xref: /netbsd-src/sys/arch/mips/sibyte/dev/sbmac.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /* $NetBSD: sbmac.c,v 1.42 2012/07/22 14:32:52 matt Exp $ */
2 
3 /*
4  * Copyright 2000, 2001, 2004
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.42 2012/07/22 14:32:52 matt Exp $");
37 
38 #include "opt_inet.h"
39 #include "opt_ns.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/queue.h>
49 #include <sys/device.h>
50 
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_ether.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/if_inarp.h>
62 #endif
63 
64 #include <mips/locore.h>
65 
66 #include "sbobiovar.h"
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71 
72 #include <mips/sibyte/include/sb1250_defs.h>
73 #include <mips/sibyte/include/sb1250_regs.h>
74 #include <mips/sibyte/include/sb1250_mac.h>
75 #include <mips/sibyte/include/sb1250_dma.h>
76 #include <mips/sibyte/include/sb1250_scd.h>
77 
78 /* Simple types */
79 
80 typedef u_long sbmac_port_t;
81 typedef uint64_t sbmac_physaddr_t;
82 typedef uint64_t sbmac_enetaddr_t;
83 
84 typedef enum { sbmac_speed_auto, sbmac_speed_10,
85 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
86 
87 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
88 	       sbmac_duplex_full } sbmac_duplex_t;
89 
90 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
91 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
92 
93 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
94 	       sbmac_state_broken } sbmac_state_t;
95 
96 
97 /* Macros */
98 
99 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
100 
101 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
102 
103 #define	CACHELINESIZE 32
104 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
105 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
106 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
107 
108 #ifdef SBMACDEBUG
109 #define	dprintf(x)	printf x
110 #else
111 #define	dprintf(x)
112 #endif
113 
114 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
115 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
116 
117 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
118 
119 /* These are limited to fit within one virtual page, and must be 2**N.  */
120 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
121 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
122 
123 #define	ETHER_ALIGN	2
124 
125 /* DMA Descriptor structure */
126 
127 typedef struct sbdmadscr_s {
128 	uint64_t dscr_a;
129 	uint64_t dscr_b;
130 } sbdmadscr_t;
131 
132 
133 /* DMA Controller structure */
134 
135 typedef struct sbmacdma_s {
136 
137 	/*
138 	 * This stuff is used to identify the channel and the registers
139 	 * associated with it.
140 	 */
141 
142 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
143 	int		sbdma_channel;	/* channel number */
144 	int		sbdma_txdir;	/* direction (1=transmit) */
145 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
146 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
147 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
148 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
149 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
150 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
151 
152 	/*
153 	 * This stuff is for maintenance of the ring
154 	 */
155 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
156 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
157 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
158 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
159 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
160 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
161 } sbmacdma_t;
162 
163 
164 /* Ethernet softc structure */
165 
166 struct sbmac_softc {
167 
168 	/*
169 	 * NetBSD-specific things
170 	 */
171 	struct ethercom	sc_ethercom;	/* Ethernet common part */
172 	struct mii_data	sc_mii;
173 	struct callout	sc_tick_ch;
174 
175 	device_t	sc_dev;		/* device */
176 	int		sbm_if_flags;
177 	void		*sbm_intrhand;
178 
179 	/*
180 	 * Controller-specific things
181 	 */
182 
183 	sbmac_port_t	sbm_base;	/* MAC's base address */
184 	sbmac_state_t	sbm_state;	/* current state */
185 
186 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
187 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
188 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
189 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
190 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
191 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
192 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
193 
194 	sbmac_speed_t	sbm_speed;	/* current speed */
195 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
196 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
197 	int		sbm_rxflags;	/* received packet flags */
198 
199 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
200 
201 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
202 	sbmacdma_t	sbm_rxdma;
203 
204 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
205 
206 #ifdef SBMAC_EVENT_COUNTERS
207 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
