xref: /netbsd-src/sys/arch/mips/sibyte/dev/sbmac.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /* $NetBSD: sbmac.c,v 1.26 2007/10/17 19:55:40 garbled Exp $ */
2 
3 /*
4  * Copyright 2000, 2001, 2004
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.26 2007/10/17 19:55:40 garbled Exp $");
37 
38 #include "bpfilter.h"
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
51 
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61 
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #endif
66 
67 #ifdef NS
68 #include <netns/ns.h>
69 #include <netns/ns_if.h>
70 #endif
71 
72 #include <machine/locore.h>
73 
74 #include "sbobiovar.h"
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79 
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
85 
86 /* Simple types */
87 
88 typedef u_long sbmac_port_t;
89 typedef uint64_t sbmac_physaddr_t;
90 typedef uint64_t sbmac_enetaddr_t;
91 
92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
93 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
94 
95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
96 	       sbmac_duplex_full } sbmac_duplex_t;
97 
98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
99 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
100 
101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
102 	       sbmac_state_broken } sbmac_state_t;
103 
104 
105 /* Macros */
106 
107 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
108 
109 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
110 
111 #define	CACHELINESIZE 32
112 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
113 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
114 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
115 
116 #ifdef SBMACDEBUG
117 #define	dprintf(x)	printf x
118 #else
119 #define	dprintf(x)
120 #endif
121 
122 #define	SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
123 #define	SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
124 
125 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
126 
127 /* These are limited to fit within one virtual page, and must be 2**N.  */
128 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
129 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
130 
131 #define	ETHER_ALIGN	2
132 
133 /* DMA Descriptor structure */
134 
135 typedef struct sbdmadscr_s {
136 	uint64_t dscr_a;
137 	uint64_t dscr_b;
138 } sbdmadscr_t;
139 
140 
141 /* DMA Controller structure */
142 
143 typedef struct sbmacdma_s {
144 
145 	/*
146 	 * This stuff is used to identify the channel and the registers
147 	 * associated with it.
148 	 */
149 
150 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
151 	int		sbdma_channel;	/* channel number */
152 	int		sbdma_txdir;	/* direction (1=transmit) */
153 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
154 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
155 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
156 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
157 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
158 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
159 
160 	/*
161 	 * This stuff is for maintenance of the ring
162 	 */
163 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
164 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
165 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
166 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
167 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
168 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
169 } sbmacdma_t;
170 
171 
172 /* Ethernet softc structure */
173 
174 struct sbmac_softc {
175 
176 	/*
177 	 * NetBSD-specific things
178 	 */
179 	struct device	sc_dev;		/* base device (must be first) */
180 	struct ethercom	sc_ethercom;	/* Ethernet common part */
181 	struct mii_data	sc_mii;
182 	struct callout	sc_tick_ch;
183 
184 	int		sbm_if_flags;
185 	void		*sbm_intrhand;
186 
187 	/*
188 	 * Controller-specific things
189 	 */
190 
191 	sbmac_port_t	sbm_base;	/* MAC's base address */
192 	sbmac_state_t	sbm_state;	/* current state */
193 
194 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
195 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
196 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
197 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
198 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
199 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
200 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
201 
202 	sbmac_speed_t	sbm_speed;	/* current speed */
203 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
204 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
205 	int		sbm_rxflags;	/* received packet flags */
206 
207 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
208 
209 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
210 	sbmacdma_t	sbm_rxdma;
211 
212 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
213 
214 #ifdef SBMAC_EVENT_COUNTERS
215 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
216 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
217 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
218 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
219 
220 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
221 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
222 #endif
223 };
224 
225 
226 #ifdef SBMAC_EVENT_COUNTERS
227 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
228 #else
229 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
230 #endif
231 
232 /* Externs */
233 
234 extern paddr_t kvtophys(vaddr_t);
235 
236 /* Prototypes */
237 
238 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
239     int txrx, int maxdescr);
240 static void sbdma_channel_start(sbmacdma_t *d);
241 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
242 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
243 static void sbdma_emptyring(sbmacdma_t *d);
244 static void sbdma_fillring(sbmacdma_t *d);
245 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
246 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
247 static void sbmac_initctx(struct sbmac_softc *s);
248 static void sbmac_channel_start(struct sbmac_softc *s);
249 static void sbmac_channel_stop(struct sbmac_softc *s);
250 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
251     sbmac_state_t);
252 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
253 static void sbmac_init_and_start(struct sbmac_softc *sc);
254 static uint64_t sbmac_addr2reg(u_char *ptr);
255 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
256 static void sbmac_start(struct ifnet *ifp);
257 static void sbmac_setmulti(struct sbmac_softc *sc);
258 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
259 static int sbmac_ioctl(struct ifnet *ifp, u_long command, void *data);
260 static int sbmac_mediachange(struct ifnet *ifp);
261 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
262 static void sbmac_watchdog(struct ifnet *ifp);
263 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
264 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
265 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
266 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
267     sbmac_fc_t fc);
268 static void sbmac_tick(void *arg);
269 
270 
271 /* Globals */
272 
273 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
274     sbmac_match, sbmac_attach, NULL, NULL);
275 
276 static uint32_t sbmac_mii_bitbang_read(struct device *self);
277 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
278 
279 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
280 	sbmac_mii_bitbang_read,
281 	sbmac_mii_bitbang_write,
282 	{
283 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
284 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
285 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
286 		0,				/* MII_BIT_DIR_HOST_PHY */
287 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
288 	}
289 };
290 
291 static uint32_t
292 sbmac_mii_bitbang_read(struct device *self)
293 {
294 	struct sbmac_softc *sc = (void *) self;
295 	sbmac_port_t reg;
296 
297 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
298 	return (uint32_t) SBMAC_READCSR(reg);
299 }
300 
301 static void
302 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
303 {
304 	struct sbmac_softc *sc = (void *) self;
305 	sbmac_port_t reg;
306 
307 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
308 
309 	SBMAC_WRITECSR(reg, (val &
310 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
311 }
312 
313 /*
314  * Read an PHY register through the MII.
315  */
316 static int
317 sbmac_mii_readreg(struct device *self, int phy, int reg)
318 {
319 
320 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
321 }
322 
323 /*
324  * Write to a PHY register through the MII.
325  */
326 static void
327 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
328 {
329 
330 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
331 }
332 
333 static void
334 sbmac_mii_statchg(struct device *self)
335 {
336 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
337 	sbmac_state_t oldstate;
338 
339 	/* Stop the MAC in preparation for changing all of the parameters. */
340 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
341 
342 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
343 	default:		/* if autonegotiation fails, assume 10Mbit */
344 	case IF_Mbps(10):
345 		sbmac_set_speed(sc, sbmac_speed_10);
346 		break;
347 
348 	case IF_Mbps(100):
349 		sbmac_set_speed(sc, sbmac_speed_100);
350 		break;
351 
352 	case IF_Mbps(1000):
353 		sbmac_set_speed(sc, sbmac_speed_1000);
354 		break;
355 	}
356 
357 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
358 		/* Configure for full-duplex */
359 		/* XXX: is flow control right for 10, 100? */
360 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
361 	} else {
362 		/* Configure for half-duplex */
363 		/* XXX: is flow control right? */
364 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
365 	}
366 
367 	/* And put it back into its former state. */
368 	sbmac_set_channel_state(sc, oldstate);
369 }
370 
371 /*
372  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
373  *
374  *  Initialize a DMA channel context.  Since there are potentially
375  *  eight DMA channels per MAC, it's nice to do this in a standard
376  *  way.
