xref: /netbsd-src/sys/arch/mips/sibyte/dev/sbmac.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /* $NetBSD: sbmac.c,v 1.36 2010/01/19 22:06:21 pooka Exp $ */
2 
3 /*
4  * Copyright 2000, 2001, 2004
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.36 2010/01/19 22:06:21 pooka Exp $");
37 
38 #include "opt_inet.h"
39 #include "opt_ns.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/queue.h>
49 #include <sys/device.h>
50 
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_ether.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/if_inarp.h>
62 #endif
63 
64 #ifdef NS
65 #include <netns/ns.h>
66 #include <netns/ns_if.h>
67 #endif
68 
69 #include <machine/locore.h>
70 
71 #include "sbobiovar.h"
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 #include <dev/mii/mii_bitbang.h>
76 
77 #include <mips/sibyte/include/sb1250_defs.h>
78 #include <mips/sibyte/include/sb1250_regs.h>
79 #include <mips/sibyte/include/sb1250_mac.h>
80 #include <mips/sibyte/include/sb1250_dma.h>
81 #include <mips/sibyte/include/sb1250_scd.h>
82 
83 /* Simple types */
84 
85 typedef u_long sbmac_port_t;
86 typedef uint64_t sbmac_physaddr_t;
87 typedef uint64_t sbmac_enetaddr_t;
88 
89 typedef enum { sbmac_speed_auto, sbmac_speed_10,
90 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
91 
92 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
93 	       sbmac_duplex_full } sbmac_duplex_t;
94 
95 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
96 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
97 
98 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
99 	       sbmac_state_broken } sbmac_state_t;
100 
101 
102 /* Macros */
103 
104 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
105 
106 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
107 
108 #define	CACHELINESIZE 32
109 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
110 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
111 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
112 
113 #ifdef SBMACDEBUG
114 #define	dprintf(x)	printf x
115 #else
116 #define	dprintf(x)
117 #endif
118 
119 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
120 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
121 
122 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
123 
124 /* These are limited to fit within one virtual page, and must be 2**N.  */
125 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
126 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
127 
128 #define	ETHER_ALIGN	2
129 
130 /* DMA Descriptor structure */
131 
132 typedef struct sbdmadscr_s {
133 	uint64_t dscr_a;
134 	uint64_t dscr_b;
135 } sbdmadscr_t;
136 
137 
138 /* DMA Controller structure */
139 
140 typedef struct sbmacdma_s {
141 
142 	/*
143 	 * This stuff is used to identify the channel and the registers
144 	 * associated with it.
145 	 */
146 
147 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
148 	int		sbdma_channel;	/* channel number */
149 	int		sbdma_txdir;	/* direction (1=transmit) */
150 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
151 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
152 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
153 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
154 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
155 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
156 
157 	/*
158 	 * This stuff is for maintenance of the ring
159 	 */
160 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
161 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
162 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
163 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
164 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
165 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
166 } sbmacdma_t;
167 
168 
169 /* Ethernet softc structure */
170 
171 struct sbmac_softc {
172 
173 	/*
174 	 * NetBSD-specific things
175 	 */
176 	struct device	sc_dev;		/* base device (must be first) */
177 	struct ethercom	sc_ethercom;	/* Ethernet common part */
178 	struct mii_data	sc_mii;
179 	struct callout	sc_tick_ch;
180 
181 	int		sbm_if_flags;
182 	void		*sbm_intrhand;
183 
184 	/*
185 	 * Controller-specific things
186 	 */
187 
188 	sbmac_port_t	sbm_base;	/* MAC's base address */
189 	sbmac_state_t	sbm_state;	/* current state */
190 
191 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
192 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
193 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
194 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
195 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
196 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
197 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
198 
199 	sbmac_speed_t	sbm_speed;	/* current speed */
200 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
201 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
202 	int		sbm_rxflags;	/* received packet flags */
203 
204 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
205 
206 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
207 	sbmacdma_t	sbm_rxdma;
208 
209 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
210 
211 #ifdef SBMAC_EVENT_COUNTERS
212 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
213 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
214 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
215 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
216 
217 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
218 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
219 #endif
220 };
221 
222 
223 #ifdef SBMAC_EVENT_COUNTERS
224 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
225 #else
226 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
227 #endif
228 
229 /* Externs */
230 
231 extern paddr_t kvtophys(vaddr_t);
232 
233 /* Prototypes */
234 
235 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
236     int txrx, int maxdescr);
237 static void sbdma_channel_start(sbmacdma_t *d);
238 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
239 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
240 static void sbdma_emptyring(sbmacdma_t *d);
241 static void sbdma_fillring(sbmacdma_t *d);
242 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
243 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
244 static void sbmac_initctx(struct sbmac_softc *s);
245 static void sbmac_channel_start(struct sbmac_softc *s);
246 static void sbmac_channel_stop(struct sbmac_softc *s);
247 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
248     sbmac_state_t);
249 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
250 static void sbmac_init_and_start(struct sbmac_softc *sc);
251 static uint64_t sbmac_addr2reg(u_char *ptr);
252 static void sbmac_intr(void *xsc, uint32_t status, vaddr_t pc);
253 static void sbmac_start(struct ifnet *ifp);
254 static void sbmac_setmulti(struct sbmac_softc *sc);
255 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
256 static int sbmac_ioctl(struct ifnet *, u_long, void *);
257 static void sbmac_watchdog(struct ifnet *ifp);
258 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
259 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
260 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
261 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
262     sbmac_fc_t fc);
263 static void sbmac_tick(void *arg);
264 
265 
266 /* Globals */
267 
268 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
269     sbmac_match, sbmac_attach, NULL, NULL);
270 
271 static uint32_t sbmac_mii_bitbang_read(struct device *self);
272 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
273 
274 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
275 	sbmac_mii_bitbang_read,
276 	sbmac_mii_bitbang_write,
277 	{
278 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
279 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
280 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
281 		0,				/* MII_BIT_DIR_HOST_PHY */
282 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
283 	}
284 };
285 
286 static uint32_t
287 sbmac_mii_bitbang_read(struct device *self)
288 {
289 	struct sbmac_softc *sc = (void *) self;
290 	sbmac_port_t reg;
291 
292 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
293 	return (uint32_t) SBMAC_READCSR(reg);
294 }
295 
296 static void
297 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
298 {
299 	struct sbmac_softc *sc = (void *) self;
300 	sbmac_port_t reg;
301 
302 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
303 
304 	SBMAC_WRITECSR(reg, (val &
305 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
306 }
307 
308 /*
309  * Read an PHY register through the MII.
310  */
311 static int
312 sbmac_mii_readreg(struct device *self, int phy, int reg)
313 {
314 
315 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
316 }
317 
318 /*
319  * Write to a PHY register through the MII.
320  */
321 static void
322 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
323 {
324 
325 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
326 }
327 
328 static void
329 sbmac_mii_statchg(struct device *self)
330 {
331 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
332 	sbmac_state_t oldstate;
333 
334 	/* Stop the MAC in preparation for changing all of the parameters. */
335 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
336 
337 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
338 	default:		/* if autonegotiation fails, assume 10Mbit */
339 	case IF_Mbps(10):
340 		sbmac_set_speed(sc, sbmac_speed_10);
341 		break;
342 
343 	case IF_Mbps(100):
344 		sbmac_set_speed(sc, sbmac_speed_100);
345 		break;
346 
347 	case IF_Mbps(1000):
348 		sbmac_set_speed(sc, sbmac_speed_1000);
349 		break;
350 	}
351 
352 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
353 		/* Configure for full-duplex */
354 		/* XXX: is flow control right for 10, 100? */
355 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
356 	} else {
357 		/* Configure for half-duplex */
358 		/* XXX: is flow control right? */
359 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
360 	}
361 
362 	/* And put it back into its former state. */
363 	sbmac_set_channel_state(sc, oldstate);
364 }
365 
366 /*
367  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
368  *
369  *  Initialize a DMA channel context.  Since there are potentially
370  *  eight DMA channels per MAC, it's nice to do this in a standard
371  *  way.