208 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
209 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
210 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
211 
212 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
213 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
214 #endif
215 };
216 
217 
218 #ifdef SBMAC_EVENT_COUNTERS
219 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
220 #else
221 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
222 #endif
223 
224 /* Externs */
225 
226 extern paddr_t kvtophys(vaddr_t);
227 
228 /* Prototypes */
229 
230 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
231 static void sbdma_channel_start(sbmacdma_t *);
232 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
233 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
234 static void sbdma_emptyring(sbmacdma_t *);
235 static void sbdma_fillring(sbmacdma_t *);
236 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
237 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
238 static void sbmac_initctx(struct sbmac_softc *);
239 static void sbmac_channel_start(struct sbmac_softc *);
240 static void sbmac_channel_stop(struct sbmac_softc *);
241 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
242     sbmac_state_t);
243 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
244 static void sbmac_init_and_start(struct sbmac_softc *);
245 static uint64_t sbmac_addr2reg(u_char *);
246 static void sbmac_intr(void *, uint32_t, vaddr_t);
247 static void sbmac_start(struct ifnet *);
248 static void sbmac_setmulti(struct sbmac_softc *);
249 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
250 static int sbmac_ioctl(struct ifnet *, u_long, void *);
251 static void sbmac_watchdog(struct ifnet *);
252 static int sbmac_match(device_t, cfdata_t, void *);
253 static void sbmac_attach(device_t, device_t, void *);
254 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
255 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
256 static void sbmac_tick(void *);
257 
258 
259 /* Globals */
260 
261 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
262     sbmac_match, sbmac_attach, NULL, NULL);
263 
264 static uint32_t sbmac_mii_bitbang_read(device_t self);
265 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
266 
267 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
268 	sbmac_mii_bitbang_read,
269 	sbmac_mii_bitbang_write,
270 	{
271 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
272 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
273 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
274 		0,				/* MII_BIT_DIR_HOST_PHY */
275 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
276 	}
277 };
278 
279 static uint32_t
280 sbmac_mii_bitbang_read(device_t self)
281 {
282 	struct sbmac_softc *sc = device_private(self);
283 	sbmac_port_t reg;
284 
285 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
286 	return (uint32_t) SBMAC_READCSR(reg);
287 }
288 
289 static void
290 sbmac_mii_bitbang_write(device_t self, uint32_t val)
291 {
292 	struct sbmac_softc *sc = device_private(self);
293 	sbmac_port_t reg;
294 
295 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
296 
297 	SBMAC_WRITECSR(reg, (val &
298 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
299 }
300 
301 /*
302  * Read an PHY register through the MII.
303  */
304 static int
305 sbmac_mii_readreg(device_t self, int phy, int reg)
306 {
307 
308 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
309 }
310 
311 /*
312  * Write to a PHY register through the MII.
313  */
314 static void
315 sbmac_mii_writereg(device_t self, int phy, int reg, int val)
316 {
317 
318 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
319 }
320 
321 static void
322 sbmac_mii_statchg(struct ifnet *ifp)
323 {
324 	struct sbmac_softc *sc = ifp->if_softc;
325 	sbmac_state_t oldstate;
326 
327 	/* Stop the MAC in preparation for changing all of the parameters. */
328 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
329 
330 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
331 	default:		/* if autonegotiation fails, assume 10Mbit */
332 	case IF_Mbps(10):
333 		sbmac_set_speed(sc, sbmac_speed_10);
334 		break;
335 
336 	case IF_Mbps(100):
337 		sbmac_set_speed(sc, sbmac_speed_100);
338 		break;
339 
340 	case IF_Mbps(1000):
341 		sbmac_set_speed(sc, sbmac_speed_1000);
342 		break;
343 	}
344 
345 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
346 		/* Configure for full-duplex */
347 		/* XXX: is flow control right for 10, 100? */
348 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
349 	} else {
350 		/* Configure for half-duplex */
351 		/* XXX: is flow control right? */
352 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
353 	}
354 
355 	/* And put it back into its former state. */
356 	sbmac_set_channel_state(sc, oldstate);
357 }
358 
359 /*
360  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
361  *
362  *  Initialize a DMA channel context.  Since there are potentially
363  *  eight DMA channels per MAC, it's nice to do this in a standard
364  *  way.
