823  */
824 
825 static void
826 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
827 {
828 	int curidx;
829 	int hwidx;
830 	sbdmadscr_t *dsc;
831 	struct mbuf *m;
832 	struct ether_header *eh;
833 	int len;
834 
835 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
836 
837 	for (;;) {
838 		/*
839 		 * figure out where we are (as an index) and where
840 		 * the hardware is (also as an index)
841 		 *
842 		 * This could be done faster if (for example) the
843 		 * descriptor table was page-aligned and contiguous in
844 		 * both virtual and physical memory -- you could then
845 		 * just compare the low-order bits of the virtual address
846 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
847 		 */
848 
849 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
850 		hwidx = (int)
851 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
852 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
853 
854 		/*
855 		 * If they're the same, that means we've processed all
856 		 * of the descriptors up to (but not including) the one that
857 		 * the hardware is working on right now.
858 		 */
859 
860 		if (curidx == hwidx)
861 			break;
862 
863 		/*
864 		 * Otherwise, get the packet's mbuf ptr back
865 		 */
866 
867 		dsc = &(d->sbdma_dscrtable[curidx]);
868 		m = d->sbdma_ctxtable[curidx];
869 		d->sbdma_ctxtable[curidx] = NULL;
870 
871 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
872 
873 		/*
874 		 * Check packet status.  If good, process it.
875 		 * If not, silently drop it and put it back on the
876 		 * receive ring.
877 		 */
878 
879 		if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
880 
881 			/*
882 			 * Set length into the packet
883 			 * XXX do we remove the CRC here?
884 			 */
885 			m->m_pkthdr.len = m->m_len = len;
886 
887 			ifp->if_ipackets++;
888 			eh = mtod(m, struct ether_header *);
889 			m->m_pkthdr.rcvif = ifp;
890 
891 
892 			/*
893 			 * Add a new buffer to replace the old one.
894 			 */
895 			sbdma_add_rcvbuffer(d, NULL);
896 
897 #if (NBPFILTER > 0)
898 			/*
899 			 * Handle BPF listeners. Let the BPF user see the
900 			 * packet, but don't pass it up to the ether_input()
901 			 * layer unless it's a broadcast packet, multicast
902 			 * packet, matches our ethernet address or the
903 			 * interface is in promiscuous mode.
904 			 */
905 
906 			if (ifp->if_bpf)
907 				bpf_mtap(ifp->if_bpf, m);
908 #endif
909 			/*
910 			 * Pass the buffer to the kernel
911 			 */
912 			(*ifp->if_input)(ifp, m);
913 		} else {
914 			/*
915 			 * Packet was mangled somehow.  Just drop it and
916 			 * put it back on the receive ring.
917 			 */
918 			sbdma_add_rcvbuffer(d, m);
919 		}
920 
921 		/*
922 		 * .. and advance to the next buffer.
923 		 */
924 
925 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
926 	}
927 }
928 
929 /*
930  *  SBDMA_TX_PROCESS(sc, d)
931  *
932  *  Process "completed" transmit buffers on the specified DMA channel.
933  *  This is normally called within the interrupt service routine.
934  *  Note that this isn't really ideal for priority channels, since
935  *  it processes all of the packets on a given channel before
936  *  returning.
937  *
938  *  Input parameters:
939  *	sc - softc structure
940  *	d - DMA channel context
941  *
942  *  Return value:
943  *	nothing
944  */
945 
946 static void
947 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
948 {
949 	int curidx;
950 	int hwidx;
951 	sbdmadscr_t *dsc;
952 	struct mbuf *m;
953 
954 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
955 
956 	for (;;) {
957 		/*
958 		 * figure out where we are (as an index) and where
959 		 * the hardware is (also as an index)
960 		 *
961 		 * This could be done faster if (for example) the
962 		 * descriptor table was page-aligned and contiguous in
963 		 * both virtual and physical memory -- you could then
964 		 * just compare the low-order bits of the virtual address
965 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
966 		 */
967 
968 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
969 		hwidx = (int)
970 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
971 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
972 
973 		/*
974 		 * If they're the same, that means we've processed all
975 		 * of the descriptors up to (but not including) the one that
976 		 * the hardware is working on right now.
977 		 */
978 
979 		if (curidx == hwidx)
980 			break;
981 
982 		/*
983 		 * Otherwise, get the packet's mbuf ptr back
984 		 */
985 
986 		dsc = &(d->sbdma_dscrtable[curidx]);
987 		m = d->sbdma_ctxtable[curidx];
988 		d->sbdma_ctxtable[curidx] = NULL;
989 
990 		/*
991 		 * for transmits, we just free buffers.
992 		 */
993 
994 		m_freem(m);
995 
996 		/*
997 		 * .. and advance to the next buffer.
998 		 */
999 
1000 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
1001 	}
1002 
1003 	/*
1004 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
1005 	 * It's supposed to reflect if the interface is actively
1006 	 * transmitting, but that's really hard to do quickly.