372  *
373  *  Input parameters:
374  *	d - sbmacdma_t structure (DMA channel context)
375  *	s - sbmac_softc structure (pointer to a MAC)
376  *	chan - channel number (0..1 right now)
377  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
378  *	maxdescr - number of descriptors
379  *
380  *  Return value:
381  *	nothing
382  */
383 
384 static void
385 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
386     int maxdescr)
387 {
388 	/*
389 	 * Save away interesting stuff in the structure
390 	 */
391 
392 	d->sbdma_eth = s;
393 	d->sbdma_channel = chan;
394 	d->sbdma_txdir = txrx;
395 
396 	/*
397 	 * initialize register pointers
398 	 */
399 
400 	d->sbdma_config0 = PKSEG1(s->sbm_base +
401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
402 	d->sbdma_config1 = PKSEG1(s->sbm_base +
403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
404 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
406 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
407 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
408 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
409 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
410 
411 	/*
412 	 * Allocate memory for the ring
413 	 */
414 
415 	d->sbdma_maxdescr = maxdescr;
416 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
417 
418 	d->sbdma_dscrtable = (sbdmadscr_t *)
419 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
420 
421 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
422 
423 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
424 
425 	/*
426 	 * And context table
427 	 */
428 
429 	d->sbdma_ctxtable = (struct mbuf **)
430 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
431 
432 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
433 }
434 
435 /*
436  *  SBDMA_CHANNEL_START(d)
437  *
438  *  Initialize the hardware registers for a DMA channel.
439  *
440  *  Input parameters:
441  *	d - DMA channel to init (context must be previously init'd
442  *
443  *  Return value:
444  *	nothing
445  */
446 
447 static void
448 sbdma_channel_start(sbmacdma_t *d)
449 {
450 	/*
451 	 * Turn on the DMA channel
452 	 */
453 
454 	SBMAC_WRITECSR(d->sbdma_config1, 0);
455 
456 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
457 
458 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
459 
460 	/*
461 	 * Initialize ring pointers
462 	 */
463 
464 	d->sbdma_add_index = 0;
465 	d->sbdma_rem_index = 0;
466 }
467 
468 /*
469  *  SBDMA_ADD_RCVBUFFER(d, m)
470  *
471  *  Add a buffer to the specified DMA channel.   For receive channels,
472  *  this queues a buffer for inbound packets.
473  *
474  *  Input parameters:
475  *	d - DMA channel descriptor
476  *	m - mbuf to add, or NULL if we should allocate one.
477  *
478  *  Return value:
479  *	0 if buffer could not be added (ring is full)
480  *	1 if buffer added successfully
481  */
482 
483 static int
484 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
485 {
486 	unsigned int dsc, nextdsc;
487 	struct mbuf *m_new = NULL;
488 
489 	/* get pointer to our current place in the ring */
490 
491 	dsc = d->sbdma_add_index;
492 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
493 
494 	/*
495 	 * figure out if the ring is full - if the next descriptor
496 	 * is the same as the one that we're going to remove from
497 	 * the ring, the ring is full
498 	 */
499 
500 	if (nextdsc == d->sbdma_rem_index)
501 		return ENOSPC;
502 
503 	/*
504 	 * Allocate an mbuf if we don't already have one.
505 	 * If we do have an mbuf, reset it so that it's empty.
506 	 */
507 
508 	if (m == NULL) {
509 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
510 		if (m_new == NULL) {
511 			printf("%s: mbuf allocation failed\n",
512 			    d->sbdma_eth->sc_dev.dv_xname);
513 			return ENOBUFS;
514 		}
515 
516 		MCLGET(m_new, M_DONTWAIT);
517 		if (!(m_new->m_flags & M_EXT)) {
518 			printf("%s: mbuf cluster allocation failed\n",
519 			    d->sbdma_eth->sc_dev.dv_xname);
520 			m_freem(m_new);
521 			return ENOBUFS;
522 		}
523 
524 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
525 		m_adj(m_new, ETHER_ALIGN);
526 	} else {
527 		m_new = m;
528 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
529 		m_new->m_data = m_new->m_ext.ext_buf;
530 		m_adj(m_new, ETHER_ALIGN);
531 	}
532 
533 	/*
534 	 * fill in the descriptor
535 	 */
536 
537 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
538 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
539 	    M_DMA_DSCRA_INTERRUPT;
540 
541 	/* receiving: no options */
542 	d->sbdma_dscrtable[dsc].dscr_b = 0;
543 
544 	/*
545 	 * fill in the context
546 	 */
547 
548 	d->sbdma_ctxtable[dsc] = m_new;
549 
550 	/*
551 	 * point at next packet
552 	 */
553 
554 	d->sbdma_add_index = nextdsc;
555 
556 	/*
557 	 * Give the buffer to the DMA engine.
558 	 */
559 
560 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
561 
562 	return 0;					/* we did it */
563 }
564 
565 /*
566  *  SBDMA_ADD_TXBUFFER(d, m)
567  *
568  *  Add a transmit buffer to the specified DMA channel, causing a
569  *  transmit to start.
570  *
571  *  Input parameters:
572  *	d - DMA channel descriptor
573  *	m - mbuf to add
574  *
575  *  Return value:
576  *	0 transmit queued successfully
577  *	otherwise error code
578  */
579 
580 static int
581 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
582 {
583         unsigned int dsc, nextdsc, prevdsc, origdesc;
584 	int length;
585 	int num_mbufs = 0;
586 	struct sbmac_softc *sc = d->sbdma_eth;
587 
588 	/* get pointer to our current place in the ring */
589 
590 	dsc = d->sbdma_add_index;
591 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
592 
593 	/*
594 	 * figure out if the ring is full - if the next descriptor
595 	 * is the same as the one that we're going to remove from
596 	 * the ring, the ring is full
597 	 */
598 
599 	if (nextdsc == d->sbdma_rem_index) {
600 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
601 		return ENOSPC;
602 	}
603 
604 	/*
605 	 * PASS3 parts do not have buffer alignment restriction.
606 	 * No need to copy/coalesce to new mbuf.  Also has different
607 	 * descriptor format
608 	 */
609 	if (sc->sbm_pass3_dma) {
610 		struct mbuf *m_temp = NULL;
611 
612 		/*
613 		 * Loop thru this mbuf record.
614 		 * The head mbuf will have SOP set.
615 		 */
616 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
617 		    M_DMA_ETHTX_SOP;
618 
619 		/*
620 		 * transmitting: set outbound options,buffer A size(+ low 5
621 		 * bits of start addr),and packet length.
622 		 */
623 		d->sbdma_dscrtable[dsc].dscr_b =
624 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
625 		    V_DMA_DSCRB_A_SIZE((m->m_len +
626 		      (mtod(m,uintptr_t) & 0x0000001F))) |
627 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
628 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
629 
630 		d->sbdma_add_index = nextdsc;
631 		origdesc = prevdsc = dsc;
632 		dsc = d->sbdma_add_index;
633 		num_mbufs++;
634 
635 		/* Start with first non-head mbuf */
636 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
637 			int len, next_len;
638 			uint64_t addr;
639 
640 			if (m_temp->m_len == 0)
641 				continue;	/* Skip 0-length mbufs */
642 
643 			len = m_temp->m_len;
644 			addr = KVTOPHYS(mtod(m_temp, void *));
645 
646 			/*
647 			 * Check to see if the mbuf spans a page boundary.  If
648 			 * it does, and the physical pages behind the virtual
649 			 * pages are not contiguous, split it so that each
650 			 * virtual page uses it's own Tx descriptor.