377  *
378  *  Input parameters:
379  *	d - sbmacdma_t structure (DMA channel context)
380  *	s - sbmac_softc structure (pointer to a MAC)
381  *	chan - channel number (0..1 right now)
382  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
383  *	maxdescr - number of descriptors
384  *
385  *  Return value:
386  *	nothing
387  */
388 
389 static void
390 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
391     int maxdescr)
392 {
393 	/*
394 	 * Save away interesting stuff in the structure
395 	 */
396 
397 	d->sbdma_eth = s;
398 	d->sbdma_channel = chan;
399 	d->sbdma_txdir = txrx;
400 
401 	/*
402 	 * initialize register pointers
403 	 */
404 
405 	d->sbdma_config0 = PKSEG1(s->sbm_base +
406 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
407 	d->sbdma_config1 = PKSEG1(s->sbm_base +
408 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
409 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
410 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
411 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
412 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
413 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
414 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
415 
416 	/*
417 	 * Allocate memory for the ring
418 	 */
419 
420 	d->sbdma_maxdescr = maxdescr;
421 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
422 
423 	d->sbdma_dscrtable = (sbdmadscr_t *)
424 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
425 
426 	bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
427 
428 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
429 
430 	/*
431 	 * And context table
432 	 */
433 
434 	d->sbdma_ctxtable = (struct mbuf **)
435 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
436 
437 	bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
438 }
439 
440 /*
441  *  SBDMA_CHANNEL_START(d)
442  *
443  *  Initialize the hardware registers for a DMA channel.
444  *
445  *  Input parameters:
446  *	d - DMA channel to init (context must be previously init'd
447  *
448  *  Return value:
449  *	nothing
450  */
451 
452 static void
453 sbdma_channel_start(sbmacdma_t *d)
454 {
455 	/*
456 	 * Turn on the DMA channel
457 	 */
458 
459 	SBMAC_WRITECSR(d->sbdma_config1, 0);
460 
461 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
462 
463 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
464 
465 	/*
466 	 * Initialize ring pointers
467 	 */
468 
469 	d->sbdma_add_index = 0;
470 	d->sbdma_rem_index = 0;
471 }
472 
473 /*
474  *  SBDMA_ADD_RCVBUFFER(d, m)
475  *
476  *  Add a buffer to the specified DMA channel.   For receive channels,
477  *  this queues a buffer for inbound packets.
478  *
479  *  Input parameters:
480  *	d - DMA channel descriptor
481  *	m - mbuf to add, or NULL if we should allocate one.
482  *
483  *  Return value:
484  *	0 if buffer could not be added (ring is full)
485  *	1 if buffer added successfully
486  */
487 
488 static int
489 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
490 {
491 	unsigned int dsc, nextdsc;
492 	struct mbuf *m_new = NULL;
493 
494 	/* get pointer to our current place in the ring */
495 
496 	dsc = d->sbdma_add_index;
497 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
498 
499 	/*
500 	 * figure out if the ring is full - if the next descriptor
501 	 * is the same as the one that we're going to remove from
502 	 * the ring, the ring is full
503 	 */
504 
505 	if (nextdsc == d->sbdma_rem_index)
506 		return ENOSPC;
507 
508 	/*
509 	 * Allocate an mbuf if we don't already have one.
510 	 * If we do have an mbuf, reset it so that it's empty.
511 	 */
512 
513 	if (m == NULL) {
514 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
515 		if (m_new == NULL) {
516 			printf("%s: mbuf allocation failed\n",
517 			    d->sbdma_eth->sc_dev.dv_xname);
518 			return ENOBUFS;
519 		}
520 
521 		MCLGET(m_new, M_DONTWAIT);
522 		if (!(m_new->m_flags & M_EXT)) {
523 			printf("%s: mbuf cluster allocation failed\n",
524 			    d->sbdma_eth->sc_dev.dv_xname);
525 			m_freem(m_new);
526 			return ENOBUFS;
527 		}
528 
529 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
530 		m_adj(m_new, ETHER_ALIGN);
531 	} else {
532 		m_new = m;
533 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
534 		m_new->m_data = m_new->m_ext.ext_buf;
535 		m_adj(m_new, ETHER_ALIGN);
536 	}
537 
538 	/*
539 	 * fill in the descriptor
540 	 */
541 
542 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
543 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
544 	    M_DMA_DSCRA_INTERRUPT;
545 
546 	/* receiving: no options */
547 	d->sbdma_dscrtable[dsc].dscr_b = 0;
548 
549 	/*
550 	 * fill in the context
551 	 */
552 
553 	d->sbdma_ctxtable[dsc] = m_new;
554 
555 	/*
556 	 * point at next packet
557 	 */
558 
559 	d->sbdma_add_index = nextdsc;
560 
561 	/*
562 	 * Give the buffer to the DMA engine.
563 	 */
564 
565 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
566 
567 	return 0;					/* we did it */
568 }
569 
570 /*
571  *  SBDMA_ADD_TXBUFFER(d, m)
572  *
573  *  Add a transmit buffer to the specified DMA channel, causing a
574  *  transmit to start.
575  *
576  *  Input parameters:
577  *	d - DMA channel descriptor
578  *	m - mbuf to add
579  *
580  *  Return value:
581  *	0 transmit queued successfully
582  *	otherwise error code
583  */
584 
585 static int
586 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
587 {
588         unsigned int dsc, nextdsc, prevdsc, origdesc;
589 	int length;
590 	int num_mbufs = 0;
591 	struct sbmac_softc *sc = d->sbdma_eth;
592 
593 	/* get pointer to our current place in the ring */
594 
595 	dsc = d->sbdma_add_index;
596 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
597 
598 	/*
599 	 * figure out if the ring is full - if the next descriptor
600 	 * is the same as the one that we're going to remove from
601 	 * the ring, the ring is full
602 	 */
603 
604 	if (nextdsc == d->sbdma_rem_index) {
605 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
606 		return ENOSPC;
607 	}
608 
609 	/*
610 	 * PASS3 parts do not have buffer alignment restriction.
611 	 * No need to copy/coalesce to new mbuf.  Also has different
612 	 * descriptor format
613 	 */
614 	if (sc->sbm_pass3_dma) {
615 		struct mbuf *m_temp = NULL;
616 
617 		/*
618 		 * Loop thru this mbuf record.
619 		 * The head mbuf will have SOP set.
620 		 */
621 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
622 		    M_DMA_ETHTX_SOP;
623 
624 		/*
625 		 * transmitting: set outbound options,buffer A size(+ low 5
626 		 * bits of start addr),and packet length.
627 		 */
628 		d->sbdma_dscrtable[dsc].dscr_b =
629 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
630 		    V_DMA_DSCRB_A_SIZE((m->m_len +
631 		      (mtod(m,unsigned int) & 0x0000001F))) |
632 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
633 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
634 
635 		d->sbdma_add_index = nextdsc;
636 		origdesc = prevdsc = dsc;
637 		dsc = d->sbdma_add_index;
638 		num_mbufs++;
639 
640 		/* Start with first non-head mbuf */
641 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
642 			int len, next_len;
643 			uint64_t addr;
644 
645 			if (m_temp->m_len == 0)
646 				continue;	/* Skip 0-length mbufs */
647 
648 			len = m_temp->m_len;
649 			addr = KVTOPHYS(mtod(m_temp, void *));
650 
651 			/*
652 			 * Check to see if the mbuf spans a page boundary.  If
653 			 * it does, and the physical pages behind the virtual
654 			 * pages are not contiguous, split it so that each
655 			 * virtual page uses it's own Tx descriptor.