1007 	 */
1008 
1009 	ifp->if_flags &= ~IFF_OACTIVE;
1010 }
1011 
1012 /*
1013  *  SBMAC_INITCTX(s)
1014  *
1015  *  Initialize an Ethernet context structure - this is called
1016  *  once per MAC on the 1250.  Memory is allocated here, so don't
1017  *  call it again from inside the ioctl routines that bring the
1018  *  interface up/down
1019  *
1020  *  Input parameters:
1021  *	s - sbmac context structure
1022  *
1023  *  Return value:
1024  *	0
1025  */
1026 
1027 static void
1028 sbmac_initctx(struct sbmac_softc *s)
1029 {
1030 	uint64_t sysrev;
1031 
1032 	/*
1033 	 * figure out the addresses of some ports
1034 	 */
1035 
1036 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1037 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
1038 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1039 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1040 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1041 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
1042 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1043 
1044 	/*
1045 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1046 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1047 	 */
1048 
1049 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1050 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1051 
1052 	/*
1053 	 * initial state is OFF
1054 	 */
1055 
1056 	s->sbm_state = sbmac_state_off;
1057 
1058 	/*
1059 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1060 	 */
1061 
1062 	s->sbm_speed = sbmac_speed_10;
1063 	s->sbm_duplex = sbmac_duplex_half;
1064 	s->sbm_fc = sbmac_fc_disabled;
1065 
1066 	/*
1067 	 * Determine SOC type.  112x has Pass3 SOC features.
1068 	 */
1069 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1070 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1071 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1072 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1073 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1074 			     0));
1075 }
1076 
1077 /*
1078  *  SBMAC_CHANNEL_START(s)
1079  *
1080  *  Start packet processing on this MAC.
1081  *
1082  *  Input parameters:
1083  *	s - sbmac structure
1084  *
1085  *  Return value:
1086  *	nothing
1087  */
1088 
1089 static void
1090 sbmac_channel_start(struct sbmac_softc *s)
1091 {
1092 	uint64_t reg;
1093 	sbmac_port_t port;
1094 	uint64_t cfg, fifo, framecfg;
1095 	int idx;
1096 	uint64_t dma_cfg0, fifo_cfg;
1097 	sbmacdma_t *txdma;
1098 
1099 	/*
1100 	 * Don't do this if running
1101 	 */
1102 
1103 	if (s->sbm_state == sbmac_state_on)
1104 		return;
1105 
1106 	/*
1107 	 * Bring the controller out of reset, but leave it off.
1108 	 */
1109 
1110 	SBMAC_WRITECSR(s->sbm_macenable, 0);
1111 
1112 	/*
1113 	 * Ignore all received packets
1114 	 */
1115 
1116 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1117 
1118 	/*
1119 	 * Calculate values for various control registers.
1120 	 */
1121 
1122 	cfg = M_MAC_RETRY_EN |
1123 	      M_MAC_TX_HOLD_SOP_EN |
1124 	      V_MAC_TX_PAUSE_CNT_16K |
1125 	      M_MAC_AP_STAT_EN |
1126 	      M_MAC_SS_EN |
1127 	      0;
1128 
1129 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1130 	       V_MAC_TX_RD_THRSH(4) |
1131 	       V_MAC_TX_RL_THRSH(4) |
1132 	       V_MAC_RX_PL_THRSH(4) |
1133 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1134 	       V_MAC_RX_PL_THRSH(4) |
1135 	       V_MAC_RX_RL_THRSH(8) |
1136 	       0;
1137 
1138 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1139 	    V_MAC_MAX_FRAMESZ_DEFAULT |
1140 	    V_MAC_BACKOFF_SEL(1);
1141 
1142 	/*
1143 	 * Clear out the hash address map
1144 	 */
1145 
1146 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1147 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1148 		SBMAC_WRITECSR(port, 0);
1149 		port += sizeof(uint64_t);
1150 	}
1151 
1152 	/*
1153 	 * Clear out the exact-match table
1154 	 */
1155 
1156 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1157 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1158 		SBMAC_WRITECSR(port, 0);
1159 		port += sizeof(uint64_t);
1160 	}
1161 
1162 	/*
1163 	 * Clear out the DMA Channel mapping table registers
1164 	 */
1165 
1166 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1167 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1168 		SBMAC_WRITECSR(port, 0);
1169 		port += sizeof(uint64_t);
1170 	}
1171 
1172 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1173 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1174 		SBMAC_WRITECSR(port, 0);
1175 		port += sizeof(uint64_t);
1176 	}
1177 
1178 	/*
1179 	 * Program the hardware address.  It goes into the hardware-address
1180 	 * register as well as the first filter register.
1181 	 */
1182 
1183 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1184 
1185 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1186 	SBMAC_WRITECSR(port, reg);
1187 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1188 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
1189 
1190 	/*
1191 	 * Set the receive filter for no packets, and write values
1192 	 * to the various config registers
1193 	 */
1194 
1195 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1196 	SBMAC_WRITECSR(s->sbm_imr, 0);
1197 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1198 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1199 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1200 
1201 	/*
1202 	 * Initialize DMA channels (rings should be ok now)
1203 	 */
1204 
1205 	sbdma_channel_start(&(s->sbm_rxdma));
1206 	sbdma_channel_start(&(s->sbm_txdma));
1207 
1208 	/*
1209 	 * Configure the speed, duplex, and flow control
1210 	 */
1211 
1212 	sbmac_set_speed(s, s->sbm_speed);
1213 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1214 
1215 	/*
1216 	 * Fill the receive ring
1217 	 */
1218 
1219 	sbdma_fillring(&(s->sbm_rxdma));
1220 
1221 	/*
1222 	 * Turn on the rest of the bits in the enable register
1223 	 */
1224 
1225 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1226 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1227 
1228 
1229 	/*
1230 	 * Accept any kind of interrupt on TX and RX DMA channel 0
1231 	 */
1232 	SBMAC_WRITECSR(s->sbm_imr,
1233 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1234 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1235 
1236 	/*
1237 	 * Enable receiving unicasts and broadcasts
1238 	 */
1239 
1240 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1241 
1242 	/*
1243 	 * On chips which support unaligned DMA features, set the descriptor
1244 	 * ring for transmit channels to use the unaligned buffer format.