651 			 */
652 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
653 				next_len = (addr + len) - trunc_page(addr + len);
654 
655 				len -= next_len;
656 
657 				if (addr + len ==
658 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
659 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
660 					len += next_len;
661 					next_len = 0;
662 				} else {
663 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
664 				}
665 			} else {
666 				next_len = 0;
667 			}
668 
669 again:
670 			/*
671 			 * fill in the descriptor
672 			 */
673 			d->sbdma_dscrtable[dsc].dscr_a = addr;
674 
675 			/*
676 			 * transmitting: set outbound options,buffer A
677 			 * size(+ low 5 bits of start addr)
678 			 */
679 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
680 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
681 
682 			d->sbdma_ctxtable[dsc] = NULL;
683 
684 			/*
685 			 * point at next descriptor
686 			 */
687 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
688 			if (nextdsc == d->sbdma_rem_index) {
689 				d->sbdma_add_index = origdesc;
690 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
691 				return ENOSPC;
692 			}
693 			d->sbdma_add_index = nextdsc;
694 
695 			prevdsc = dsc;
696 			dsc = d->sbdma_add_index;
697 			num_mbufs++;
698 
699 			if (next_len != 0) {
700 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
701 				len = next_len;
702 
703 				next_len = 0;
704 				goto again;
705 			}
706 
707 		}
708 		/* Set head mbuf to last context index */
709 		d->sbdma_ctxtable[prevdsc] = m;
710 
711 		/* Interrupt on last dscr of packet.  */
712 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
713 	} else {
714 		struct mbuf *m_new = NULL;
715 		/*
716 		 * [BEGIN XXX]
717 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
718 		 * assume it will fit).  This is a temporary hack to get us
719 		 * going.
720 		 */
721 
722 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
723 		if (m_new == NULL) {
724 			printf("%s: mbuf allocation failed\n",
725 			    d->sbdma_eth->sc_dev.dv_xname);
726 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
727 			return ENOBUFS;
728 		}
729 
730 		MCLGET(m_new,M_DONTWAIT);
731 		if (!(m_new->m_flags & M_EXT)) {
732 			printf("%s: mbuf cluster allocation failed\n",
733 			    d->sbdma_eth->sc_dev.dv_xname);
734 			m_freem(m_new);
735 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
736 			return ENOBUFS;
737 		}
738 
739 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
740 		/*m_adj(m_new,ETHER_ALIGN);*/
741 
742 		/*
743 		 * XXX Don't forget to include the offset portion in the
744 		 * XXX cache block calculation when this code is rewritten!
745 		 */
746 
747 		/*
748 		 * Copy data
749 		 */
750 
751 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
752 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
753 
754 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
755 
756 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
757 		// XXX: function succeeds.
758 		// m_freem(m);
759 		length = m_new->m_len;
760 
761 		/* [END XXX] */
762 		/*
763 		 * fill in the descriptor
764 		 */
765 
766 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
767 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
768 		    M_DMA_DSCRA_INTERRUPT |
769 		    M_DMA_ETHTX_SOP;
770 
771 		/* transmitting: set outbound options and length */
772 		d->sbdma_dscrtable[dsc].dscr_b =
773 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
774 		    V_DMA_DSCRB_PKT_SIZE(length);
775 
776 		num_mbufs++;
777 
778 		/*
779 		 * fill in the context
780 		 */
781 
782 		d->sbdma_ctxtable[dsc] = m_new;
783 
784 		/*
785 		 * point at next packet
786 		 */
787 		d->sbdma_add_index = nextdsc;
788 	}
789 
790 	/*
791 	 * Give the buffer to the DMA engine.
792 	 */
793 
794 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
795 
796 	return 0;					/* we did it */
797 }
798 
799 /*
800  *  SBDMA_EMPTYRING(d)
801  *
802  *  Free all allocated mbufs on the specified DMA channel;
803  *
804  *  Input parameters:
805  *	d  - DMA channel
806  *
807  *  Return value:
808  *	nothing
809  */
810 
811 static void
812 sbdma_emptyring(sbmacdma_t *d)
813 {
814 	int idx;
815 	struct mbuf *m;
816 
817 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
818 		m = d->sbdma_ctxtable[idx];
819 		if (m) {
820 			m_freem(m);
821 			d->sbdma_ctxtable[idx] = NULL;
822 		}
823 	}
824 }
825 
826 /*
827  *  SBDMA_FILLRING(d)
828  *
829  *  Fill the specified DMA channel (must be receive channel)
830  *  with mbufs
831  *
832  *  Input parameters:
833  *	d - DMA channel
834  *
835  *  Return value:
836  *	nothing
837  */
838 
839 static void
840 sbdma_fillring(sbmacdma_t *d)
841 {
842 	int idx;
843 
844 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
845 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
846 			break;
847 }
848 
849 /*
850  *  SBDMA_RX_PROCESS(sc, d)
851  *
852  *  Process "completed" receive buffers on the specified DMA channel.
853  *  Note that this isn't really ideal for priority channels, since
854  *  it processes all of the packets on a given channel before
855  *  returning.
856  *
857  *  Input parameters:
858  *	sc - softc structure
859  *	d - DMA channel context
860  *
861  *  Return value:
862  *	nothing
863  */
864 
865 static void
866 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
867 {
868 	int curidx;
869 	int hwidx;
870 	sbdmadscr_t *dscp;
871 	struct mbuf *m;
872 	int len;
873 
874 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
875 
876 	for (;;) {
877 		/*
878 		 * figure out where we are (as an index) and where
879 		 * the hardware is (also as an index)
880 		 *
881 		 * This could be done faster if (for example) the
882 		 * descriptor table was page-aligned and contiguous in
883 		 * both virtual and physical memory -- you could then
884 		 * just compare the low-order bits of the virtual address
885 		 * (sbdma_rem_index) and the physical address
886 		 * (sbdma_curdscr CSR).
887 		 */
888 
889 		curidx = d->sbdma_rem_index;
890 		hwidx = (int)
891 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
892 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
893 
894 		/*
895 		 * If they're the same, that means we've processed all
896 		 * of the descriptors up to (but not including) the one that
897 		 * the hardware is working on right now.
898 		 */
899 
900 		if (curidx == hwidx)
901 			break;
902 
903 		/*
904 		 * Otherwise, get the packet's mbuf ptr back
905 		 */
906 
907 		dscp = &(d->sbdma_dscrtable[curidx]);
908 		m = d->sbdma_ctxtable[curidx];
909 		d->sbdma_ctxtable[curidx] = NULL;
910 
911 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
912 
913 		/*
914 		 * Check packet status.  If good, process it.
915 		 * If not, silently drop it and put it back on the
916 		 * receive ring.
917 		 */
918 
919 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
920 
921 			/*
922 			 * Set length into the packet
923 			 * XXX do we remove the CRC here?
924 			 */
925 			m->m_pkthdr.len = m->m_len = len;
926 
927 			ifp->if_ipackets++;
928 			m->m_pkthdr.rcvif = ifp;
929 
930 
931 			/*
932 			 * Add a new buffer to replace the old one.
933 			 */
934 			sbdma_add_rcvbuffer(d, NULL);
935 
936 			/*
937 			 * Handle BPF listeners. Let the BPF user see the
938 			 * packet, but don't pass it up to the ether_input()
939 			 * layer unless it's a broadcast packet, multicast
940 			 * packet, matches our ethernet address or the
941 			 * interface is in promiscuous mode.
942 			 */
943 
944 			if (ifp->if_bpf)
945 				bpf_ops->bpf_mtap(ifp->if_bpf, m);
946 			/*
947 			 * Pass the buffer to the kernel
948 			 */
949 			(*ifp->if_input)(ifp, m);
950 		} else {
951 			/*
952 			 * Packet was mangled somehow.  Just drop it and
953 			 * put it back on the receive ring.