656 			 */
657 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
658 				next_len = (addr + len) - trunc_page(addr + len);
659 
660 				len -= next_len;
661 
662 				if (addr + len ==
663 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
664 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
665 					len += next_len;
666 					next_len = 0;
667 				} else {
668 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
669 				}
670 			} else {
671 				next_len = 0;
672 			}
673 
674 again:
675 			/*
676 			 * fill in the descriptor
677 			 */
678 			d->sbdma_dscrtable[dsc].dscr_a = addr;
679 
680 			/*
681 			 * transmitting: set outbound options,buffer A
682 			 * size(+ low 5 bits of start addr)
683 			 */
684 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
685 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
686 
687 			d->sbdma_ctxtable[dsc] = NULL;
688 
689 			/*
690 			 * point at next descriptor
691 			 */
692 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
693 			if (nextdsc == d->sbdma_rem_index) {
694 				d->sbdma_add_index = origdesc;
695 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
696 				return ENOSPC;
697 			}
698 			d->sbdma_add_index = nextdsc;
699 
700 			prevdsc = dsc;
701 			dsc = d->sbdma_add_index;
702 			num_mbufs++;
703 
704 			if (next_len != 0) {
705 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
706 				len = next_len;
707 
708 				next_len = 0;
709 				goto again;
710 			}
711 
712 		}
713 		/* Set head mbuf to last context index */
714 		d->sbdma_ctxtable[prevdsc] = m;
715 
716 		/* Interrupt on last dscr of packet.  */
717 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
718 	} else {
719 		struct mbuf *m_new = NULL;
720 		/*
721 		 * [BEGIN XXX]
722 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
723 		 * assume it will fit).  This is a temporary hack to get us
724 		 * going.
725 		 */
726 
727 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
728 		if (m_new == NULL) {
729 			printf("%s: mbuf allocation failed\n",
730 			    d->sbdma_eth->sc_dev.dv_xname);
731 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
732 			return ENOBUFS;
733 		}
734 
735 		MCLGET(m_new,M_DONTWAIT);
736 		if (!(m_new->m_flags & M_EXT)) {
737 			printf("%s: mbuf cluster allocation failed\n",
738 			    d->sbdma_eth->sc_dev.dv_xname);
739 			m_freem(m_new);
740 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
741 			return ENOBUFS;
742 		}
743 
744 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
745 		/*m_adj(m_new,ETHER_ALIGN);*/
746 
747 		/*
748 		 * XXX Don't forget to include the offset portion in the
749 		 * XXX cache block calculation when this code is rewritten!
750 		 */
751 
752 		/*
753 		 * Copy data
754 		 */
755 
756 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
757 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
758 
759 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
760 
761 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
762 		// XXX: function succeeds.
763 		// m_freem(m);
764 		length = m_new->m_len;
765 
766 		/* [END XXX] */
767 		/*
768 		 * fill in the descriptor
769 		 */
770 
771 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
772 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
773 		    M_DMA_DSCRA_INTERRUPT |
774 		    M_DMA_ETHTX_SOP;
775 
776 		/* transmitting: set outbound options and length */
777 		d->sbdma_dscrtable[dsc].dscr_b =
778 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
779 		    V_DMA_DSCRB_PKT_SIZE(length);
780 
781 		num_mbufs++;
782 
783 		/*
784 		 * fill in the context
785 		 */
786 
787 		d->sbdma_ctxtable[dsc] = m_new;
788 
789 		/*
790 		 * point at next packet
791 		 */
792 		d->sbdma_add_index = nextdsc;
793 	}
794 
795 	/*
796 	 * Give the buffer to the DMA engine.
797 	 */
798 
799 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
800 
801 	return 0;					/* we did it */
802 }
803 
804 /*
805  *  SBDMA_EMPTYRING(d)
806  *
807  *  Free all allocated mbufs on the specified DMA channel;
808  *
809  *  Input parameters:
810  *	d  - DMA channel
811  *
812  *  Return value:
813  *	nothing
814  */
815 
816 static void
817 sbdma_emptyring(sbmacdma_t *d)
818 {
819 	int idx;
820 	struct mbuf *m;
821 
822 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
823 		m = d->sbdma_ctxtable[idx];
824 		if (m) {
825 			m_freem(m);
826 			d->sbdma_ctxtable[idx] = NULL;
827 		}
828 	}
829 }
830 
831 /*
832  *  SBDMA_FILLRING(d)
833  *
834  *  Fill the specified DMA channel (must be receive channel)
835  *  with mbufs
836  *
837  *  Input parameters:
838  *	d - DMA channel
839  *
840  *  Return value:
841  *	nothing
842  */
843 
844 static void
845 sbdma_fillring(sbmacdma_t *d)
846 {
847 	int idx;
848 
849 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
850 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
851 			break;
852 }
853 
854 /*
855  *  SBDMA_RX_PROCESS(sc, d)
856  *
857  *  Process "completed" receive buffers on the specified DMA channel.
858  *  Note that this isn't really ideal for priority channels, since
859  *  it processes all of the packets on a given channel before
860  *  returning.
861  *
862  *  Input parameters:
863  *	sc - softc structure
864  *	d - DMA channel context
865  *
866  *  Return value:
867  *	nothing
868  */
869 
870 static void
871 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
872 {
873 	int curidx;
874 	int hwidx;
875 	sbdmadscr_t *dscp;
876 	struct mbuf *m;
877 	int len;
878 
879 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
880 
881 	for (;;) {
882 		/*
883 		 * figure out where we are (as an index) and where
884 		 * the hardware is (also as an index)
885 		 *
886 		 * This could be done faster if (for example) the
887 		 * descriptor table was page-aligned and contiguous in
888 		 * both virtual and physical memory -- you could then
889 		 * just compare the low-order bits of the virtual address
890 		 * (sbdma_rem_index) and the physical address
891 		 * (sbdma_curdscr CSR).
892 		 */
893 
894 		curidx = d->sbdma_rem_index;
895 		hwidx = (int)
896 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
897 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
898 
899 		/*
900 		 * If they're the same, that means we've processed all
901 		 * of the descriptors up to (but not including) the one that
902 		 * the hardware is working on right now.
903 		 */
904 
905 		if (curidx == hwidx)
906 			break;
907 
908 		/*
909 		 * Otherwise, get the packet's mbuf ptr back
910 		 */
911 
912 		dscp = &(d->sbdma_dscrtable[curidx]);
913 		m = d->sbdma_ctxtable[curidx];
914 		d->sbdma_ctxtable[curidx] = NULL;
915 
916 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
917 
918 		/*
919 		 * Check packet status.  If good, process it.
920 		 * If not, silently drop it and put it back on the
921 		 * receive ring.
922 		 */
923 
924 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
925 
926 			/*
927 			 * Set length into the packet
928 			 * XXX do we remove the CRC here?
929 			 */
930 			m->m_pkthdr.len = m->m_len = len;
931 
932 			ifp->if_ipackets++;
933 			m->m_pkthdr.rcvif = ifp;
934 
935 
936 			/*
937 			 * Add a new buffer to replace the old one.
938 			 */
939 			sbdma_add_rcvbuffer(d, NULL);
940 
941 #if (NBPFILTER > 0)
942 			/*
943 			 * Handle BPF listeners. Let the BPF user see the
944 			 * packet, but don't pass it up to the ether_input()
945 			 * layer unless it's a broadcast packet, multicast
946 			 * packet, matches our ethernet address or the
947 			 * interface is in promiscuous mode.
948 			 */
949 
950 			if (ifp->if_bpf)
951 				bpf_mtap(ifp->if_bpf, m);
952 #endif
953 			/*
954 			 * Pass the buffer to the kernel
955 			 */
956 			(*ifp->if_input)(ifp, m);
957 		} else {
958 			/*
959 			 * Packet was mangled somehow.  Just drop it and
960 			 * put it back on the receive ring.
961 			 */
962 			sbdma_add_rcvbuffer(d, m);
963 		}
964 
965 		/*
966 		 * .. and advance to the next buffer.
967 		 */
968 
969 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
970 	}
971 }
972 
973 /*
974  *  SBDMA_TX_PROCESS(sc, d)
975  *
976  *  Process "completed" transmit buffers on the specified DMA channel.
977  *  This is normally called within the interrupt service routine.
978  *  Note that this isn't really ideal for priority channels, since
979  *  it processes all of the packets on a given channel before
980  *  returning.