365  *
366  *  Input parameters:
367  *	d - sbmacdma_t structure (DMA channel context)
368  *	sc - sbmac_softc structure (pointer to a MAC)
369  *	chan - channel number (0..1 right now)
370  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
371  *	maxdescr - number of descriptors
372  *
373  *  Return value:
374  *	nothing
375  */
376 
377 static void
378 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
379     int maxdescr)
380 {
381 	/*
382 	 * Save away interesting stuff in the structure
383 	 */
384 
385 	d->sbdma_eth = sc;
386 	d->sbdma_channel = chan;
387 	d->sbdma_txdir = txrx;
388 
389 	/*
390 	 * initialize register pointers
391 	 */
392 
393 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
394 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
395 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
396 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
397 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
398 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
399 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
400 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
401 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
402 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
403 
404 	/*
405 	 * Allocate memory for the ring
406 	 */
407 
408 	d->sbdma_maxdescr = maxdescr;
409 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
410 
411 	d->sbdma_dscrtable = (sbdmadscr_t *)
412 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
413 
414 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
415 
416 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
417 
418 	/*
419 	 * And context table
420 	 */
421 
422 	d->sbdma_ctxtable = (struct mbuf **)
423 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
424 
425 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
426 }
427 
428 /*
429  *  SBDMA_CHANNEL_START(d)
430  *
431  *  Initialize the hardware registers for a DMA channel.
432  *
433  *  Input parameters:
434  *	d - DMA channel to init (context must be previously init'd
435  *
436  *  Return value:
437  *	nothing
438  */
439 
440 static void
441 sbdma_channel_start(sbmacdma_t *d)
442 {
443 	/*
444 	 * Turn on the DMA channel
445 	 */
446 
447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
448 
449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
450 
451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
452 
453 	/*
454 	 * Initialize ring pointers
455 	 */
456 
457 	d->sbdma_add_index = 0;
458 	d->sbdma_rem_index = 0;
459 }
460 
461 /*
462  *  SBDMA_ADD_RCVBUFFER(d, m)
463  *
464  *  Add a buffer to the specified DMA channel.   For receive channels,
465  *  this queues a buffer for inbound packets.
466  *
467  *  Input parameters:
468  *	d - DMA channel descriptor
469  *	m - mbuf to add, or NULL if we should allocate one.
470  *
471  *  Return value:
472  *	0 if buffer could not be added (ring is full)
473  *	1 if buffer added successfully
474  */
475 
476 static int
477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
478 {
479 	unsigned int dsc, nextdsc;
480 	struct mbuf *m_new = NULL;
481 
482 	/* get pointer to our current place in the ring */
483 
484 	dsc = d->sbdma_add_index;
485 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
486 
487 	/*
488 	 * figure out if the ring is full - if the next descriptor
489 	 * is the same as the one that we're going to remove from
490 	 * the ring, the ring is full
491 	 */
492 
493 	if (nextdsc == d->sbdma_rem_index)
494 		return ENOSPC;
495 
496 	/*
497 	 * Allocate an mbuf if we don't already have one.
498 	 * If we do have an mbuf, reset it so that it's empty.
499 	 */
500 
501 	if (m == NULL) {
502 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
503 		if (m_new == NULL) {
504 			aprint_error_dev(d->sbdma_eth->sc_dev,
505 			    "mbuf allocation failed\n");
506 			return ENOBUFS;
507 		}
508 
509 		MCLGET(m_new, M_DONTWAIT);
510 		if (!(m_new->m_flags & M_EXT)) {
511 			aprint_error_dev(d->sbdma_eth->sc_dev,
512 			    "mbuf cluster allocation failed\n");
513 			m_freem(m_new);
514 			return ENOBUFS;
515 		}
516 
517 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
518 		m_adj(m_new, ETHER_ALIGN);
519 	} else {
520 		m_new = m;
521 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
522 		m_new->m_data = m_new->m_ext.ext_buf;
523 		m_adj(m_new, ETHER_ALIGN);
524 	}
525 
526 	/*
527 	 * fill in the descriptor
528 	 */
529 
530 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
531 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
532 	    M_DMA_DSCRA_INTERRUPT;
533 
534 	/* receiving: no options */
535 	d->sbdma_dscrtable[dsc].dscr_b = 0;
536 
537 	/*
538 	 * fill in the context
539 	 */
540 
541 	d->sbdma_ctxtable[dsc] = m_new;
542 
543 	/*
544 	 * point at next packet
545 	 */
546 
547 	d->sbdma_add_index = nextdsc;
548 
549 	/*
550 	 * Give the buffer to the DMA engine.
551 	 */
552 
553 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
554 
555 	return 0;					/* we did it */
556 }
557 
558 /*
559  *  SBDMA_ADD_TXBUFFER(d, m)
560  *
561  *  Add a transmit buffer to the specified DMA channel, causing a
562  *  transmit to start.