1245 	 */
1246 	txdma = &(s->sbm_txdma);
1247 
1248 	if (s->sbm_pass3_dma) {
1249 
1250 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1251 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1252 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
1253 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1254 
1255 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
1256 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1257 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1258 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1259 	}
1260 
1261 	/*
1262 	 * we're running now.
1263 	 */
1264 
1265 	s->sbm_state = sbmac_state_on;
1266 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1267 
1268 	/*
1269 	 * Program multicast addresses
1270 	 */
1271 
1272 	sbmac_setmulti(s);
1273 
1274 	/*
1275 	 * If channel was in promiscuous mode before, turn that on
1276 	 */
1277 
1278 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1279 		sbmac_promiscuous_mode(s, 1);
1280 
1281 	/*
1282 	 * Turn on the once-per-second timer
1283 	 */
1284 
1285 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1286 }
1287 
1288 /*
1289  *  SBMAC_CHANNEL_STOP(s)
1290  *
1291  *  Stop packet processing on this MAC.
1292  *
1293  *  Input parameters:
1294  *	s - sbmac structure
1295  *
1296  *  Return value:
1297  *	nothing
1298  */
1299 
1300 static void
1301 sbmac_channel_stop(struct sbmac_softc *s)
1302 {
1303 	uint64_t ctl;
1304 
1305 	/* don't do this if already stopped */
1306 
1307 	if (s->sbm_state == sbmac_state_off)
1308 		return;
1309 
1310 	/* don't accept any packets, disable all interrupts */
1311 
1312 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1313 	SBMAC_WRITECSR(s->sbm_imr, 0);
1314 
1315 	/* Turn off ticker */
1316 
1317 	callout_stop(&(s->sc_tick_ch));
1318 
1319 	/* turn off receiver and transmitter */
1320 
1321 	ctl = SBMAC_READCSR(s->sbm_macenable);
1322 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1323 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
1324 
1325 	/* We're stopped now. */
1326 
1327 	s->sbm_state = sbmac_state_off;
1328 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1329 
1330 	/* Empty the receive and transmit rings */
1331 
1332 	sbdma_emptyring(&(s->sbm_rxdma));
1333 	sbdma_emptyring(&(s->sbm_txdma));
1334 }
1335 
1336 /*
1337  *  SBMAC_SET_CHANNEL_STATE(state)
1338  *
1339  *  Set the channel's state ON or OFF
1340  *
1341  *  Input parameters:
1342  *	state - new state
1343  *
1344  *  Return value:
1345  *	old state
1346  */
1347 
1348 static sbmac_state_t
1349 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1350 {
1351 	sbmac_state_t oldstate = sc->sbm_state;
1352 
1353 	/*
1354 	 * If same as previous state, return
1355 	 */
1356 
1357 	if (state == oldstate)
1358 		return oldstate;
1359 
1360 	/*
1361 	 * If new state is ON, turn channel on
1362 	 */
1363 
1364 	if (state == sbmac_state_on)
1365 		sbmac_channel_start(sc);
1366 	else
1367 		sbmac_channel_stop(sc);
1368 
1369 	/*
1370 	 * Return previous state
1371 	 */
1372 
1373 	return oldstate;
1374 }
1375 
1376 /*
1377  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
1378  *
1379  *  Turn on or off promiscuous mode
1380  *
1381  *  Input parameters:
1382  *	sc - softc
1383  *	onoff - 1 to turn on, 0 to turn off
1384  *
1385  *  Return value:
1386  *	nothing
1387  */
1388 
1389 static void
1390 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1391 {
1392 	uint64_t reg;
1393 
1394 	if (sc->sbm_state != sbmac_state_on)
1395 		return;
1396 
1397 	if (onoff) {
1398 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1399 		reg |= M_MAC_ALLPKT_EN;
1400 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1401 	} else {
1402 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1403 		reg &= ~M_MAC_ALLPKT_EN;
1404 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1405 	}
1406 }
1407 
1408 /*
1409  *  SBMAC_INIT_AND_START(sc)
1410  *
1411  *  Stop the channel and restart it.  This is generally used
1412  *  when we have to do something to the channel that requires
1413  *  a swift kick.