954 			 */
955 			sbdma_add_rcvbuffer(d, m);
956 		}
957 
958 		/*
959 		 * .. and advance to the next buffer.
960 		 */
961 
962 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
963 	}
964 }
965 
966 /*
967  *  SBDMA_TX_PROCESS(sc, d)
968  *
969  *  Process "completed" transmit buffers on the specified DMA channel.
970  *  This is normally called within the interrupt service routine.
971  *  Note that this isn't really ideal for priority channels, since
972  *  it processes all of the packets on a given channel before
973  *  returning.
974  *
975  *  Input parameters:
976  *	sc - softc structure
977  *	d - DMA channel context
978  *
979  *  Return value:
980  *	nothing
981  */
982 
983 static void
984 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
985 {
986 	int curidx;
987 	int hwidx;
988 	struct mbuf *m;
989 
990 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
991 
992 	for (;;) {
993 		/*
994 		 * figure out where we are (as an index) and where
995 		 * the hardware is (also as an index)
996 		 *
997 		 * This could be done faster if (for example) the
998 		 * descriptor table was page-aligned and contiguous in
999 		 * both virtual and physical memory -- you could then
1000 		 * just compare the low-order bits of the virtual address
1001 		 * (sbdma_rem_index) and the physical address
1002 		 * (sbdma_curdscr CSR).
1003 		 */
1004 
1005 		curidx = d->sbdma_rem_index;
1006 		hwidx = (int)
1007 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1008 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1009 
1010 		/*
1011 		 * If they're the same, that means we've processed all
1012 		 * of the descriptors up to (but not including) the one that
1013 		 * the hardware is working on right now.
1014 		 */
1015 
1016 		if (curidx == hwidx)
1017 			break;
1018 
1019 		/*
1020 		 * Otherwise, get the packet's mbuf ptr back
1021 		 */
1022 
1023 		m = d->sbdma_ctxtable[curidx];
1024 		d->sbdma_ctxtable[curidx] = NULL;
1025 
1026 		/*
1027 		 * for transmits we just free buffers and count packets.
1028 		 */
1029 		ifp->if_opackets++;
1030 		m_freem(m);
1031 
1032 		/*
1033 		 * .. and advance to the next buffer.
1034 		 */
1035 
1036 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1037 	}
1038 
1039 	/*
1040 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
1041 	 * It's supposed to reflect if the interface is actively
1042 	 * transmitting, but that's really hard to do quickly.
1043 	 */
1044 
1045 	ifp->if_flags &= ~IFF_OACTIVE;
1046 }
1047 
1048 /*
1049  *  SBMAC_INITCTX(s)
1050  *
1051  *  Initialize an Ethernet context structure - this is called
1052  *  once per MAC on the 1250.  Memory is allocated here, so don't
1053  *  call it again from inside the ioctl routines that bring the
1054  *  interface up/down
1055  *
1056  *  Input parameters:
1057  *	s - sbmac context structure
1058  *
1059  *  Return value:
1060  *	0
1061  */
1062 
1063 static void
1064 sbmac_initctx(struct sbmac_softc *s)
1065 {
1066 	uint64_t sysrev;
1067 
1068 	/*
1069 	 * figure out the addresses of some ports
1070 	 */
1071 
1072 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1073 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
1074 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1075 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1076 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1077 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
1078 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1079 
1080 	/*
1081 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1082 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1083 	 */
1084 
1085 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1086 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1087 
1088 	/*
1089 	 * initial state is OFF
1090 	 */
1091 
1092 	s->sbm_state = sbmac_state_off;
1093 
1094 	/*
1095 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1096 	 */
1097 
1098 	s->sbm_speed = sbmac_speed_10;
1099 	s->sbm_duplex = sbmac_duplex_half;
1100 	s->sbm_fc = sbmac_fc_disabled;
1101 
1102 	/*
1103 	 * Determine SOC type.  112x has Pass3 SOC features.
1104 	 */
1105 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1106 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1107 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1108 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1109 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1110 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1111 #ifdef SBMAC_EVENT_COUNTERS
1112 	evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1113 	    NULL, s->sc_dev.dv_xname, "rxintr");
1114 	evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1115 	    NULL, s->sc_dev.dv_xname, "txintr");
1116 	evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1117 	    NULL, s->sc_dev.dv_xname, "txdrop");
1118 	evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1119 	    NULL, s->sc_dev.dv_xname, "txstall");
1120 	if (s->sbm_pass3_dma) {
1121 		evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1122 		    NULL, s->sc_dev.dv_xname, "pass3tx-split");
1123 		evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1124 		    NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1125 	}
1126 #endif
1127 }
1128 
1129 /*
1130  *  SBMAC_CHANNEL_START(s)
1131  *
1132  *  Start packet processing on this MAC.
1133  *
1134  *  Input parameters:
1135  *	s - sbmac structure
1136  *
1137  *  Return value:
1138  *	nothing
1139  */
1140 
1141 static void
1142 sbmac_channel_start(struct sbmac_softc *s)
1143 {
1144 	uint64_t reg;
1145 	sbmac_port_t port;
1146 	uint64_t cfg, fifo, framecfg;
1147 	int idx;
1148 	uint64_t dma_cfg0, fifo_cfg;
1149 	sbmacdma_t *txdma;
1150 
1151 	/*
1152 	 * Don't do this if running
1153 	 */
1154 
1155 	if (s->sbm_state == sbmac_state_on)
1156 		return;
1157 
1158 	/*
1159 	 * Bring the controller out of reset, but leave it off.
1160 	 */
1161 
1162 	SBMAC_WRITECSR(s->sbm_macenable, 0);
1163 
1164 	/*
1165 	 * Ignore all received packets
1166 	 */
1167 
1168 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1169 
1170 	/*
1171 	 * Calculate values for various control registers.
1172 	 */
1173 
1174 	cfg = M_MAC_RETRY_EN |
1175 	      M_MAC_TX_HOLD_SOP_EN |
1176 	      V_MAC_TX_PAUSE_CNT_16K |
1177 	      M_MAC_AP_STAT_EN |
1178 	      M_MAC_SS_EN |
1179 	      0;
1180 
1181 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1182 	       V_MAC_TX_RD_THRSH(4) |
1183 	       V_MAC_TX_RL_THRSH(4) |
1184 	       V_MAC_RX_PL_THRSH(4) |
1185 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1186 	       V_MAC_RX_PL_THRSH(4) |
1187 	       V_MAC_RX_RL_THRSH(8) |
1188 	       0;
1189 
1190 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1191 	    V_MAC_MAX_FRAMESZ_DEFAULT |
1192 	    V_MAC_BACKOFF_SEL(1);
1193 
1194 	/*
1195 	 * Clear out the hash address map
1196 	 */
1197 
1198 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1199 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1200 		SBMAC_WRITECSR(port, 0);
1201 		port += sizeof(uint64_t);
1202 	}
1203 
1204 	/*
1205 	 * Clear out the exact-match table
1206 	 */
1207 
1208 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1209 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1210 		SBMAC_WRITECSR(port, 0);
1211 		port += sizeof(uint64_t);
1212 	}
1213 
1214 	/*
1215 	 * Clear out the DMA Channel mapping table registers
1216 	 */
1217 
1218 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1219 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1220 		SBMAC_WRITECSR(port, 0);
1221 		port += sizeof(uint64_t);
1222 	}
1223 
1224 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1225 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1226 		SBMAC_WRITECSR(port, 0);
1227 		port += sizeof(uint64_t);
1228 	}
1229 
1230 	/*
1231 	 * Program the hardware address.  It goes into the hardware-address
1232 	 * register as well as the first filter register.