563  *
564  *  Input parameters:
565  *	d - DMA channel descriptor
566  *	m - mbuf to add
567  *
568  *  Return value:
569  *	0 transmit queued successfully
570  *	otherwise error code
571  */
572 
573 static int
574 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
575 {
576         unsigned int dsc, nextdsc, prevdsc, origdesc;
577 	int length;
578 	int num_mbufs = 0;
579 	struct sbmac_softc *sc = d->sbdma_eth;
580 
581 	/* get pointer to our current place in the ring */
582 
583 	dsc = d->sbdma_add_index;
584 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
585 
586 	/*
587 	 * figure out if the ring is full - if the next descriptor
588 	 * is the same as the one that we're going to remove from
589 	 * the ring, the ring is full
590 	 */
591 
592 	if (nextdsc == d->sbdma_rem_index) {
593 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
594 		return ENOSPC;
595 	}
596 
597 	/*
598 	 * PASS3 parts do not have buffer alignment restriction.
599 	 * No need to copy/coalesce to new mbuf.  Also has different
600 	 * descriptor format
601 	 */
602 	if (sc->sbm_pass3_dma) {
603 		struct mbuf *m_temp = NULL;
604 
605 		/*
606 		 * Loop thru this mbuf record.
607 		 * The head mbuf will have SOP set.
608 		 */
609 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
610 		    M_DMA_ETHTX_SOP;
611 
612 		/*
613 		 * transmitting: set outbound options,buffer A size(+ low 5
614 		 * bits of start addr),and packet length.
615 		 */
616 		d->sbdma_dscrtable[dsc].dscr_b =
617 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
618 		    V_DMA_DSCRB_A_SIZE((m->m_len +
619 		      (mtod(m,uintptr_t) & 0x0000001F))) |
620 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
621 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
622 
623 		d->sbdma_add_index = nextdsc;
624 		origdesc = prevdsc = dsc;
625 		dsc = d->sbdma_add_index;
626 		num_mbufs++;
627 
628 		/* Start with first non-head mbuf */
629 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
630 			int len, next_len;
631 			uint64_t addr;
632 
633 			if (m_temp->m_len == 0)
634 				continue;	/* Skip 0-length mbufs */
635 
636 			len = m_temp->m_len;
637 			addr = KVTOPHYS(mtod(m_temp, void *));
638 
639 			/*
640 			 * Check to see if the mbuf spans a page boundary.  If
641 			 * it does, and the physical pages behind the virtual
642 			 * pages are not contiguous, split it so that each
643 			 * virtual page uses it's own Tx descriptor.
644 			 */
645 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
646 				next_len = (addr + len) - trunc_page(addr + len);
647 
648 				len -= next_len;
649 
650 				if (addr + len ==
651 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
652 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
653 					len += next_len;
654 					next_len = 0;
655 				} else {
656 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
657 				}
658 			} else {
659 				next_len = 0;
660 			}
661 
662 again:
663 			/*
664 			 * fill in the descriptor
665 			 */
666 			d->sbdma_dscrtable[dsc].dscr_a = addr;
667 
668 			/*
669 			 * transmitting: set outbound options,buffer A
670 			 * size(+ low 5 bits of start addr)
671 			 */
672 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
673 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
674 
675 			d->sbdma_ctxtable[dsc] = NULL;
676 
677 			/*
678 			 * point at next descriptor
679 			 */
680 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
681 			if (nextdsc == d->sbdma_rem_index) {
682 				d->sbdma_add_index = origdesc;
683 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
684 				return ENOSPC;
685 			}
686 			d->sbdma_add_index = nextdsc;
687 
688 			prevdsc = dsc;
689 			dsc = d->sbdma_add_index;
690 			num_mbufs++;
691 
692 			if (next_len != 0) {
693 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
694 				len = next_len;
695 
696 				next_len = 0;
697 				goto again;
698 			}
699 
700 		}
701 		/* Set head mbuf to last context index */
702 		d->sbdma_ctxtable[prevdsc] = m;
703 
704 		/* Interrupt on last dscr of packet.  */
705 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
706 	} else {
707 		struct mbuf *m_new = NULL;
708 		/*
709 		 * [BEGIN XXX]
710 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
711 		 * assume it will fit).  This is a temporary hack to get us
712 		 * going.