1414  *
1415  *  Input parameters:
1416  *	sc - softc
1417  */
1418 
1419 static void
1420 sbmac_init_and_start(struct sbmac_softc *sc)
1421 {
1422 	int s;
1423 
1424 	s = splnet();
1425 
1426 	mii_pollstat(&sc->sc_mii);			/* poll phy for current speed */
1427 	sbmac_mii_statchg((struct device *) sc);	/* set state to new speed */
1428 	sbmac_set_channel_state(sc, sbmac_state_on);
1429 
1430 	splx(s);
1431 }
1432 
1433 /*
1434  *  SBMAC_ADDR2REG(ptr)
1435  *
1436  *  Convert six bytes into the 64-bit register value that
1437  *  we typically write into the SBMAC's address/mcast registers
1438  *
1439  *  Input parameters:
1440  *	ptr - pointer to 6 bytes
1441  *
1442  *  Return value:
1443  *	register value
1444  */
1445 
1446 static uint64_t
1447 sbmac_addr2reg(u_char *ptr)
1448 {
1449 	uint64_t reg = 0;
1450 
1451 	ptr += 6;
1452 
1453 	reg |= (uint64_t) *(--ptr);
1454 	reg <<= 8;
1455 	reg |= (uint64_t) *(--ptr);
1456 	reg <<= 8;
1457 	reg |= (uint64_t) *(--ptr);
1458 	reg <<= 8;
1459 	reg |= (uint64_t) *(--ptr);
1460 	reg <<= 8;
1461 	reg |= (uint64_t) *(--ptr);
1462 	reg <<= 8;
1463 	reg |= (uint64_t) *(--ptr);
1464 
1465 	return reg;
1466 }
1467 
1468 /*
1469  *  SBMAC_SET_SPEED(s, speed)
1470  *
1471  *  Configure LAN speed for the specified MAC.
1472  *  Warning: must be called when MAC is off!
1473  *
1474  *  Input parameters:
1475  *	s - sbmac structure
1476  *	speed - speed to set MAC to (see sbmac_speed_t enum)
1477  *
1478  *  Return value:
1479  *	1 if successful
1480  *	0 indicates invalid parameters
1481  */
1482 
1483 static int
1484 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1485 {
1486 	uint64_t cfg;
1487 	uint64_t framecfg;
1488 
1489 	/*
1490 	 * Save new current values
1491 	 */
1492 
1493 	s->sbm_speed = speed;
1494 
1495 	if (s->sbm_state != sbmac_state_off)
1496 		panic("sbmac_set_speed while MAC not off");
1497 
1498 	/*
1499 	 * Read current register values
1500 	 */
1501 
1502 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1503 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
1504 
1505 	/*
1506 	 * Mask out the stuff we want to change
1507 	 */
1508 
1509 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1510 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1511 	    M_MAC_SLOT_SIZE);
1512 
1513 	/*
1514 	 * Now add in the new bits
1515 	 */
1516 
1517 	switch (speed) {
1518 	case sbmac_speed_10:
1519 		framecfg |= V_MAC_IFG_RX_10 |
1520 		    V_MAC_IFG_TX_10 |
1521 		    K_MAC_IFG_THRSH_10 |
1522 		    V_MAC_SLOT_SIZE_10;
1523 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1524 		break;
1525 
1526 	case sbmac_speed_100:
1527 		framecfg |= V_MAC_IFG_RX_100 |
1528 		    V_MAC_IFG_TX_100 |
1529 		    V_MAC_IFG_THRSH_100 |
1530 		    V_MAC_SLOT_SIZE_100;
1531 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1532 		break;
1533 
1534 	case sbmac_speed_1000:
1535 		framecfg |= V_MAC_IFG_RX_1000 |
1536 		    V_MAC_IFG_TX_1000 |
1537 		    V_MAC_IFG_THRSH_1000 |
1538 		    V_MAC_SLOT_SIZE_1000;
1539 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1540 		break;
1541 
1542 	case sbmac_speed_auto:		/* XXX not implemented */
1543 		/* fall through */
1544 	default:
1545 		return 0;
1546 	}
1547 
1548 	/*
1549 	 * Send the bits back to the hardware
1550 	 */
1551 
1552 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1553 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1554 
1555 	return 1;
1556 }
1557 
1558 /*
1559  *  SBMAC_SET_DUPLEX(s, duplex, fc)
1560  *
1561  *  Set Ethernet duplex and flow control options for this MAC
1562  *  Warning: must be called when MAC is off!