1233 	 */
1234 
1235 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1236 
1237 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1238 	SBMAC_WRITECSR(port, reg);
1239 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1240 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
1241 
1242 	/*
1243 	 * Set the receive filter for no packets, and write values
1244 	 * to the various config registers
1245 	 */
1246 
1247 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1248 	SBMAC_WRITECSR(s->sbm_imr, 0);
1249 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1250 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1251 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1252 
1253 	/*
1254 	 * Initialize DMA channels (rings should be ok now)
1255 	 */
1256 
1257 	sbdma_channel_start(&(s->sbm_rxdma));
1258 	sbdma_channel_start(&(s->sbm_txdma));
1259 
1260 	/*
1261 	 * Configure the speed, duplex, and flow control
1262 	 */
1263 
1264 	sbmac_set_speed(s, s->sbm_speed);
1265 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1266 
1267 	/*
1268 	 * Fill the receive ring
1269 	 */
1270 
1271 	sbdma_fillring(&(s->sbm_rxdma));
1272 
1273 	/*
1274 	 * Turn on the rest of the bits in the enable register
1275 	 */
1276 
1277 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1278 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1279 
1280 
1281 	/*
1282 	 * Accept any kind of interrupt on TX and RX DMA channel 0
1283 	 */
1284 	SBMAC_WRITECSR(s->sbm_imr,
1285 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1286 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1287 
1288 	/*
1289 	 * Enable receiving unicasts and broadcasts
1290 	 */
1291 
1292 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1293 
1294 	/*
1295 	 * On chips which support unaligned DMA features, set the descriptor
1296 	 * ring for transmit channels to use the unaligned buffer format.
1297 	 */
1298 	txdma = &(s->sbm_txdma);
1299 
1300 	if (s->sbm_pass3_dma) {
1301 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1302 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1303 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
1304 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1305 
1306 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
1307 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1308 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1309 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1310 	}
1311 
1312 	/*
1313 	 * we're running now.
1314 	 */
1315 
1316 	s->sbm_state = sbmac_state_on;
1317 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1318 
1319 	/*
1320 	 * Program multicast addresses
1321 	 */
1322 
1323 	sbmac_setmulti(s);
1324 
1325 	/*
1326 	 * If channel was in promiscuous mode before, turn that on
1327 	 */
1328 
1329 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1330 		sbmac_promiscuous_mode(s, 1);
1331 
1332 	/*
1333 	 * Turn on the once-per-second timer
1334 	 */
1335 
1336 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1337 }
1338 
1339 /*
1340  *  SBMAC_CHANNEL_STOP(s)
1341  *
1342  *  Stop packet processing on this MAC.
1343  *
1344  *  Input parameters:
1345  *	s - sbmac structure
1346  *
1347  *  Return value:
1348  *	nothing
1349  */
1350 
1351 static void
1352 sbmac_channel_stop(struct sbmac_softc *s)
1353 {
1354 	uint64_t ctl;
1355 
1356 	/* don't do this if already stopped */
1357 
1358 	if (s->sbm_state == sbmac_state_off)
1359 		return;
1360 
1361 	/* don't accept any packets, disable all interrupts */
1362 
1363 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1364 	SBMAC_WRITECSR(s->sbm_imr, 0);
1365 
1366 	/* Turn off ticker */
1367 
1368 	callout_stop(&(s->sc_tick_ch));
1369 
1370 	/* turn off receiver and transmitter */
1371 
1372 	ctl = SBMAC_READCSR(s->sbm_macenable);
1373 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1374 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
1375 
1376 	/* We're stopped now. */
1377 
1378 	s->sbm_state = sbmac_state_off;
1379 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1380 
1381 	/* Empty the receive and transmit rings */
1382 
1383 	sbdma_emptyring(&(s->sbm_rxdma));
1384 	sbdma_emptyring(&(s->sbm_txdma));
1385 }
1386 
1387 /*
1388  *  SBMAC_SET_CHANNEL_STATE(state)
1389  *
1390  *  Set the channel's state ON or OFF
1391  *
1392  *  Input parameters:
1393  *	state - new state
1394  *
1395  *  Return value:
1396  *	old state
1397  */
1398 
1399 static sbmac_state_t
1400 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1401 {
1402 	sbmac_state_t oldstate = sc->sbm_state;
1403 
1404 	/*
1405 	 * If same as previous state, return
1406 	 */
1407 
1408 	if (state == oldstate)
1409 		return oldstate;
1410 
1411 	/*
1412 	 * If new state is ON, turn channel on
1413 	 */
1414 
1415 	if (state == sbmac_state_on)
1416 		sbmac_channel_start(sc);
1417 	else
1418 		sbmac_channel_stop(sc);
1419 
1420 	/*
1421 	 * Return previous state
1422 	 */
1423 
1424 	return oldstate;
1425 }
1426 
1427 /*
1428  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
1429  *
1430  *  Turn on or off promiscuous mode
1431  *
1432  *  Input parameters:
1433  *	sc - softc
1434  *	onoff - 1 to turn on, 0 to turn off
1435  *
1436  *  Return value:
1437  *	nothing
1438  */
1439 
1440 static void
1441 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1442 {
1443 	uint64_t reg;
1444 
1445 	if (sc->sbm_state != sbmac_state_on)
1446 		return;
1447 
1448 	if (onoff) {
1449 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1450 		reg |= M_MAC_ALLPKT_EN;
1451 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1452 	} else {
1453 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1454 		reg &= ~M_MAC_ALLPKT_EN;
1455 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1456 	}
1457 }
1458 
1459 /*
1460  *  SBMAC_INIT_AND_START(sc)
1461  *
1462  *  Stop the channel and restart it.  This is generally used
1463  *  when we have to do something to the channel that requires
1464  *  a swift kick.
1465  *
1466  *  Input parameters:
1467  *	sc - softc
1468  */
1469 
1470 static void
1471 sbmac_init_and_start(struct sbmac_softc *sc)
1472 {
1473 	int s;
1474 
1475 	s = splnet();
1476 
1477 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
1478 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1479 	sbmac_set_channel_state(sc, sbmac_state_on);
1480 
1481 	splx(s);
1482 }
1483 
1484 /*
1485  *  SBMAC_ADDR2REG(ptr)
1486  *
1487  *  Convert six bytes into the 64-bit register value that
1488  *  we typically write into the SBMAC's address/mcast registers
1489  *
1490  *  Input parameters:
1491  *	ptr - pointer to 6 bytes
1492  *
1493  *  Return value:
1494  *	register value
1495  */
1496 
1497 static uint64_t
1498 sbmac_addr2reg(u_char *ptr)
1499 {
1500 	uint64_t reg = 0;
1501 
1502 	ptr += 6;
1503 
1504 	reg |= (uint64_t) *(--ptr);
1505 	reg <<= 8;
1506 	reg |= (uint64_t) *(--ptr);
1507 	reg <<= 8;
1508 	reg |= (uint64_t) *(--ptr);
1509 	reg <<= 8;
1510 	reg |= (uint64_t) *(--ptr);
1511 	reg <<= 8;
1512 	reg |= (uint64_t) *(--ptr);
1513 	reg <<= 8;
1514 	reg |= (uint64_t) *(--ptr);
1515 
1516 	return reg;
1517 }
1518 
1519 /*
1520  *  SBMAC_SET_SPEED(s, speed)
1521  *
1522  *  Configure LAN speed for the specified MAC.
1523  *  Warning: must be called when MAC is off!