713 		 */
714 
715 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
716 		if (m_new == NULL) {
717 			aprint_error_dev(d->sbdma_eth->sc_dev,
718 			    "mbuf allocation failed\n");
719 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
720 			return ENOBUFS;
721 		}
722 
723 		MCLGET(m_new,M_DONTWAIT);
724 		if (!(m_new->m_flags & M_EXT)) {
725 			aprint_error_dev(d->sbdma_eth->sc_dev,
726 			    "mbuf cluster allocation failed\n");
727 			m_freem(m_new);
728 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
729 			return ENOBUFS;
730 		}
731 
732 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
733 		/*m_adj(m_new,ETHER_ALIGN);*/
734 
735 		/*
736 		 * XXX Don't forget to include the offset portion in the
737 		 * XXX cache block calculation when this code is rewritten!
738 		 */
739 
740 		/*
741 		 * Copy data
742 		 */
743 
744 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
745 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
746 
747 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
748 
749 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
750 		// XXX: function succeeds.
751 		// m_freem(m);
752 		length = m_new->m_len;
753 
754 		/* [END XXX] */
755 		/*
756 		 * fill in the descriptor
757 		 */
758 
759 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
760 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
761 		    M_DMA_DSCRA_INTERRUPT |
762 		    M_DMA_ETHTX_SOP;
763 
764 		/* transmitting: set outbound options and length */
765 		d->sbdma_dscrtable[dsc].dscr_b =
766 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
767 		    V_DMA_DSCRB_PKT_SIZE(length);
768 
769 		num_mbufs++;
770 
771 		/*
772 		 * fill in the context
773 		 */
774 
775 		d->sbdma_ctxtable[dsc] = m_new;
776 
777 		/*
778 		 * point at next packet
779 		 */
780 		d->sbdma_add_index = nextdsc;
781 	}
782 
783 	/*
784 	 * Give the buffer to the DMA engine.
785 	 */
786 
787 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
788 
789 	return 0;					/* we did it */
790 }
791 
792 /*
793  *  SBDMA_EMPTYRING(d)
794  *
795  *  Free all allocated mbufs on the specified DMA channel;
796  *
797  *  Input parameters:
798  *	d  - DMA channel
799  *
800  *  Return value:
801  *	nothing
802  */
803 
804 static void
805 sbdma_emptyring(sbmacdma_t *d)
806 {
807 	int idx;
808 	struct mbuf *m;
809 
810 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
811 		m = d->sbdma_ctxtable[idx];
812 		if (m) {
813 			m_freem(m);
814 			d->sbdma_ctxtable[idx] = NULL;
815 		}
816 	}
817 }
818 
819 /*
820  *  SBDMA_FILLRING(d)
821  *
822  *  Fill the specified DMA channel (must be receive channel)
823  *  with mbufs
824  *
825  *  Input parameters:
826  *	d - DMA channel
827  *
828  *  Return value:
829  *	nothing
830  */
831 
832 static void
833 sbdma_fillring(sbmacdma_t *d)
834 {
835 	int idx;
836 
837 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
838 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
839 			break;
840 }
841 
842 /*
843  *  SBDMA_RX_PROCESS(sc, d)
844  *
845  *  Process "completed" receive buffers on the specified DMA channel.
846  *  Note that this isn't really ideal for priority channels, since
847  *  it processes all of the packets on a given channel before
848  *  returning.
849  *
850  *  Input parameters:
851  *	sc - softc structure
852  *	d - DMA channel context
853  *
854  *  Return value:
855  *	nothing
856  */
857 
858 static void
859 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
860 {
861 	int curidx;
862 	int hwidx;
863 	sbdmadscr_t *dscp;
864 	struct mbuf *m;
865 	int len;
866 
867 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
868 
869 	for (;;) {
870 		/*
871 		 * figure out where we are (as an index) and where
872 		 * the hardware is (also as an index)
873 		 *
874 		 * This could be done faster if (for example) the
875 		 * descriptor table was page-aligned and contiguous in
876 		 * both virtual and physical memory -- you could then
877 		 * just compare the low-order bits of the virtual address
878 		 * (sbdma_rem_index) and the physical address
879 		 * (sbdma_curdscr CSR).
880 		 */
881 
882 		curidx = d->sbdma_rem_index;
883 		hwidx = (int)
884 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
885 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
886 
887 		/*
888 		 * If they're the same, that means we've processed all
889 		 * of the descriptors up to (but not including) the one that
890 		 * the hardware is working on right now.