1563  *
1564  *  Input parameters:
1565  *	s - sbmac structure
1566  *	duplex - duplex setting (see sbmac_duplex_t)
1567  *	fc - flow control setting (see sbmac_fc_t)
1568  *
1569  *  Return value:
1570  *	1 if ok
1571  *	0 if an invalid parameter combination was specified
1572  */
1573 
1574 static int
1575 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1576 {
1577 	uint64_t cfg;
1578 
1579 	/*
1580 	 * Save new current values
1581 	 */
1582 
1583 	s->sbm_duplex = duplex;
1584 	s->sbm_fc = fc;
1585 
1586 	if (s->sbm_state != sbmac_state_off)
1587 		panic("sbmac_set_duplex while MAC not off");
1588 
1589 	/*
1590 	 * Read current register values
1591 	 */
1592 
1593 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1594 
1595 	/*
1596 	 * Mask off the stuff we're about to change
1597 	 */
1598 
1599 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1600 
1601 	switch (duplex) {
1602 	case sbmac_duplex_half:
1603 		switch (fc) {
1604 		case sbmac_fc_disabled:
1605 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1606 			break;
1607 
1608 		case sbmac_fc_collision:
1609 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1610 			break;
1611 
1612 		case sbmac_fc_carrier:
1613 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1614 			break;
1615 
1616 		case sbmac_fc_auto:		/* XXX not implemented */
1617 			/* fall through */
1618 		case sbmac_fc_frame:		/* not valid in half duplex */
1619 		default:			/* invalid selection */
1620 			panic("%s: invalid half duplex fc selection %d",
1621 			    s->sc_dev.dv_xname, fc);
1622 			return 0;
1623 		}
1624 		break;
1625 
1626 	case sbmac_duplex_full:
1627 		switch (fc) {
1628 		case sbmac_fc_disabled:
1629 			cfg |= V_MAC_FC_CMD_DISABLED;
1630 			break;
1631 
1632 		case sbmac_fc_frame:
1633 			cfg |= V_MAC_FC_CMD_ENABLED;
1634 			break;
1635 
1636 		case sbmac_fc_collision:	/* not valid in full duplex */
1637 		case sbmac_fc_carrier:		/* not valid in full duplex */
1638 		case sbmac_fc_auto:		/* XXX not implemented */
1639 			/* fall through */
1640 		default:
1641 			panic("%s: invalid full duplex fc selection %d",
1642 			    s->sc_dev.dv_xname, fc);
1643 			return 0;
1644 		}
1645 		break;
1646 
1647 	default:
1648 		/* fall through */
1649 	case sbmac_duplex_auto:
1650 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1651 		/* XXX not implemented */
1652 		break;
1653 	}
1654 
1655 	/*
1656 	 * Send the bits back to the hardware
1657 	 */
1658 
1659 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1660 
1661 	return 1;
1662 }
1663 
1664 /*
1665  *  SBMAC_INTR()
1666  *
1667  *  Interrupt handler for MAC interrupts
1668  *
1669  *  Input parameters:
1670  *	MAC structure
1671  *
1672  *  Return value:
1673  *	nothing
1674  */
1675 
1676 /* ARGSUSED */
1677 static void
1678 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1679 {
1680 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1681 	uint64_t isr;
1682 
1683 	for (;;) {
1684 
1685 		/*
1686 		 * Read the ISR (this clears the bits in the real register)
1687 		 */
1688 
1689 		isr = SBMAC_READCSR(sc->sbm_isr);
1690 
1691 		if (isr == 0)
1692 			break;
1693 
1694 		/*
1695 		 * Transmits on channel 0
1696 		 */
1697 
1698 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1699 			sbdma_tx_process(sc, &(sc->sbm_txdma));
1700 
1701 		/*
1702 		 * Receives on channel 0
1703 		 */
1704 
1705 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0))
1706 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
1707 	}
1708 }
1709 
1710 
1711 /*
1712  *  SBMAC_START(ifp)
1713  *
1714  *  Start output on the specified interface.  Basically, we
1715  *  queue as many buffers as we can until the ring fills up, or
1716  *  we run off the end of the queue, whichever comes first.
1717  *
1718  *  Input parameters:
1719  *	ifp - interface
1720  *
1721  *  Return value:
1722  *	nothing
1723  */
1724 
1725 static void
1726 sbmac_start(struct ifnet *ifp)
1727 {
1728 	struct sbmac_softc	*sc;
1729 	struct mbuf		*m_head = NULL;
1730 	int			rv;
1731 
1732 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1733 		return;
1734 
1735 	sc = ifp->if_softc;
1736 
1737 	for (;;) {
1738 
1739 		IF_DEQUEUE(&ifp->if_snd, m_head);
1740 		if (m_head == NULL)
1741 		    break;
1742 
1743 		/*
1744 		 * Put the buffer on the transmit ring.  If we
1745 		 * don't have room, set the OACTIVE flag and wait
1746 		 * for the NIC to drain the ring.
1747 		 */
1748 
1749 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1750 
1751 		if (rv == 0) {
1752 			/*
1753 			 * If there's a BPF listener, bounce a copy of this frame
1754 			 * to it.
1755 			 */
1756 #if (NBPFILTER > 0)
1757 			if (ifp->if_bpf)
1758 				bpf_mtap(ifp->if_bpf, m_head);
1759 #endif
1760 			if (!sc->sbm_pass3_dma) {
1761 				/*
1762 				 * Don't free mbuf if we're not copying to new mbuf in sbdma_add_txbuffer.
1763 				 * It will be freed in sbdma_tx_process.
1764 				 */
1765 				m_freem(m_head);
1766 			}
1767 		} else {
1768 		    IF_PREPEND(&ifp->if_snd, m_head);
1769 		    ifp->if_flags |= IFF_OACTIVE;
1770 		    break;
1771 		}
1772 	}
1773 }
1774 
1775 /*
1776  *  SBMAC_SETMULTI(sc)
1777  *
1778  *  Reprogram the multicast table into the hardware, given
1779  *  the list of multicasts associated with the interface
1780  *  structure.