981  *
982  *  Input parameters:
983  *	sc - softc structure
984  *	d - DMA channel context
985  *
986  *  Return value:
987  *	nothing
988  */
989 
990 static void
991 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
992 {
993 	int curidx;
994 	int hwidx;
995 	struct mbuf *m;
996 
997 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
998 
999 	for (;;) {
1000 		/*
1001 		 * figure out where we are (as an index) and where
1002 		 * the hardware is (also as an index)
1003 		 *
1004 		 * This could be done faster if (for example) the
1005 		 * descriptor table was page-aligned and contiguous in
1006 		 * both virtual and physical memory -- you could then
1007 		 * just compare the low-order bits of the virtual address
1008 		 * (sbdma_rem_index) and the physical address
1009 		 * (sbdma_curdscr CSR).
1010 		 */
1011 
1012 		curidx = d->sbdma_rem_index;
1013 		hwidx = (int)
1014 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1015 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1016 
1017 		/*
1018 		 * If they're the same, that means we've processed all
1019 		 * of the descriptors up to (but not including) the one that
1020 		 * the hardware is working on right now.
1021 		 */
1022 
1023 		if (curidx == hwidx)
1024 			break;
1025 
1026 		/*
1027 		 * Otherwise, get the packet's mbuf ptr back
1028 		 */
1029 
1030 		m = d->sbdma_ctxtable[curidx];
1031 		d->sbdma_ctxtable[curidx] = NULL;
1032 
1033 		/*
1034 		 * for transmits we just free buffers and count packets.
1035 		 */
1036 		ifp->if_opackets++;
1037 		m_freem(m);
1038 
1039 		/*
1040 		 * .. and advance to the next buffer.
1041 		 */
1042 
1043 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1044 	}
1045 
1046 	/*
1047 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
1048 	 * It's supposed to reflect if the interface is actively
1049 	 * transmitting, but that's really hard to do quickly.
1050 	 */
1051 
1052 	ifp->if_flags &= ~IFF_OACTIVE;
1053 }
1054 
1055 /*
1056  *  SBMAC_INITCTX(s)
1057  *
1058  *  Initialize an Ethernet context structure - this is called
1059  *  once per MAC on the 1250.  Memory is allocated here, so don't
1060  *  call it again from inside the ioctl routines that bring the
1061  *  interface up/down
1062  *
1063  *  Input parameters:
1064  *	s - sbmac context structure
1065  *
1066  *  Return value:
1067  *	0
1068  */
1069 
1070 static void
1071 sbmac_initctx(struct sbmac_softc *s)
1072 {
1073 	uint64_t sysrev;
1074 
1075 	/*
1076 	 * figure out the addresses of some ports
1077 	 */
1078 
1079 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1080 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
1081 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1082 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1083 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1084 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
1085 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1086 
1087 	/*
1088 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1089 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1090 	 */
1091 
1092 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1093 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1094 
1095 	/*
1096 	 * initial state is OFF
1097 	 */
1098 
1099 	s->sbm_state = sbmac_state_off;
1100 
1101 	/*
1102 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1103 	 */
1104 
1105 	s->sbm_speed = sbmac_speed_10;
1106 	s->sbm_duplex = sbmac_duplex_half;
1107 	s->sbm_fc = sbmac_fc_disabled;
1108 
1109 	/*
1110 	 * Determine SOC type.  112x has Pass3 SOC features.
1111 	 */
1112 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1113 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1114 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1115 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1116 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1117 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1118 #ifdef SBMAC_EVENT_COUNTERS
1119 	evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1120 	    NULL, s->sc_dev.dv_xname, "rxintr");
1121 	evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1122 	    NULL, s->sc_dev.dv_xname, "txintr");
1123 	evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1124 	    NULL, s->sc_dev.dv_xname, "txdrop");
1125 	evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1126 	    NULL, s->sc_dev.dv_xname, "txstall");
1127 	if (s->sbm_pass3_dma) {
1128 		evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1129 		    NULL, s->sc_dev.dv_xname, "pass3tx-split");
1130 		evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1131 		    NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1132 	}
1133 #endif
1134 }
1135 
1136 /*
1137  *  SBMAC_CHANNEL_START(s)
1138  *
1139  *  Start packet processing on this MAC.
1140  *
1141  *  Input parameters:
1142  *	s - sbmac structure
1143  *
1144  *  Return value:
1145  *	nothing
1146  */
1147 
1148 static void
1149 sbmac_channel_start(struct sbmac_softc *s)
1150 {
1151 	uint64_t reg;
1152 	sbmac_port_t port;
1153 	uint64_t cfg, fifo, framecfg;
1154 	int idx;
1155 	uint64_t dma_cfg0, fifo_cfg;
1156 	sbmacdma_t *txdma;
1157 
1158 	/*
1159 	 * Don't do this if running
1160 	 */
1161 
1162 	if (s->sbm_state == sbmac_state_on)
1163 		return;
1164 
1165 	/*
1166 	 * Bring the controller out of reset, but leave it off.
1167 	 */
1168 
1169 	SBMAC_WRITECSR(s->sbm_macenable, 0);
1170 
1171 	/*
1172 	 * Ignore all received packets
1173 	 */
1174 
1175 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1176 
1177 	/*
1178 	 * Calculate values for various control registers.
1179 	 */
1180 
1181 	cfg = M_MAC_RETRY_EN |
1182 	      M_MAC_TX_HOLD_SOP_EN |
1183 	      V_MAC_TX_PAUSE_CNT_16K |
1184 	      M_MAC_AP_STAT_EN |
1185 	      M_MAC_SS_EN |
1186 	      0;
1187 
1188 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1189 	       V_MAC_TX_RD_THRSH(4) |
1190 	       V_MAC_TX_RL_THRSH(4) |
1191 	       V_MAC_RX_PL_THRSH(4) |
1192 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1193 	       V_MAC_RX_PL_THRSH(4) |
1194 	       V_MAC_RX_RL_THRSH(8) |
1195 	       0;
1196 
1197 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1198 	    V_MAC_MAX_FRAMESZ_DEFAULT |
1199 	    V_MAC_BACKOFF_SEL(1);
1200 
1201 	/*
1202 	 * Clear out the hash address map
1203 	 */
1204 
1205 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1206 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1207 		SBMAC_WRITECSR(port, 0);
1208 		port += sizeof(uint64_t);
1209 	}
1210 
1211 	/*
1212 	 * Clear out the exact-match table
1213 	 */
1214 
1215 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1216 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1217 		SBMAC_WRITECSR(port, 0);
1218 		port += sizeof(uint64_t);
1219 	}
1220 
1221 	/*
1222 	 * Clear out the DMA Channel mapping table registers
1223 	 */
1224 
1225 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1226 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1227 		SBMAC_WRITECSR(port, 0);
1228 		port += sizeof(uint64_t);
1229 	}
1230 
1231 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1232 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1233 		SBMAC_WRITECSR(port, 0);
1234 		port += sizeof(uint64_t);
1235 	}
1236 
1237 	/*
1238 	 * Program the hardware address.  It goes into the hardware-address
1239 	 * register as well as the first filter register.