891 		 */
892 
893 		if (curidx == hwidx)
894 			break;
895 
896 		/*
897 		 * Otherwise, get the packet's mbuf ptr back
898 		 */
899 
900 		dscp = &(d->sbdma_dscrtable[curidx]);
901 		m = d->sbdma_ctxtable[curidx];
902 		d->sbdma_ctxtable[curidx] = NULL;
903 
904 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
905 
906 		/*
907 		 * Check packet status.  If good, process it.
908 		 * If not, silently drop it and put it back on the
909 		 * receive ring.
910 		 */
911 
912 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
913 
914 			/*
915 			 * Set length into the packet
916 			 * XXX do we remove the CRC here?
917 			 */
918 			m->m_pkthdr.len = m->m_len = len;
919 
920 			ifp->if_ipackets++;
921 			m->m_pkthdr.rcvif = ifp;
922 
923 
924 			/*
925 			 * Add a new buffer to replace the old one.
926 			 */
927 			sbdma_add_rcvbuffer(d, NULL);
928 
929 			/*
930 			 * Handle BPF listeners. Let the BPF user see the
931 			 * packet, but don't pass it up to the ether_input()
932 			 * layer unless it's a broadcast packet, multicast
933 			 * packet, matches our ethernet address or the
934 			 * interface is in promiscuous mode.
935 			 */
936 
937 			bpf_mtap(ifp, m);
938 			/*
939 			 * Pass the buffer to the kernel
940 			 */
941 			(*ifp->if_input)(ifp, m);
942 		} else {
943 			/*
944 			 * Packet was mangled somehow.  Just drop it and
945 			 * put it back on the receive ring.
946 			 */
947 			sbdma_add_rcvbuffer(d, m);
948 		}
949 
950 		/*
951 		 * .. and advance to the next buffer.
952 		 */
953 
954 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
955 	}
956 }
957 
958 /*
959  *  SBDMA_TX_PROCESS(sc, d)
960  *
961  *  Process "completed" transmit buffers on the specified DMA channel.
962  *  This is normally called within the interrupt service routine.
963  *  Note that this isn't really ideal for priority channels, since
964  *  it processes all of the packets on a given channel before
965  *  returning.
966  *
967  *  Input parameters:
968  *	sc - softc structure
969  *	d - DMA channel context
970  *
971  *  Return value:
972  *	nothing
973  */
974 
975 static void
976 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
977 {
978 	int curidx;
979 	int hwidx;
980 	struct mbuf *m;
981 
982 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
983 
984 	for (;;) {
985 		/*
986 		 * figure out where we are (as an index) and where
987 		 * the hardware is (also as an index)
988 		 *
989 		 * This could be done faster if (for example) the
990 		 * descriptor table was page-aligned and contiguous in
991 		 * both virtual and physical memory -- you could then
992 		 * just compare the low-order bits of the virtual address
993 		 * (sbdma_rem_index) and the physical address
994 		 * (sbdma_curdscr CSR).
995 		 */
996 
997 		curidx = d->sbdma_rem_index;
998 		hwidx = (int)
999 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1000 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1001 
1002 		/*
1003 		 * If they're the same, that means we've processed all
1004 		 * of the descriptors up to (but not including) the one that
1005 		 * the hardware is working on right now.
1006 		 */
1007 
1008 		if (curidx == hwidx)
1009 			break;
1010 
1011 		/*
1012 		 * Otherwise, get the packet's mbuf ptr back
1013 		 */
1014 
1015 		m = d->sbdma_ctxtable[curidx];
1016 		d->sbdma_ctxtable[curidx] = NULL;
1017 
1018 		/*
1019 		 * for transmits we just free buffers and count packets.
1020 		 */
1021 		ifp->if_opackets++;
1022 		m_freem(m);
1023 
1024 		/*
1025 		 * .. and advance to the next buffer.
1026 		 */
1027 
1028 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1029 	}
1030 
1031 	/*
1032 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
1033 	 * It's supposed to reflect if the interface is actively
1034 	 * transmitting, but that's really hard to do quickly.