1781  *
1782  *  Input parameters:
1783  *	sc - softc
1784  *
1785  *  Return value:
1786  *	nothing
1787  */
1788 
1789 static void
1790 sbmac_setmulti(struct sbmac_softc *sc)
1791 {
1792 	struct ifnet *ifp;
1793 	uint64_t reg;
1794 	sbmac_port_t port;
1795 	int idx;
1796 	struct ether_multi *enm;
1797 	struct ether_multistep step;
1798 
1799 	ifp = &sc->sc_ethercom.ec_if;
1800 
1801 	/*
1802 	 * Clear out entire multicast table.  We do this by nuking
1803 	 * the entire hash table and all the direct matches except
1804 	 * the first one, which is used for our station address
1805 	 */
1806 
1807 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1808 		port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1809 		SBMAC_WRITECSR(port, 0);
1810 	}
1811 
1812 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1813 		port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1814 		SBMAC_WRITECSR(port, 0);
1815 	}
1816 
1817 	/*
1818 	 * Clear the filter to say we don't want any multicasts.
1819 	 */
1820 
1821 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
1822 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1823 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1824 
1825 	if (ifp->if_flags & IFF_ALLMULTI) {
1826 		/*
1827 		 * Enable ALL multicasts.  Do this by inverting the
1828 		 * multicast enable bit.
1829 		 */
1830 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1831 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1832 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1833 		return;
1834 	}
1835 
1836 	/*
1837 	 * Progam new multicast entries.  For now, only use the
1838 	 * perfect filter.  In the future we'll need to use the
1839 	 * hash filter if the perfect filter overflows
1840 	 */
1841 
1842 	/*
1843 	 * XXX only using perfect filter for now, need to use hash
1844 	 * XXX if the table overflows
1845 	 */
1846 
1847 	idx = 1;		/* skip station address */
1848 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1849 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1850 		reg = sbmac_addr2reg(enm->enm_addrlo);
1851 		port = PKSEG1(sc->sbm_base +
1852 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1853 		SBMAC_WRITECSR(port, reg);
1854 		idx++;
1855 		ETHER_NEXT_MULTI(step, enm);
1856 	}
1857 
1858 	/*
1859 	 * Enable the "accept multicast bits" if we programmed at least one
1860 	 * multicast.
1861 	 */
1862 
1863 	if (idx > 1) {
1864 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
1865 	    reg |= M_MAC_MCAST_EN;
1866 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1867 	}
1868 }
1869 
1870 /*
1871  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
1872  *
1873  *  Generic IOCTL requests for this interface.  The basic
1874  *  stuff is handled here for bringing the interface up,
1875  *  handling multicasts, etc.
1876  *
1877  *  Input parameters:
1878  *	ifp - interface structure
1879  *	cmd - command code
1880  *	data - pointer to data
1881  *
1882  *  Return value:
1883  *	return value (0 is success)
1884  */
1885 
1886 static int
1887 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1888 {
1889 	struct ifaddr *ifa = (struct ifaddr *) data;
1890 	struct sbmac_softc *sc = ifp->if_softc;
1891 
1892 	switch (cmd) {
1893 	case SIOCSIFADDR:
1894 		ifp->if_flags |= IFF_UP;
1895 
1896 		switch (ifa->ifa_addr->sa_family) {
1897 #ifdef INET
1898 		case AF_INET:
1899 			sbmac_init_and_start(sc);
1900 			arp_ifinit(ifp, ifa);
1901 			break;
1902 #endif
1903 #ifdef NS
1904 		case AF_NS:
1905 		{
1906 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1907 
1908 			if (ns_nullhost(*ina))
1909 				ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl);
1910 			else
1911 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1912 				    ifp->if_addrlen);
1913 			/* Set new address. */
1914 			sbmac_init_and_start(sc);
1915 			break;
1916 		}
1917 #endif
1918 		default:
1919 			sbmac_init_and_start(sc);
1920 			break;
1921 		}
1922 		break;
1923 
1924 	default:
1925 		return (EINVAL);
1926 	}
1927 
1928 	return (0);
1929 }
1930 
1931 /*
1932  *  SBMAC_IOCTL(ifp, command, data)
1933  *
1934  *  Main IOCTL handler - dispatches to other IOCTLs for various
1935  *  types of requests.
1936  *
1937  *  Input parameters:
1938  *	ifp - interface pointer
1939  *	command - command code
1940  *	data - pointer to argument data
1941  *
1942  *  Return value:
1943  *	0 if ok
1944  *	else error code
1945  */
1946 
1947 static int
1948 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1949 {
1950 	struct sbmac_softc *sc = ifp->if_softc;
1951 	struct ifreq *ifr = (struct ifreq *) data;
1952 	int s, error = 0;
1953 
1954 	s = splnet();
1955 
1956 	switch(command) {
1957 	case SIOCSIFADDR:
1958 	case SIOCGIFADDR:
1959 		error = sbmac_ether_ioctl(ifp, command, data);
1960 		break;
1961 	case SIOCSIFMTU:
1962 		if (ifr->ifr_mtu > ETHER_MAX_LEN)
1963 			error = EINVAL;
1964 		else {
1965 			ifp->if_mtu = ifr->ifr_mtu;
1966 			/* XXX Program new MTU here */
1967 		}
1968 		break;
1969 	case SIOCSIFFLAGS:
1970 		if (ifp->if_flags & IFF_UP) {
1971 			/*
1972 			 * If only the state of the PROMISC flag changed,
1973 			 * just tweak the hardware registers.