1524  *
1525  *  Input parameters:
1526  *	s - sbmac structure
1527  *	speed - speed to set MAC to (see sbmac_speed_t enum)
1528  *
1529  *  Return value:
1530  *	1 if successful
1531  *	0 indicates invalid parameters
1532  */
1533 
1534 static int
1535 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1536 {
1537 	uint64_t cfg;
1538 	uint64_t framecfg;
1539 
1540 	/*
1541 	 * Save new current values
1542 	 */
1543 
1544 	s->sbm_speed = speed;
1545 
1546 	if (s->sbm_state != sbmac_state_off)
1547 		panic("sbmac_set_speed while MAC not off");
1548 
1549 	/*
1550 	 * Read current register values
1551 	 */
1552 
1553 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1554 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
1555 
1556 	/*
1557 	 * Mask out the stuff we want to change
1558 	 */
1559 
1560 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1561 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1562 	    M_MAC_SLOT_SIZE);
1563 
1564 	/*
1565 	 * Now add in the new bits
1566 	 */
1567 
1568 	switch (speed) {
1569 	case sbmac_speed_10:
1570 		framecfg |= V_MAC_IFG_RX_10 |
1571 		    V_MAC_IFG_TX_10 |
1572 		    K_MAC_IFG_THRSH_10 |
1573 		    V_MAC_SLOT_SIZE_10;
1574 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1575 		break;
1576 
1577 	case sbmac_speed_100:
1578 		framecfg |= V_MAC_IFG_RX_100 |
1579 		    V_MAC_IFG_TX_100 |
1580 		    V_MAC_IFG_THRSH_100 |
1581 		    V_MAC_SLOT_SIZE_100;
1582 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1583 		break;
1584 
1585 	case sbmac_speed_1000:
1586 		framecfg |= V_MAC_IFG_RX_1000 |
1587 		    V_MAC_IFG_TX_1000 |
1588 		    V_MAC_IFG_THRSH_1000 |
1589 		    V_MAC_SLOT_SIZE_1000;
1590 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1591 		break;
1592 
1593 	case sbmac_speed_auto:		/* XXX not implemented */
1594 		/* fall through */
1595 	default:
1596 		return 0;
1597 	}
1598 
1599 	/*
1600 	 * Send the bits back to the hardware
1601 	 */
1602 
1603 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1604 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1605 
1606 	return 1;
1607 }
1608 
1609 /*
1610  *  SBMAC_SET_DUPLEX(s, duplex, fc)
1611  *
1612  *  Set Ethernet duplex and flow control options for this MAC
1613  *  Warning: must be called when MAC is off!
1614  *
1615  *  Input parameters:
1616  *	s - sbmac structure
1617  *	duplex - duplex setting (see sbmac_duplex_t)
1618  *	fc - flow control setting (see sbmac_fc_t)
1619  *
1620  *  Return value:
1621  *	1 if ok
1622  *	0 if an invalid parameter combination was specified
1623  */
1624 
1625 static int
1626 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1627 {
1628 	uint64_t cfg;
1629 
1630 	/*
1631 	 * Save new current values
1632 	 */
1633 
1634 	s->sbm_duplex = duplex;
1635 	s->sbm_fc = fc;
1636 
1637 	if (s->sbm_state != sbmac_state_off)
1638 		panic("sbmac_set_duplex while MAC not off");
1639 
1640 	/*
1641 	 * Read current register values
1642 	 */
1643 
1644 	cfg = SBMAC_READCSR(s->sbm_maccfg);
1645 
1646 	/*
1647 	 * Mask off the stuff we're about to change
1648 	 */
1649 
1650 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1651 
1652 	switch (duplex) {
1653 	case sbmac_duplex_half:
1654 		switch (fc) {
1655 		case sbmac_fc_disabled:
1656 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1657 			break;
1658 
1659 		case sbmac_fc_collision:
1660 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1661 			break;
1662 
1663 		case sbmac_fc_carrier:
1664 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1665 			break;
1666 
1667 		case sbmac_fc_auto:		/* XXX not implemented */
1668 			/* fall through */
1669 		case sbmac_fc_frame:		/* not valid in half duplex */
1670 		default:			/* invalid selection */
1671 			panic("%s: invalid half duplex fc selection %d",
1672 			    s->sc_dev.dv_xname, fc);
1673 			return 0;
1674 		}
1675 		break;
1676 
1677 	case sbmac_duplex_full:
1678 		switch (fc) {
1679 		case sbmac_fc_disabled:
1680 			cfg |= V_MAC_FC_CMD_DISABLED;
1681 			break;
1682 
1683 		case sbmac_fc_frame:
1684 			cfg |= V_MAC_FC_CMD_ENABLED;
1685 			break;
1686 
1687 		case sbmac_fc_collision:	/* not valid in full duplex */
1688 		case sbmac_fc_carrier:		/* not valid in full duplex */
1689 		case sbmac_fc_auto:		/* XXX not implemented */
1690 			/* fall through */
1691 		default:
1692 			panic("%s: invalid full duplex fc selection %d",
1693 			    s->sc_dev.dv_xname, fc);
1694 			return 0;
1695 		}
1696 		break;
1697 
1698 	default:
1699 		/* fall through */
1700 	case sbmac_duplex_auto:
1701 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1702 		/* XXX not implemented */
1703 		break;
1704 	}
1705 
1706 	/*
1707 	 * Send the bits back to the hardware
1708 	 */
1709 
1710 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1711 
1712 	return 1;
1713 }
1714 
1715 /*
1716  *  SBMAC_INTR()
1717  *
1718  *  Interrupt handler for MAC interrupts
1719  *
1720  *  Input parameters:
1721  *	MAC structure
1722  *
1723  *  Return value:
1724  *	nothing
1725  */
1726 
1727 /* ARGSUSED */
1728 static void
1729 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
1730 {
1731 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1732 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1733 	uint64_t isr;
1734 
1735 	for (;;) {
1736 
1737 		/*
1738 		 * Read the ISR (this clears the bits in the real register)
1739 		 */
1740 
1741 		isr = SBMAC_READCSR(sc->sbm_isr);
1742 
1743 		if (isr == 0)
1744 			break;
1745 
1746 		/*
1747 		 * Transmits on channel 0
1748 		 */
1749 
1750 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1751 			sbdma_tx_process(sc, &(sc->sbm_txdma));
1752 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1753 		}
1754 
1755 		/*
1756 		 * Receives on channel 0
1757 		 */
1758 
1759 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1760 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
1761 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1762 		}
1763 	}
1764 
1765 	/* try to get more packets going */
1766 	sbmac_start(ifp);
1767 }
1768 
1769 
1770 /*
1771  *  SBMAC_START(ifp)
1772  *
1773  *  Start output on the specified interface.  Basically, we
1774  *  queue as many buffers as we can until the ring fills up, or
1775  *  we run off the end of the queue, whichever comes first.
1776  *
1777  *  Input parameters:
1778  *	ifp - interface
1779  *
1780  *  Return value:
1781  *	nothing
1782  */
1783 
1784 static void
1785 sbmac_start(struct ifnet *ifp)
1786 {
1787 	struct sbmac_softc	*sc;
1788 	struct mbuf		*m_head = NULL;
1789 	int			rv;
1790 
1791 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1792 		return;
1793 
1794 	sc = ifp->if_softc;
1795 
1796 	for (;;) {
1797 
1798 		IF_DEQUEUE(&ifp->if_snd, m_head);
1799 		if (m_head == NULL)
1800 		    break;
1801 
1802 		/*
1803 		 * Put the buffer on the transmit ring.  If we
1804 		 * don't have room, set the OACTIVE flag and wait
1805 		 * for the NIC to drain the ring.
1806 		 */
1807 
1808 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1809 
1810 		if (rv == 0) {
1811 			/*
1812 			 * If there's a BPF listener, bounce a copy of this
1813 			 * frame to it.
1814 			 */
1815 			if (ifp->if_bpf)
1816 				bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
1817 			if (!sc->sbm_pass3_dma) {
1818 				/*
1819 				 * Don't free mbuf if we're not copying to new
1820 				 * mbuf in sbdma_add_txbuffer.  It will be
1821 				 * freed in sbdma_tx_process.