1240 	 */
1241 
1242 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1243 
1244 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1245 	SBMAC_WRITECSR(port, reg);
1246 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1247 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
1248 
1249 	/*
1250 	 * Set the receive filter for no packets, and write values
1251 	 * to the various config registers
1252 	 */
1253 
1254 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1255 	SBMAC_WRITECSR(s->sbm_imr, 0);
1256 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1257 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1258 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1259 
1260 	/*
1261 	 * Initialize DMA channels (rings should be ok now)
1262 	 */
1263 
1264 	sbdma_channel_start(&(s->sbm_rxdma));
1265 	sbdma_channel_start(&(s->sbm_txdma));
1266 
1267 	/*
1268 	 * Configure the speed, duplex, and flow control
1269 	 */
1270 
1271 	sbmac_set_speed(s, s->sbm_speed);
1272 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1273 
1274 	/*
1275 	 * Fill the receive ring
1276 	 */
1277 
1278 	sbdma_fillring(&(s->sbm_rxdma));
1279 
1280 	/*
1281 	 * Turn on the rest of the bits in the enable register
1282 	 */
1283 
1284 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1285 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1286 
1287 
1288 	/*
1289 	 * Accept any kind of interrupt on TX and RX DMA channel 0
1290 	 */
1291 	SBMAC_WRITECSR(s->sbm_imr,
1292 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1293 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1294 
1295 	/*
1296 	 * Enable receiving unicasts and broadcasts
1297 	 */
1298 
1299 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1300 
1301 	/*
1302 	 * On chips which support unaligned DMA features, set the descriptor
1303 	 * ring for transmit channels to use the unaligned buffer format.
1304 	 */
1305 	txdma = &(s->sbm_txdma);
1306 
1307 	if (s->sbm_pass3_dma) {
1308 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1309 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1310 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
1311 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1312 
1313 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
1314 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1315 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1316 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1317 	}
1318 
1319 	/*
1320 	 * we're running now.
1321 	 */
1322 
1323 	s->sbm_state = sbmac_state_on;
1324 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1325 
1326 	/*
1327 	 * Program multicast addresses
1328 	 */
1329 
1330 	sbmac_setmulti(s);
1331 
1332 	/*
1333 	 * If channel was in promiscuous mode before, turn that on
1334 	 */
1335 
1336 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1337 		sbmac_promiscuous_mode(s, 1);
1338 
1339 	/*
1340 	 * Turn on the once-per-second timer
1341 	 */
1342 
1343 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1344 }
1345 
1346 /*
1347  *  SBMAC_CHANNEL_STOP(s)
1348  *
1349  *  Stop packet processing on this MAC.
1350  *
1351  *  Input parameters:
1352  *	s - sbmac structure
1353  *
1354  *  Return value:
1355  *	nothing
1356  */
1357 
1358 static void
1359 sbmac_channel_stop(struct sbmac_softc *s)
1360 {
1361 	uint64_t ctl;
1362 
1363 	/* don't do this if already stopped */
1364 
1365 	if (s->sbm_state == sbmac_state_off)
1366 		return;
1367 
1368 	/* don't accept any packets, disable all interrupts */
1369 
1370 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1371 	SBMAC_WRITECSR(s->sbm_imr, 0);
1372 
1373 	/* Turn off ticker */
1374 
1375 	callout_stop(&(s->sc_tick_ch));
1376 
1377 	/* turn off receiver and transmitter */
1378 
1379 	ctl = SBMAC_READCSR(s->sbm_macenable);
1380 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1381 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
1382 
1383 	/* We're stopped now. */
1384 
1385 	s->sbm_state = sbmac_state_off;
1386 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1387 
1388 	/* Empty the receive and transmit rings */
1389 
1390 	sbdma_emptyring(&(s->sbm_rxdma));
1391 	sbdma_emptyring(&(s->sbm_txdma));
1392 }
1393 
1394 /*
1395  *  SBMAC_SET_CHANNEL_STATE(state)
1396  *
1397  *  Set the channel's state ON or OFF
1398  *
1399  *  Input parameters:
1400  *	state - new state
1401  *
1402  *  Return value:
1403  *	old state
1404  */
1405 
1406 static sbmac_state_t
1407 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1408 {
1409 	sbmac_state_t oldstate = sc->sbm_state;
1410 
1411 	/*
1412 	 * If same as previous state, return
1413 	 */
1414 
1415 	if (state == oldstate)
1416 		return oldstate;
1417 
1418 	/*
1419 	 * If new state is ON, turn channel on
1420 	 */
1421 
1422 	if (state == sbmac_state_on)
1423 		sbmac_channel_start(sc);
1424 	else
1425 		sbmac_channel_stop(sc);
1426 
1427 	/*
1428 	 * Return previous state
1429 	 */
1430 
1431 	return oldstate;
1432 }
1433 
1434 /*
1435  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
1436  *
1437  *  Turn on or off promiscuous mode
1438  *
1439  *  Input parameters:
1440  *	sc - softc
1441  *	onoff - 1 to turn on, 0 to turn off
1442  *
1443  *  Return value:
1444  *	nothing
1445  */
1446 
1447 static void
1448 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1449 {
1450 	uint64_t reg;
1451 
1452 	if (sc->sbm_state != sbmac_state_on)
1453 		return;
1454 
1455 	if (onoff) {
1456 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1457 		reg |= M_MAC_ALLPKT_EN;
1458 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1459 	} else {
1460 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1461 		reg &= ~M_MAC_ALLPKT_EN;
1462 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1463 	}
1464 }
1465 
1466 /*
1467  *  SBMAC_INIT_AND_START(sc)
1468  *
1469  *  Stop the channel and restart it.  This is generally used
1470  *  when we have to do something to the channel that requires
1471  *  a swift kick.
1472  *
1473  *  Input parameters:
1474  *	sc - softc
1475  */
1476 
1477 static void
1478 sbmac_init_and_start(struct sbmac_softc *sc)
1479 {
1480 	int s;
1481 
1482 	s = splnet();
1483 
1484 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
1485 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1486 	sbmac_set_channel_state(sc, sbmac_state_on);
1487 
1488 	splx(s);
1489 }
1490 
1491 /*
1492  *  SBMAC_ADDR2REG(ptr)
1493  *
1494  *  Convert six bytes into the 64-bit register value that
1495  *  we typically write into the SBMAC's address/mcast registers
1496  *
1497  *  Input parameters:
1498  *	ptr - pointer to 6 bytes
1499  *
1500  *  Return value:
1501  *	register value
1502  */
1503 
1504 static uint64_t
1505 sbmac_addr2reg(u_char *ptr)
1506 {
1507 	uint64_t reg = 0;
1508 
1509 	ptr += 6;
1510 
1511 	reg |= (uint64_t) *(--ptr);
1512 	reg <<= 8;
1513 	reg |= (uint64_t) *(--ptr);
1514 	reg <<= 8;
1515 	reg |= (uint64_t) *(--ptr);
1516 	reg <<= 8;
1517 	reg |= (uint64_t) *(--ptr);
1518 	reg <<= 8;
1519 	reg |= (uint64_t) *(--ptr);
1520 	reg <<= 8;
1521 	reg |= (uint64_t) *(--ptr);
1522 
1523 	return reg;
1524 }
1525 
1526 /*
1527  *  SBMAC_SET_SPEED(s, speed)
1528  *
1529  *  Configure LAN speed for the specified MAC.
1530  *  Warning: must be called when MAC is off!