1974 			 */
1975 			if ((ifp->if_flags & IFF_RUNNING) &&
1976 			    (ifp->if_flags & IFF_PROMISC)) {
1977 				/* turn on promiscuous mode */
1978 				sbmac_promiscuous_mode(sc, 1);
1979 			} else if (ifp->if_flags & IFF_RUNNING &&
1980 			    !(ifp->if_flags & IFF_PROMISC)) {
1981 			    /* turn off promiscuous mode */
1982 			    sbmac_promiscuous_mode(sc, 0);
1983 			} else
1984 			    sbmac_set_channel_state(sc, sbmac_state_on);
1985 		} else {
1986 			if (ifp->if_flags & IFF_RUNNING)
1987 				sbmac_set_channel_state(sc, sbmac_state_off);
1988 		}
1989 
1990 		sc->sbm_if_flags = ifp->if_flags;
1991 		error = 0;
1992 		break;
1993 
1994 	case SIOCADDMULTI:
1995 	case SIOCDELMULTI:
1996 		if (ifp->if_flags & IFF_RUNNING) {
1997 			sbmac_setmulti(sc);
1998 			error = 0;
1999 		}
2000 		break;
2001 	case SIOCSIFMEDIA:
2002 	case SIOCGIFMEDIA:
2003 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2004 		break;
2005 	default:
2006 		error = EINVAL;
2007 		break;
2008 	}
2009 
2010 	(void)splx(s);
2011 
2012 	return(error);
2013 }
2014 
2015 /*
2016  *  SBMAC_IFMEDIA_UPD(ifp)
2017  *
2018  *  Configure an appropriate media type for this interface,
2019  *  given the data in the interface structure
2020  *
2021  *  Input parameters:
2022  *	ifp - interface
2023  *
2024  *  Return value:
2025  *	0 if ok
2026  *	else error code
2027  */
2028 
2029 static int
2030 sbmac_mediachange(struct ifnet *ifp)
2031 {
2032 	struct sbmac_softc *sc = ifp->if_softc;
2033 
2034 	if (ifp->if_flags & IFF_UP)
2035 		mii_mediachg(&sc->sc_mii);
2036 	return(0);
2037 }
2038 
2039 /*
2040  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
2041  *
2042  *  Report current media status (used by ifconfig, for example)
2043  *
2044  *  Input parameters:
2045  *	ifp - interface structure
2046  *	ifmr - media request structure
2047  *
2048  *  Return value:
2049  *	nothing
2050  */
2051 
2052 static void
2053 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2054 {
2055 	struct sbmac_softc	*sc = ifp->if_softc;
2056 
2057   	mii_pollstat(&sc->sc_mii);
2058 	req->ifm_status = sc->sc_mii.mii_media_status;
2059 	req->ifm_active = sc->sc_mii.mii_media_active;
2060 }
2061 
2062 /*
2063  *  SBMAC_WATCHDOG(ifp)
2064  *
2065  *  Called periodically to make sure we're still happy.
2066  *
2067  *  Input parameters:
2068  *	ifp - interface structure
2069  *
2070  *  Return value:
2071  *	nothing
2072  */
2073 
2074 static void
2075 sbmac_watchdog(struct ifnet *ifp)
2076 {
2077 
2078 	/* XXX do something */
2079 }
2080 
2081 /*
2082  * One second timer, used to tick MII.
2083  */
2084 static void
2085 sbmac_tick(void *arg)
2086 {
2087 	struct sbmac_softc *sc = arg;
2088 	int s;
2089 
2090 	s = splnet();
2091 	mii_tick(&sc->sc_mii);
2092 	splx(s);
2093 
2094 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2095 }
2096 
2097 
2098 /*
2099  *  SBMAC_MATCH(parent, match, aux)
2100  *
2101  *  Part of the config process - see if this device matches the
2102  *  info about what we expect to find on the bus.
2103  *
2104  *  Input parameters:
2105  *	parent - parent bus structure
2106  *	match -
2107  *	aux - bus-specific args
2108  *
2109  *  Return value:
2110  *	1 if we match
2111  *	0 if we don't match
2112  */
2113 
2114 static int
2115 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2116 {
2117 	struct sbobio_attach_args *sap = aux;
2118 
2119 	/*
2120 	 * Make sure it's a MAC
2121 	 */
2122 
2123 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2124 		return 0;
2125 
2126 	/*
2127 	 * Yup, it is.
2128 	 */
2129 
2130 	return 1;
2131 }
2132 
2133 /*
2134  *  SBMAC_PARSE_XDIGIT(str)
2135  *
2136  *  Parse a hex digit, returning its value
2137  *
2138  *  Input parameters:
2139  *	str - character
2140  *
2141  *  Return value:
2142  *	hex value, or -1 if invalid
2143  */
2144 
2145 static int
2146 sbmac_parse_xdigit(char str)
2147 {
2148 	int digit;
2149 
2150 	if ((str >= '0') && (str <= '9'))
2151 		digit = str - '0';
2152 	else if ((str >= 'a') && (str <= 'f'))
2153 		digit = str - 'a' + 10;
2154 	else if ((str >= 'A') && (str <= 'F'))
2155 		digit = str - 'A' + 10;
2156 	else
2157 		digit = -1;
2158 
2159 	return digit;
2160 }
2161 
2162 /*
2163  *  SBMAC_PARSE_HWADDR(str, hwaddr)
2164  *
2165  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2166  *  Ethernet address.