1822 				 */
1823 				m_freem(m_head);
1824 			}
1825 		} else {
1826 		    IF_PREPEND(&ifp->if_snd, m_head);
1827 		    ifp->if_flags |= IFF_OACTIVE;
1828 		    break;
1829 		}
1830 	}
1831 }
1832 
1833 /*
1834  *  SBMAC_SETMULTI(sc)
1835  *
1836  *  Reprogram the multicast table into the hardware, given
1837  *  the list of multicasts associated with the interface
1838  *  structure.
1839  *
1840  *  Input parameters:
1841  *	sc - softc
1842  *
1843  *  Return value:
1844  *	nothing
1845  */
1846 
1847 static void
1848 sbmac_setmulti(struct sbmac_softc *sc)
1849 {
1850 	struct ifnet *ifp;
1851 	uint64_t reg;
1852 	sbmac_port_t port;
1853 	int idx;
1854 	struct ether_multi *enm;
1855 	struct ether_multistep step;
1856 
1857 	ifp = &sc->sc_ethercom.ec_if;
1858 
1859 	/*
1860 	 * Clear out entire multicast table.  We do this by nuking
1861 	 * the entire hash table and all the direct matches except
1862 	 * the first one, which is used for our station address
1863 	 */
1864 
1865 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1866 		port = PKSEG1(sc->sbm_base +
1867 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1868 		SBMAC_WRITECSR(port, 0);
1869 	}
1870 
1871 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1872 		port = PKSEG1(sc->sbm_base +
1873 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1874 		SBMAC_WRITECSR(port, 0);
1875 	}
1876 
1877 	/*
1878 	 * Clear the filter to say we don't want any multicasts.
1879 	 */
1880 
1881 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
1882 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1883 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1884 
1885 	if (ifp->if_flags & IFF_ALLMULTI) {
1886 		/*
1887 		 * Enable ALL multicasts.  Do this by inverting the
1888 		 * multicast enable bit.
1889 		 */
1890 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1891 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1892 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1893 		return;
1894 	}
1895 
1896 	/*
1897 	 * Progam new multicast entries.  For now, only use the
1898 	 * perfect filter.  In the future we'll need to use the
1899 	 * hash filter if the perfect filter overflows
1900 	 */
1901 
1902 	/*
1903 	 * XXX only using perfect filter for now, need to use hash
1904 	 * XXX if the table overflows
1905 	 */
1906 
1907 	idx = 1;		/* skip station address */
1908 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1909 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1910 		reg = sbmac_addr2reg(enm->enm_addrlo);
1911 		port = PKSEG1(sc->sbm_base +
1912 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1913 		SBMAC_WRITECSR(port, reg);
1914 		idx++;
1915 		ETHER_NEXT_MULTI(step, enm);
1916 	}
1917 
1918 	/*
1919 	 * Enable the "accept multicast bits" if we programmed at least one
1920 	 * multicast.
1921 	 */
1922 
1923 	if (idx > 1) {
1924 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
1925 	    reg |= M_MAC_MCAST_EN;
1926 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1927 	}
1928 }
1929 
1930 /*
1931  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
1932  *
1933  *  Generic IOCTL requests for this interface.  The basic
1934  *  stuff is handled here for bringing the interface up,
1935  *  handling multicasts, etc.
1936  *
1937  *  Input parameters:
1938  *	ifp - interface structure
1939  *	cmd - command code
1940  *	data - pointer to data
1941  *
1942  *  Return value:
1943  *	return value (0 is success)
1944  */
1945 
1946 static int
1947 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1948 {
1949 	struct ifaddr *ifa = (struct ifaddr *) data;
1950 	struct sbmac_softc *sc = ifp->if_softc;
1951 
1952 	switch (cmd) {
1953 	case SIOCINITIFADDR:
1954 		ifp->if_flags |= IFF_UP;
1955 
1956 		switch (ifa->ifa_addr->sa_family) {
1957 #ifdef INET
1958 		case AF_INET:
1959 			sbmac_init_and_start(sc);
1960 			arp_ifinit(ifp, ifa);
1961 			break;
1962 #endif
1963 #ifdef NS
1964 		case AF_NS:
1965 		{
1966 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1967 
1968 			if (ns_nullhost(*ina))
1969 				ina->x_host =
1970 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1971 			else
1972 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
1973 				    ifp->if_addrlen);
1974 			/* Set new address. */
1975 			sbmac_init_and_start(sc);
1976 			break;
1977 		}
1978 #endif
1979 		default:
1980 			sbmac_init_and_start(sc);
1981 			break;
1982 		}
1983 		break;
1984 
1985 	default:
1986 		return ENOTTY;
1987 	}
1988 
1989 	return (0);
1990 }
1991 
1992 /*
1993  *  SBMAC_IOCTL(ifp, cmd, data)
1994  *
1995  *  Main IOCTL handler - dispatches to other IOCTLs for various
1996  *  types of requests.
1997  *
1998  *  Input parameters:
1999  *	ifp - interface pointer
2000  *	cmd - command code
2001  *	data - pointer to argument data
2002  *
2003  *  Return value:
2004  *	0 if ok
2005  *	else error code
2006  */
2007 
2008 static int
2009 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2010 {
2011 	struct sbmac_softc *sc = ifp->if_softc;
2012 	struct ifreq *ifr = (struct ifreq *) data;
2013 	int s, error = 0;
2014 
2015 	s = splnet();
2016 
2017 	switch (cmd) {
2018 	case SIOCINITIFADDR:
2019 		error = sbmac_ether_ioctl(ifp, cmd, data);
2020 		break;
2021 	case SIOCSIFMTU:
2022 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2023 			error = EINVAL;
2024 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
2025 			/* XXX Program new MTU here */
2026 			error = 0;
2027 		break;
2028 	case SIOCSIFFLAGS:
2029 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2030 			break;
2031 		if (ifp->if_flags & IFF_UP) {
2032 			/*
2033 			 * If only the state of the PROMISC flag changed,
2034 			 * just tweak the hardware registers.
2035 			 */
2036 			if ((ifp->if_flags & IFF_RUNNING) &&
2037 			    (ifp->if_flags & IFF_PROMISC)) {
2038 				/* turn on promiscuous mode */
2039 				sbmac_promiscuous_mode(sc, 1);
2040 			} else if (ifp->if_flags & IFF_RUNNING &&
2041 			    !(ifp->if_flags & IFF_PROMISC)) {
2042 			    /* turn off promiscuous mode */
2043 			    sbmac_promiscuous_mode(sc, 0);
2044 			} else
2045 			    sbmac_set_channel_state(sc, sbmac_state_on);
2046 		} else {
2047 			if (ifp->if_flags & IFF_RUNNING)
2048 				sbmac_set_channel_state(sc, sbmac_state_off);
2049 		}
2050 
2051 		sc->sbm_if_flags = ifp->if_flags;
2052 		error = 0;
2053 		break;
2054 
2055 	case SIOCADDMULTI:
2056 	case SIOCDELMULTI:
2057 	case SIOCSIFMEDIA:
2058 	case SIOCGIFMEDIA:
2059 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2060 			error = 0;
2061 			if (ifp->if_flags & IFF_RUNNING)
2062 				sbmac_setmulti(sc);
2063 		}
2064 		break;
2065 	default:
2066 		error = ether_ioctl(ifp, cmd, data);
2067 		break;
2068 	}
2069 
2070 	(void)splx(s);
2071 
2072 	return(error);
2073 }
2074 
2075 /*
2076  *  SBMAC_IFMEDIA_UPD(ifp)
2077  *
2078  *  Configure an appropriate media type for this interface,
2079  *  given the data in the interface structure
2080  *
2081  *  Input parameters:
2082  *	ifp - interface
2083  *
2084  *  Return value:
2085  *	0 if ok
2086  *	else error code
2087  */
2088 
2089 /*
2090  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
2091  *
2092  *  Report current media status (used by ifconfig, for example)
2093  *
2094  *  Input parameters:
2095  *	ifp - interface structure
2096  *	ifmr - media request structure
2097  *
2098  *  Return value:
2099  *	nothing
2100  */
2101 
2102 /*
2103  *  SBMAC_WATCHDOG(ifp)
2104  *
2105  *  Called periodically to make sure we're still happy.