1531  *
1532  *  Input parameters:
1533  *	s - sbmac structure
1534  *	speed - speed to set MAC to (see sbmac_speed_t enum)
1535  *
1536  *  Return value:
1537  *	1 if successful
1538  *	0 indicates invalid parameters
1539  */
1540 
1541 static int
1542 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1543 {
1544 	uint64_t cfg;
1545 	uint64_t framecfg;
1546 
1547 	/*
1548 	 * Save new current values
1549 	 */
1550 
1551 	s->sbm_speed = speed;
1552 
1553 	if (s->sbm_state != sbmac_state_off)
1554 		panic("sbmac_set_speed while MAC not off");
1555 
1556 	/*
1557 	 * Read current register values
1558 	 */
1559 
1560 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1561 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
1562 
1563 	/*
1564 	 * Mask out the stuff we want to change
1565 	 */
1566 
1567 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1568 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1569 	    M_MAC_SLOT_SIZE);
1570 
1571 	/*
1572 	 * Now add in the new bits
1573 	 */
1574 
1575 	switch (speed) {
1576 	case sbmac_speed_10:
1577 		framecfg |= V_MAC_IFG_RX_10 |
1578 		    V_MAC_IFG_TX_10 |
1579 		    K_MAC_IFG_THRSH_10 |
1580 		    V_MAC_SLOT_SIZE_10;
1581 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1582 		break;
1583 
1584 	case sbmac_speed_100:
1585 		framecfg |= V_MAC_IFG_RX_100 |
1586 		    V_MAC_IFG_TX_100 |
1587 		    V_MAC_IFG_THRSH_100 |
1588 		    V_MAC_SLOT_SIZE_100;
1589 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1590 		break;
1591 
1592 	case sbmac_speed_1000:
1593 		framecfg |= V_MAC_IFG_RX_1000 |
1594 		    V_MAC_IFG_TX_1000 |
1595 		    V_MAC_IFG_THRSH_1000 |
1596 		    V_MAC_SLOT_SIZE_1000;
1597 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1598 		break;
1599 
1600 	case sbmac_speed_auto:		/* XXX not implemented */
1601 		/* fall through */
1602 	default:
1603 		return 0;
1604 	}
1605 
1606 	/*
1607 	 * Send the bits back to the hardware
1608 	 */
1609 
1610 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1611 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1612 
1613 	return 1;
1614 }
1615 
1616 /*
1617  *  SBMAC_SET_DUPLEX(s, duplex, fc)
1618  *
1619  *  Set Ethernet duplex and flow control options for this MAC
1620  *  Warning: must be called when MAC is off!
1621  *
1622  *  Input parameters:
1623  *	s - sbmac structure
1624  *	duplex - duplex setting (see sbmac_duplex_t)
1625  *	fc - flow control setting (see sbmac_fc_t)
1626  *
1627  *  Return value:
1628  *	1 if ok
1629  *	0 if an invalid parameter combination was specified
1630  */
1631 
1632 static int
1633 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1634 {
1635 	uint64_t cfg;
1636 
1637 	/*
1638 	 * Save new current values
1639 	 */
1640 
1641 	s->sbm_duplex = duplex;
1642 	s->sbm_fc = fc;
1643 
1644 	if (s->sbm_state != sbmac_state_off)
1645 		panic("sbmac_set_duplex while MAC not off");
1646 
1647 	/*
1648 	 * Read current register values
1649 	 */
1650 
1651 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1652 
1653 	/*
1654 	 * Mask off the stuff we're about to change
1655 	 */
1656 
1657 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1658 
1659 	switch (duplex) {
1660 	case sbmac_duplex_half:
1661 		switch (fc) {
1662 		case sbmac_fc_disabled:
1663 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1664 			break;
1665 
1666 		case sbmac_fc_collision:
1667 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1668 			break;
1669 
1670 		case sbmac_fc_carrier:
1671 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1672 			break;
1673 
1674 		case sbmac_fc_auto:		/* XXX not implemented */
1675 			/* fall through */
1676 		case sbmac_fc_frame:		/* not valid in half duplex */
1677 		default:			/* invalid selection */
1678 			panic("%s: invalid half duplex fc selection %d",
1679 			    s->sc_dev.dv_xname, fc);
1680 			return 0;
1681 		}
1682 		break;
1683 
1684 	case sbmac_duplex_full:
1685 		switch (fc) {
1686 		case sbmac_fc_disabled:
1687 			cfg |= V_MAC_FC_CMD_DISABLED;
1688 			break;
1689 
1690 		case sbmac_fc_frame:
1691 			cfg |= V_MAC_FC_CMD_ENABLED;
1692 			break;
1693 
1694 		case sbmac_fc_collision:	/* not valid in full duplex */
1695 		case sbmac_fc_carrier:		/* not valid in full duplex */
1696 		case sbmac_fc_auto:		/* XXX not implemented */
1697 			/* fall through */
1698 		default:
1699 			panic("%s: invalid full duplex fc selection %d",
1700 			    s->sc_dev.dv_xname, fc);
1701 			return 0;
1702 		}
1703 		break;
1704 
1705 	default:
1706 		/* fall through */
1707 	case sbmac_duplex_auto:
1708 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1709 		/* XXX not implemented */
1710 		break;
1711 	}
1712 
1713 	/*
1714 	 * Send the bits back to the hardware
1715 	 */
1716 
1717 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1718 
1719 	return 1;
1720 }
1721 
1722 /*
1723  *  SBMAC_INTR()
1724  *
1725  *  Interrupt handler for MAC interrupts
1726  *
1727  *  Input parameters:
1728  *	MAC structure
1729  *
1730  *  Return value:
1731  *	nothing
1732  */
1733 
1734 /* ARGSUSED */
1735 static void
1736 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1737 {
1738 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1739 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1740 	uint64_t isr;
1741 
1742 	for (;;) {
1743 
1744 		/*
1745 		 * Read the ISR (this clears the bits in the real register)
1746 		 */
1747 
1748 		isr = SBMAC_READCSR(sc->sbm_isr);
1749 
1750 		if (isr == 0)
1751 			break;
1752 
1753 		/*
1754 		 * Transmits on channel 0
1755 		 */
1756 
1757 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1758 			sbdma_tx_process(sc, &(sc->sbm_txdma));
1759 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1760 		}
1761 
1762 		/*
1763 		 * Receives on channel 0
1764 		 */
1765 
1766 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1767 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
1768 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1769 		}
1770 	}
1771 
1772 	/* try to get more packets going */
1773 	sbmac_start(ifp);
1774 }
1775 
1776 
1777 /*
1778  *  SBMAC_START(ifp)
1779  *
1780  *  Start output on the specified interface.  Basically, we
1781  *  queue as many buffers as we can until the ring fills up, or
1782  *  we run off the end of the queue, whichever comes first.
1783  *
1784  *  Input parameters:
1785  *	ifp - interface
1786  *
1787  *  Return value:
1788  *	nothing
1789  */
1790 
1791 static void
1792 sbmac_start(struct ifnet *ifp)
1793 {
1794 	struct sbmac_softc	*sc;
1795 	struct mbuf		*m_head = NULL;
1796 	int			rv;
1797 
1798 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1799 		return;
1800 
1801 	sc = ifp->if_softc;
1802 
1803 	for (;;) {
1804 
1805 		IF_DEQUEUE(&ifp->if_snd, m_head);
1806 		if (m_head == NULL)
1807 		    break;
1808 
1809 		/*
1810 		 * Put the buffer on the transmit ring.  If we
1811 		 * don't have room, set the OACTIVE flag and wait
1812 		 * for the NIC to drain the ring.
1813 		 */
1814 
1815 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1816 
1817 		if (rv == 0) {
1818 			/*
1819 			 * If there's a BPF listener, bounce a copy of this
1820 			 * frame to it.
1821 			 */
1822 #if (NBPFILTER > 0)
1823 			if (ifp->if_bpf)
1824 				bpf_mtap(ifp->if_bpf, m_head);
1825 #endif
1826 			if (!sc->sbm_pass3_dma) {
1827 				/*
1828 				 * Don't free mbuf if we're not copying to new
1829 				 * mbuf in sbdma_add_txbuffer.  It will be
1830 				 * freed in sbdma_tx_process.
1831 				 */
1832 				m_freem(m_head);
1833 			}
1834 		} else {
1835 		    IF_PREPEND(&ifp->if_snd, m_head);
1836 		    ifp->if_flags |= IFF_OACTIVE;
1837 		    break;
1838 		}
1839 	}
1840 }
1841 
1842 /*
1843  *  SBMAC_SETMULTI(sc)
1844  *
1845  *  Reprogram the multicast table into the hardware, given
1846  *  the list of multicasts associated with the interface
1847  *  structure.