2167  *
2168  *  Input parameters:
2169  *	str - string
2170  *	hwaddr - pointer to hardware address
2171  *
2172  *  Return value:
2173  *	0 if ok, else -1
2174  */
2175 
2176 static int
2177 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
2178 {
2179 	int digit1, digit2;
2180 	int idx = 6;
2181 
2182 	while (*str && (idx > 0)) {
2183 		digit1 = sbmac_parse_xdigit(*str);
2184 		if (digit1 < 0)
2185 			return -1;
2186 		str++;
2187 		if (!*str)
2188 			return -1;
2189 
2190 		if ((*str == ':') || (*str == '-')) {
2191 			digit2 = digit1;
2192 			digit1 = 0;
2193 		} else {
2194 			digit2 = sbmac_parse_xdigit(*str);
2195 			if (digit2 < 0)
2196 				return -1;
2197 			str++;
2198 		}
2199 
2200 		*hwaddr++ = (digit1 << 4) | digit2;
2201 		idx--;
2202 
2203 		if (*str == '-')
2204 			str++;
2205 		if (*str == ':')
2206 			str++;
2207 	}
2208 	return 0;
2209 }
2210 
2211 /*
2212  *  SBMAC_ATTACH(parent, self, aux)
2213  *
2214  *  Attach routine - init hardware and hook ourselves into NetBSD.
2215  *
2216  *  Input parameters:
2217  *	parent - parent bus device
2218  *	self - our softc
2219  *	aux - attach data
2220  *
2221  *  Return value:
2222  *	nothing
2223  */
2224 
2225 static void
2226 sbmac_attach(struct device *parent, struct device *self, void *aux)
2227 {
2228 	struct ifnet *ifp;
2229 	struct sbmac_softc *sc;
2230 	struct sbobio_attach_args *sap = aux;
2231 	u_char *eaddr;
2232 	static int unit = 0;	/* XXX */
2233 	uint64_t ea_reg;
2234 	int idx;
2235 
2236 	sc = (struct sbmac_softc *)self;
2237 
2238 	/* Determine controller base address */
2239 
2240 	sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2241 
2242 	eaddr = sc->sbm_hwaddr;
2243 
2244 	/*
2245 	 * Initialize context (get pointers to registers and stuff), then
2246 	 * allocate the memory for the descriptor tables.
2247 	 */
2248 
2249 	sbmac_initctx(sc);
2250 
2251 	callout_init(&(sc->sc_tick_ch));
2252 
2253 	/*
2254 	 * Read the ethernet address.  The firwmare left this programmed
2255 	 * for us in the ethernet address register for each mac.
2256 	 */
2257 
2258 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2259 	for (idx = 0; idx < 6; idx++) {
2260 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2261 		ea_reg >>= 8;
2262 	}
2263 
2264 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2265 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2266 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2267 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2268 		eaddr[5] = unit;
2269 	}
2270 
2271 #ifdef SBMAC_ETH0_HWADDR
2272 	if (unit == 0)
2273 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2274 #endif
2275 #ifdef SBMAC_ETH1_HWADDR
2276 	if (unit == 1)
2277 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2278 #endif
2279 #ifdef SBMAC_ETH2_HWADDR
2280 	if (unit == 2)
2281 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2282 #endif
2283 	unit++;
2284 
2285 	/*
2286 	 * Display Ethernet address (this is called during the config process
2287 	 * so we need to finish off the config message that was being displayed)
2288 	 */
2289 	printf(": Ethernet%s\n",
2290 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2291 	printf("%s: Ethernet address: %s\n", self->dv_xname,
2292 	    ether_sprintf(eaddr));
2293 
2294 
2295 	/*
2296 	 * Set up ifnet structure
2297 	 */
2298 
2299 	ifp = &sc->sc_ethercom.ec_if;
2300 	ifp->if_softc = sc;
2301 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2302 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NOTRAILERS;
2303 	ifp->if_ioctl = sbmac_ioctl;
2304 	ifp->if_start = sbmac_start;
2305 	ifp->if_watchdog = sbmac_watchdog;
2306 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2307 
2308 	/*
2309 	 * Set up ifmedia support.
2310 	 */
2311 
2312 	/*
2313 	 * Initialize MII/media info.
2314 	 */
2315 	sc->sc_mii.mii_ifp      = ifp;
2316 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
2317 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2318 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
2319 	ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2320 	    sbmac_mediastatus);
2321 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2322 	    MII_OFFSET_ANY, 0);
2323 
2324 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2325 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2326 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2327 	} else {
2328 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2329 	}
2330 
2331 
2332 	/*
2333 	 * map/route interrupt
2334 	 */
2335 
2336 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2337 	    sbmac_intr, sc);
2338 
2339 	/*
2340 	 * Call MI attach routines.
2341 	 */
2342 	if_attach(ifp);
2343 	ether_ifattach(ifp, eaddr);
2344 }
2345