2106  *
2107  *  Input parameters:
2108  *	ifp - interface structure
2109  *
2110  *  Return value:
2111  *	nothing
2112  */
2113 
2114 static void
2115 sbmac_watchdog(struct ifnet *ifp)
2116 {
2117 
2118 	/* XXX do something */
2119 }
2120 
2121 /*
2122  * One second timer, used to tick MII.
2123  */
2124 static void
2125 sbmac_tick(void *arg)
2126 {
2127 	struct sbmac_softc *sc = arg;
2128 	int s;
2129 
2130 	s = splnet();
2131 	mii_tick(&sc->sc_mii);
2132 	splx(s);
2133 
2134 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2135 }
2136 
2137 
2138 /*
2139  *  SBMAC_MATCH(parent, match, aux)
2140  *
2141  *  Part of the config process - see if this device matches the
2142  *  info about what we expect to find on the bus.
2143  *
2144  *  Input parameters:
2145  *	parent - parent bus structure
2146  *	match -
2147  *	aux - bus-specific args
2148  *
2149  *  Return value:
2150  *	1 if we match
2151  *	0 if we don't match
2152  */
2153 
2154 static int
2155 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2156 {
2157 	struct sbobio_attach_args *sap = aux;
2158 
2159 	/*
2160 	 * Make sure it's a MAC
2161 	 */
2162 
2163 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2164 		return 0;
2165 
2166 	/*
2167 	 * Yup, it is.
2168 	 */
2169 
2170 	return 1;
2171 }
2172 
2173 /*
2174  *  SBMAC_PARSE_XDIGIT(str)
2175  *
2176  *  Parse a hex digit, returning its value
2177  *
2178  *  Input parameters:
2179  *	str - character
2180  *
2181  *  Return value:
2182  *	hex value, or -1 if invalid
2183  */
2184 
2185 static int
2186 sbmac_parse_xdigit(char str)
2187 {
2188 	int digit;
2189 
2190 	if ((str >= '0') && (str <= '9'))
2191 		digit = str - '0';
2192 	else if ((str >= 'a') && (str <= 'f'))
2193 		digit = str - 'a' + 10;
2194 	else if ((str >= 'A') && (str <= 'F'))
2195 		digit = str - 'A' + 10;
2196 	else
2197 		digit = -1;
2198 
2199 	return digit;
2200 }
2201 
2202 /*
2203  *  SBMAC_PARSE_HWADDR(str, hwaddr)
2204  *
2205  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2206  *  Ethernet address.
2207  *
2208  *  Input parameters:
2209  *	str - string
2210  *	hwaddr - pointer to hardware address
2211  *
2212  *  Return value:
2213  *	0 if ok, else -1
2214  */
2215 
2216 static int
2217 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2218 {
2219 	int digit1, digit2;
2220 	int idx = 6;
2221 
2222 	while (*str && (idx > 0)) {
2223 		digit1 = sbmac_parse_xdigit(*str);
2224 		if (digit1 < 0)
2225 			return -1;
2226 		str++;
2227 		if (!*str)
2228 			return -1;
2229 
2230 		if ((*str == ':') || (*str == '-')) {
2231 			digit2 = digit1;
2232 			digit1 = 0;
2233 		} else {
2234 			digit2 = sbmac_parse_xdigit(*str);
2235 			if (digit2 < 0)
2236 				return -1;
2237 			str++;
2238 		}
2239 
2240 		*hwaddr++ = (digit1 << 4) | digit2;
2241 		idx--;
2242 
2243 		if (*str == '-')
2244 			str++;
2245 		if (*str == ':')
2246 			str++;
2247 	}
2248 	return 0;
2249 }
2250 
2251 /*
2252  *  SBMAC_ATTACH(parent, self, aux)
2253  *
2254  *  Attach routine - init hardware and hook ourselves into NetBSD.
2255  *
2256  *  Input parameters:
2257  *	parent - parent bus device
2258  *	self - our softc
2259  *	aux - attach data
2260  *
2261  *  Return value:
2262  *	nothing
2263  */
2264 
2265 static void
2266 sbmac_attach(struct device *parent, struct device *self, void *aux)
2267 {
2268 	struct ifnet *ifp;
2269 	struct sbmac_softc *sc;
2270 	struct sbobio_attach_args *sap = aux;
2271 	u_char *eaddr;
2272 	static int unit = 0;	/* XXX */
2273 	uint64_t ea_reg;
2274 	int idx;
2275 
2276 	sc = (struct sbmac_softc *)self;
2277 
2278 	/* Determine controller base address */
2279 
2280 	sc->sbm_base = sap->sa_locs.sa_addr;
2281 
2282 	eaddr = sc->sbm_hwaddr;
2283 
2284 	/*
2285 	 * Initialize context (get pointers to registers and stuff), then
2286 	 * allocate the memory for the descriptor tables.
2287 	 */
2288 
2289 	sbmac_initctx(sc);
2290 
2291 	callout_init(&(sc->sc_tick_ch), 0);
2292 
2293 	/*
2294 	 * Read the ethernet address.  The firwmare left this programmed
2295 	 * for us in the ethernet address register for each mac.
2296 	 */
2297 
2298 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2299 	for (idx = 0; idx < 6; idx++) {
2300 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2301 		ea_reg >>= 8;
2302 	}
2303 
2304 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2305 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2306 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2307 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2308 		eaddr[5] = unit;
2309 	}
2310 
2311 #ifdef SBMAC_ETH0_HWADDR
2312 	if (unit == 0)
2313 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2314 #endif
2315 #ifdef SBMAC_ETH1_HWADDR
2316 	if (unit == 1)
2317 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2318 #endif
2319 #ifdef SBMAC_ETH2_HWADDR
2320 	if (unit == 2)
2321 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2322 #endif
2323 	unit++;
2324 
2325 	/*
2326 	 * Display Ethernet address (this is called during the config process
2327 	 * so we need to finish off the config message that was being displayed)
2328 	 */
2329 	printf(": Ethernet%s\n",
2330 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2331 	printf("%s: Ethernet address: %s\n", self->dv_xname,
2332 	    ether_sprintf(eaddr));
2333 
2334 
2335 	/*
2336 	 * Set up ifnet structure
2337 	 */
2338 
2339 	ifp = &sc->sc_ethercom.ec_if;
2340 	ifp->if_softc = sc;
2341 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
2342 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2343 	    IFF_NOTRAILERS;
2344 	ifp->if_ioctl = sbmac_ioctl;
2345 	ifp->if_start = sbmac_start;
2346 	ifp->if_watchdog = sbmac_watchdog;
2347 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2348 
2349 	/*
2350 	 * Set up ifmedia support.
2351 	 */
2352 
2353 	/*
2354 	 * Initialize MII/media info.
2355 	 */
2356 	sc->sc_mii.mii_ifp      = ifp;
2357 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
2358 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2359 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
2360 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
2361 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2362 	    ether_mediastatus);
2363 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2364 	    MII_OFFSET_ANY, 0);
2365 
2366 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2367 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2368 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2369 	} else {
2370 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2371 	}
2372 
2373 
2374 	/*
2375 	 * map/route interrupt
2376 	 */
2377 
2378 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2379 	    sbmac_intr, sc);
2380 
2381 	/*
2382 	 * Call MI attach routines.
2383 	 */
2384 	if_attach(ifp);
2385 	ether_ifattach(ifp, eaddr);
2386 }
2387