1035 	 */
1036 
1037 	ifp->if_flags &= ~IFF_OACTIVE;
1038 }
1039 
1040 /*
1041  *  SBMAC_INITCTX(s)
1042  *
1043  *  Initialize an Ethernet context structure - this is called
1044  *  once per MAC on the 1250.  Memory is allocated here, so don't
1045  *  call it again from inside the ioctl routines that bring the
1046  *  interface up/down
1047  *
1048  *  Input parameters:
1049  *	sc - sbmac context structure
1050  *
1051  *  Return value:
1052  *	0
1053  */
1054 
1055 static void
1056 sbmac_initctx(struct sbmac_softc *sc)
1057 {
1058 	uint64_t sysrev;
1059 
1060 	/*
1061 	 * figure out the addresses of some ports
1062 	 */
1063 
1064 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
1065 	sc->sbm_maccfg    = PKSEG1(sc->sbm_base + R_MAC_CFG);
1066 	sc->sbm_fifocfg   = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
1067 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
1068 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
1069 	sc->sbm_isr       = PKSEG1(sc->sbm_base + R_MAC_STATUS);
1070 	sc->sbm_imr       = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
1071 
1072 	/*
1073 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1074 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1075 	 */
1076 
1077 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1078 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1079 
1080 	/*
1081 	 * initial state is OFF
1082 	 */
1083 
1084 	sc->sbm_state = sbmac_state_off;
1085 
1086 	/*
1087 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1088 	 */
1089 
1090 	sc->sbm_speed = sbmac_speed_10;
1091 	sc->sbm_duplex = sbmac_duplex_half;
1092 	sc->sbm_fc = sbmac_fc_disabled;
1093 
1094 	/*
1095 	 * Determine SOC type.  112x has Pass3 SOC features.
1096 	 */
1097 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1098 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1099 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1100 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1101 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1102 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1103 #ifdef SBMAC_EVENT_COUNTERS
1104 	const char * const xname = device_xname(sc->sc_dev);
1105 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1106 	    NULL, xname, "rxintr");
1107 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
1108 	    NULL, xname, "txintr");
1109 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1110 	    NULL, xname, "txdrop");
1111 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
1112 	    NULL, xname, "txstall");
1113 	if (sc->sbm_pass3_dma) {
1114 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1115 		    NULL, xname, "pass3tx-split");
1116 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1117 		    NULL, xname, "pass3tx-keep");
1118 	}
1119 #endif
1120 }
1121 
1122 /*
1123  *  SBMAC_CHANNEL_START(s)
1124  *
1125  *  Start packet processing on this MAC.
1126  *
1127  *  Input parameters:
1128  *	sc - sbmac structure
1129  *
1130  *  Return value:
1131  *	nothing
1132  */
1133 
1134 static void
1135 sbmac_channel_start(struct sbmac_softc *sc)
1136 {
1137 	uint64_t reg;
1138 	sbmac_port_t port;
1139 	uint64_t cfg, fifo, framecfg;
1140 	int idx;
1141 	uint64_t dma_cfg0, fifo_cfg;
1142 	sbmacdma_t *txdma;
1143 
1144 	/*
1145 	 * Don't do this if running
1146 	 */
1147 
1148 	if (sc->sbm_state == sbmac_state_on)
1149 		return;
1150 
1151 	/*
1152 	 * Bring the controller out of reset, but leave it off.
1153 	 */
1154 
1155 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
1156 
1157 	/*
1158 	 * Ignore all received packets
1159 	 */
1160 
1161 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1162 
1163 	/*
1164 	 * Calculate values for various control registers.
1165 	 */
1166 
1167 	cfg = M_MAC_RETRY_EN |
1168 	      M_MAC_TX_HOLD_SOP_EN |
1169 	      V_MAC_TX_PAUSE_CNT_16K |
1170 	      M_MAC_AP_STAT_EN |
1171 	      M_MAC_SS_EN |
1172 	      0;
1173 
1174 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1175 	       V_MAC_TX_RD_THRSH(4) |
1176 	       V_MAC_TX_RL_THRSH(4) |
1177 	       V_MAC_RX_PL_THRSH(4) |
1178 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1179 	       V_MAC_RX_PL_THRSH(4) |
1180 	       V_MAC_RX_RL_THRSH(8) |
1181 	       0;
1182 
1183 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1184 	    V_MAC_MAX_FRAMESZ_DEFAULT |
1185 	    V_MAC_BACKOFF_SEL(1);
1186 
1187 	/*
1188 	 * Clear out the hash address map
1189 	 */
1190 
1191 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
1192 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1193 		SBMAC_WRITECSR(port, 0);
1194 		port += sizeof(uint64_t);
1195 	}
1196 
1197 	/*
1198 	 * Clear out the exact-match table
1199 	 */
1200 
1201 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1202 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1203 		SBMAC_WRITECSR(port, 0);
1204 		port += sizeof(uint64_t);
1205 	}
1206 
1207 	/*
1208 	 * Clear out the DMA Channel mapping table registers
1209 	 */
1210 
1211 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
1212 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1213 		SBMAC_WRITECSR(port, 0);
1214 		port += sizeof(uint64_t);
1215 	}
1216 
1217 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
1218 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1219 		SBMAC_WRITECSR(port, 0);
1220 		port += sizeof(uint64_t);
1221 	}
1222 
1223 	/*
1224 	 * Program the hardware address.  It goes into the hardware-address
1225 	 * register as well as the first filter register.