1848  *
1849  *  Input parameters:
1850  *	sc - softc
1851  *
1852  *  Return value:
1853  *	nothing
1854  */
1855 
1856 static void
1857 sbmac_setmulti(struct sbmac_softc *sc)
1858 {
1859 	struct ifnet *ifp;
1860 	uint64_t reg;
1861 	sbmac_port_t port;
1862 	int idx;
1863 	struct ether_multi *enm;
1864 	struct ether_multistep step;
1865 
1866 	ifp = &sc->sc_ethercom.ec_if;
1867 
1868 	/*
1869 	 * Clear out entire multicast table.  We do this by nuking
1870 	 * the entire hash table and all the direct matches except
1871 	 * the first one, which is used for our station address
1872 	 */
1873 
1874 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1875 		port = PKSEG1(sc->sbm_base +
1876 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1877 		SBMAC_WRITECSR(port, 0);
1878 	}
1879 
1880 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1881 		port = PKSEG1(sc->sbm_base +
1882 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1883 		SBMAC_WRITECSR(port, 0);
1884 	}
1885 
1886 	/*
1887 	 * Clear the filter to say we don't want any multicasts.
1888 	 */
1889 
1890 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
1891 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1892 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1893 
1894 	if (ifp->if_flags & IFF_ALLMULTI) {
1895 		/*
1896 		 * Enable ALL multicasts.  Do this by inverting the
1897 		 * multicast enable bit.
1898 		 */
1899 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1900 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1901 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1902 		return;
1903 	}
1904 
1905 	/*
1906 	 * Progam new multicast entries.  For now, only use the
1907 	 * perfect filter.  In the future we'll need to use the
1908 	 * hash filter if the perfect filter overflows
1909 	 */
1910 
1911 	/*
1912 	 * XXX only using perfect filter for now, need to use hash
1913 	 * XXX if the table overflows
1914 	 */
1915 
1916 	idx = 1;		/* skip station address */
1917 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1918 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1919 		reg = sbmac_addr2reg(enm->enm_addrlo);
1920 		port = PKSEG1(sc->sbm_base +
1921 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1922 		SBMAC_WRITECSR(port, reg);
1923 		idx++;
1924 		ETHER_NEXT_MULTI(step, enm);
1925 	}
1926 
1927 	/*
1928 	 * Enable the "accept multicast bits" if we programmed at least one
1929 	 * multicast.
1930 	 */
1931 
1932 	if (idx > 1) {
1933 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
1934 	    reg |= M_MAC_MCAST_EN;
1935 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1936 	}
1937 }
1938 
1939 /*
1940  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
1941  *
1942  *  Generic IOCTL requests for this interface.  The basic
1943  *  stuff is handled here for bringing the interface up,
1944  *  handling multicasts, etc.
1945  *
1946  *  Input parameters:
1947  *	ifp - interface structure
1948  *	cmd - command code
1949  *	data - pointer to data
1950  *
1951  *  Return value:
1952  *	return value (0 is success)
1953  */
1954 
1955 static int
1956 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1957 {
1958 	struct ifaddr *ifa = (struct ifaddr *) data;
1959 	struct sbmac_softc *sc = ifp->if_softc;
1960 
1961 	switch (cmd) {
1962 	case SIOCSIFADDR:
1963 		ifp->if_flags |= IFF_UP;
1964 
1965 		switch (ifa->ifa_addr->sa_family) {
1966 #ifdef INET
1967 		case AF_INET:
1968 			sbmac_init_and_start(sc);
1969 			arp_ifinit(ifp, ifa);
1970 			break;
1971 #endif
1972 #ifdef NS
1973 		case AF_NS:
1974 		{
1975 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1976 
1977 			if (ns_nullhost(*ina))
1978 				ina->x_host =
1979 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1980 			else
1981 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1982 				    ifp->if_addrlen);
1983 			/* Set new address. */
1984 			sbmac_init_and_start(sc);
1985 			break;
1986 		}
1987 #endif
1988 		default:
1989 			sbmac_init_and_start(sc);
1990 			break;
1991 		}
1992 		break;
1993 
1994 	default:
1995 		return (EINVAL);
1996 	}
1997 
1998 	return (0);
1999 }
2000 
2001 /*
2002  *  SBMAC_IOCTL(ifp, command, data)
2003  *
2004  *  Main IOCTL handler - dispatches to other IOCTLs for various
2005  *  types of requests.
2006  *
2007  *  Input parameters:
2008  *	ifp - interface pointer
2009  *	command - command code
2010  *	data - pointer to argument data
2011  *
2012  *  Return value:
2013  *	0 if ok
2014  *	else error code
2015  */
2016 
2017 static int
2018 sbmac_ioctl(struct ifnet *ifp, u_long command, void *data)
2019 {
2020 	struct sbmac_softc *sc = ifp->if_softc;
2021 	struct ifreq *ifr = (struct ifreq *) data;
2022 	int s, error = 0;
2023 
2024 	s = splnet();
2025 
2026 	switch(command) {
2027 	case SIOCSIFADDR:
2028 	case SIOCGIFADDR:
2029 		error = sbmac_ether_ioctl(ifp, command, data);
2030 		break;
2031 	case SIOCSIFMTU:
2032 		if (ifr->ifr_mtu > ETHER_MAX_LEN)
2033 			error = EINVAL;
2034 		else {
2035 			ifp->if_mtu = ifr->ifr_mtu;
2036 			/* XXX Program new MTU here */
2037 		}
2038 		break;
2039 	case SIOCSIFFLAGS:
2040 		if (ifp->if_flags & IFF_UP) {
2041 			/*
2042 			 * If only the state of the PROMISC flag changed,
2043 			 * just tweak the hardware registers.
2044 			 */
2045 			if ((ifp->if_flags & IFF_RUNNING) &&
2046 			    (ifp->if_flags & IFF_PROMISC)) {
2047 				/* turn on promiscuous mode */
2048 				sbmac_promiscuous_mode(sc, 1);
2049 			} else if (ifp->if_flags & IFF_RUNNING &&
2050 			    !(ifp->if_flags & IFF_PROMISC)) {
2051 			    /* turn off promiscuous mode */
2052 			    sbmac_promiscuous_mode(sc, 0);
2053 			} else
2054 			    sbmac_set_channel_state(sc, sbmac_state_on);
2055 		} else {
2056 			if (ifp->if_flags & IFF_RUNNING)
2057 				sbmac_set_channel_state(sc, sbmac_state_off);
2058 		}
2059 
2060 		sc->sbm_if_flags = ifp->if_flags;
2061 		error = 0;
2062 		break;
2063 
2064 	case SIOCADDMULTI:
2065 	case SIOCDELMULTI:
2066 		if (ifp->if_flags & IFF_RUNNING) {
2067 			sbmac_setmulti(sc);
2068 			error = 0;
2069 		}
2070 		break;
2071 	case SIOCSIFMEDIA:
2072 	case SIOCGIFMEDIA:
2073 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2074 		break;
2075 	default:
2076 		error = EINVAL;
2077 		break;
2078 	}
2079 
2080 	(void)splx(s);
2081 
2082 	return(error);
2083 }
2084 
2085 /*
2086  *  SBMAC_IFMEDIA_UPD(ifp)
2087  *
2088  *  Configure an appropriate media type for this interface,
2089  *  given the data in the interface structure
2090  *
2091  *  Input parameters:
2092  *	ifp - interface
2093  *
2094  *  Return value:
2095  *	0 if ok
2096  *	else error code
2097  */
2098 
2099 static int
2100 sbmac_mediachange(struct ifnet *ifp)
2101 {
2102 	struct sbmac_softc *sc = ifp->if_softc;
2103 
2104 	if (ifp->if_flags & IFF_UP)
2105 		mii_mediachg(&sc->sc_mii);
2106 	return(0);
2107 }
2108 
2109 /*
2110  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
2111  *
2112  *  Report current media status (used by ifconfig, for example)
2113  *
2114  *  Input parameters:
2115  *	ifp - interface structure
2116  *	ifmr - media request structure
2117  *
2118  *  Return value:
2119  *	nothing
2120  */
2121 
2122 static void
2123 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2124 {
2125 	struct sbmac_softc	*sc = ifp->if_softc;
2126 
2127   	mii_pollstat(&sc->sc_mii);
2128 	req->ifm_status = sc->sc_mii.mii_media_status;
2129 	req->ifm_active = sc->sc_mii.mii_media_active;
2130 }
2131 
2132 /*
2133  *  SBMAC_WATCHDOG(ifp)
2134  *
2135  *  Called periodically to make sure we're still happy.
2136  *
2137  *  Input parameters:
2138  *	ifp - interface structure
2139  *
2140  *  Return value:
2141  *	nothing
2142  */
2143 
2144 static void
2145 sbmac_watchdog(struct ifnet *ifp)
2146 {
2147 
2148 	/* XXX do something */
2149 }
2150 
2151 /*
2152  * One second timer, used to tick MII.
2153  */
2154 static void
2155 sbmac_tick(void *arg)
2156 {
2157 	struct sbmac_softc *sc = arg;
2158 	int s;
2159 
2160 	s = splnet();
2161 	mii_tick(&sc->sc_mii);
2162 	splx(s);
2163 
2164 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2165 }
2166 
2167 
2168 /*
2169  *  SBMAC_MATCH(parent, match, aux)
2170  *
2171  *  Part of the config process - see if this device matches the
2172  *  info about what we expect to find on the bus.
2173  *
2174  *  Input parameters:
2175  *	parent - parent bus structure
2176  *	match -
2177  *	aux - bus-specific args
2178  *
2179  *  Return value:
2180  *	1 if we match
2181  *	0 if we don't match
2182  */
2183 
2184 static int
2185 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2186 {
2187 	struct sbobio_attach_args *sap = aux;
2188 
2189 	/*
2190 	 * Make sure it's a MAC
2191 	 */
2192 
2193 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2194 		return 0;
2195 
2196 	/*
2197 	 * Yup, it is.
2198 	 */
2199 
2200 	return 1;
2201 }
2202 
2203 /*
2204  *  SBMAC_PARSE_XDIGIT(str)
2205  *
2206  *  Parse a hex digit, returning its value
2207  *
2208  *  Input parameters:
2209  *	str - character
2210  *
2211  *  Return value:
2212  *	hex value, or -1 if invalid
2213  */
2214 
2215 static int
2216 sbmac_parse_xdigit(char str)
2217 {
2218 	int digit;
2219 
2220 	if ((str >= '0') && (str <= '9'))
2221 		digit = str - '0';
2222 	else if ((str >= 'a') && (str <= 'f'))
2223 		digit = str - 'a' + 10;
2224 	else if ((str >= 'A') && (str <= 'F'))
2225 		digit = str - 'A' + 10;
2226 	else
2227 		digit = -1;
2228 
2229 	return digit;
2230 }
2231 
2232 /*
2233  *  SBMAC_PARSE_HWADDR(str, hwaddr)
2234  *
2235  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2236  *  Ethernet address.
2237  *
2238  *  Input parameters:
2239  *	str - string
2240  *	hwaddr - pointer to hardware address
2241  *
2242  *  Return value:
2243  *	0 if ok, else -1
2244  */
2245 
2246 static int
2247 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2248 {
2249 	int digit1, digit2;
2250 	int idx = 6;
2251 
2252 	while (*str && (idx > 0)) {
2253 		digit1 = sbmac_parse_xdigit(*str);
2254 		if (digit1 < 0)
2255 			return -1;
2256 		str++;
2257 		if (!*str)
2258 			return -1;
2259 
2260 		if ((*str == ':') || (*str == '-')) {
2261 			digit2 = digit1;
2262 			digit1 = 0;
2263 		} else {
2264 			digit2 = sbmac_parse_xdigit(*str);
2265 			if (digit2 < 0)
2266 				return -1;
2267 			str++;
2268 		}
2269 
2270 		*hwaddr++ = (digit1 << 4) | digit2;
2271 		idx--;
2272 
2273 		if (*str == '-')
2274 			str++;
2275 		if (*str == ':')
2276 			str++;
2277 	}
2278 	return 0;
2279 }
2280 
2281 /*
2282  *  SBMAC_ATTACH(parent, self, aux)
2283  *
2284  *  Attach routine - init hardware and hook ourselves into NetBSD.
2285  *
2286  *  Input parameters:
2287  *	parent - parent bus device
2288  *	self - our softc
2289  *	aux - attach data
2290  *
2291  *  Return value:
2292  *	nothing
2293  */
2294 
2295 static void
2296 sbmac_attach(struct device *parent, struct device *self, void *aux)
2297 {
2298 	struct ifnet *ifp;
2299 	struct sbmac_softc *sc;
2300 	struct sbobio_attach_args *sap = aux;
2301 	u_char *eaddr;
2302 	static int unit = 0;	/* XXX */
2303 	uint64_t ea_reg;
2304 	int idx;
2305 
2306 	sc = (struct sbmac_softc *)self;
2307 
2308 	/* Determine controller base address */
2309 
2310 	sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2311 
2312 	eaddr = sc->sbm_hwaddr;
2313 
2314 	/*
2315 	 * Initialize context (get pointers to registers and stuff), then
2316 	 * allocate the memory for the descriptor tables.
2317 	 */
2318 
2319 	sbmac_initctx(sc);
2320 
2321 	callout_init(&(sc->sc_tick_ch), 0);
2322 
2323 	/*
2324 	 * Read the ethernet address.  The firwmare left this programmed
2325 	 * for us in the ethernet address register for each mac.
2326 	 */
2327 
2328 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2329 	for (idx = 0; idx < 6; idx++) {
2330 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2331 		ea_reg >>= 8;
2332 	}
2333 
2334 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2335 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2336 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2337 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2338 		eaddr[5] = unit;
2339 	}
2340 
2341 #ifdef SBMAC_ETH0_HWADDR
2342 	if (unit == 0)
2343 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2344 #endif
2345 #ifdef SBMAC_ETH1_HWADDR
2346 	if (unit == 1)
2347 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2348 #endif
2349 #ifdef SBMAC_ETH2_HWADDR
2350 	if (unit == 2)
2351 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2352 #endif
2353 	unit++;
2354 
2355 	/*
2356 	 * Display Ethernet address (this is called during the config process
2357 	 * so we need to finish off the config message that was being displayed)
2358 	 */
2359 	printf(": Ethernet%s\n",
2360 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2361 	printf("%s: Ethernet address: %s\n", self->dv_xname,
2362 	    ether_sprintf(eaddr));
2363 
2364 
2365 	/*
2366 	 * Set up ifnet structure
2367 	 */
2368 
2369 	ifp = &sc->sc_ethercom.ec_if;
2370 	ifp->if_softc = sc;
2371 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2373 	    IFF_NOTRAILERS;
2374 	ifp->if_ioctl = sbmac_ioctl;
2375 	ifp->if_start = sbmac_start;
2376 	ifp->if_watchdog = sbmac_watchdog;
2377 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2378 
2379 	/*
2380 	 * Set up ifmedia support.
2381 	 */
2382 
2383 	/*
2384 	 * Initialize MII/media info.
2385 	 */
2386 	sc->sc_mii.mii_ifp      = ifp;
2387 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
2388 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2389 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
2390 	ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2391 	    sbmac_mediastatus);
2392 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2393 	    MII_OFFSET_ANY, 0);
2394 
2395 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2396 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2397 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2398 	} else {
2399 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2400 	}
2401 
2402 
2403 	/*
2404 	 * map/route interrupt
2405 	 */
2406 
2407 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2408 	    sbmac_intr, sc);
2409 
2410 	/*
2411 	 * Call MI attach routines.
2412 	 */
2413 	if_attach(ifp);
2414 	ether_ifattach(ifp, eaddr);
2415 }
2416