1226 	 */
1227 
1228 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
1229 
1230 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1231 	SBMAC_WRITECSR(port, reg);
1232 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
1233 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
1234 
1235 	/*
1236 	 * Set the receive filter for no packets, and write values
1237 	 * to the various config registers
1238 	 */
1239 
1240 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1241 	SBMAC_WRITECSR(sc->sbm_imr, 0);
1242 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1243 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
1244 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1245 
1246 	/*
1247 	 * Initialize DMA channels (rings should be ok now)
1248 	 */
1249 
1250 	sbdma_channel_start(&(sc->sbm_rxdma));
1251 	sbdma_channel_start(&(sc->sbm_txdma));
1252 
1253 	/*
1254 	 * Configure the speed, duplex, and flow control
1255 	 */
1256 
1257 	sbmac_set_speed(sc, sc->sbm_speed);
1258 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
1259 
1260 	/*
1261 	 * Fill the receive ring
1262 	 */
1263 
1264 	sbdma_fillring(&(sc->sbm_rxdma));
1265 
1266 	/*
1267 	 * Turn on the rest of the bits in the enable register
1268 	 */
1269 
1270 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1271 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1272 
1273 
1274 	/*
1275 	 * Accept any kind of interrupt on TX and RX DMA channel 0
1276 	 */
1277 	SBMAC_WRITECSR(sc->sbm_imr,
1278 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1279 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1280 
1281 	/*
1282 	 * Enable receiving unicasts and broadcasts
1283 	 */
1284 
1285 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1286 
1287 	/*
1288 	 * On chips which support unaligned DMA features, set the descriptor
1289 	 * ring for transmit channels to use the unaligned buffer format.
1290 	 */
1291 	txdma = &(sc->sbm_txdma);
1292 
1293 	if (sc->sbm_pass3_dma) {
1294 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1295 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1296 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
1297 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1298 
1299 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
1300 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1301 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1302 		SBMAC_WRITECSR(sc->sbm_fifocfg,fifo_cfg);
1303 	}
1304 
1305 	/*
1306 	 * we're running now.
1307 	 */
1308 
1309 	sc->sbm_state = sbmac_state_on;
1310 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1311 
1312 	/*
1313 	 * Program multicast addresses
1314 	 */
1315 
1316 	sbmac_setmulti(sc);
1317 
1318 	/*
1319 	 * If channel was in promiscuous mode before, turn that on
1320 	 */
1321 
1322 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1323 		sbmac_promiscuous_mode(sc, true);
1324 
1325 	/*
1326 	 * Turn on the once-per-second timer
1327 	 */
1328 
1329 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
1330 }
1331 
1332 /*
1333  *  SBMAC_CHANNEL_STOP(s)
1334  *
1335  *  Stop packet processing on this MAC.
1336  *
1337  *  Input parameters:
1338  *	sc - sbmac structure
1339  *
1340  *  Return value:
1341  *	nothing
1342  */
1343 
1344 static void
1345 sbmac_channel_stop(struct sbmac_softc *sc)
1346 {
1347 	uint64_t ctl;
1348 
1349 	/* don't do this if already stopped */
1350 
1351 	if (sc->sbm_state == sbmac_state_off)
1352 		return;
1353 
1354 	/* don't accept any packets, disable all interrupts */
1355 
1356 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1357 	SBMAC_WRITECSR(sc->sbm_imr, 0);
1358 
1359 	/* Turn off ticker */
1360 
1361 	callout_stop(&(sc->sc_tick_ch));
1362 
1363 	/* turn off receiver and transmitter */
1364 
1365 	ctl = SBMAC_READCSR(sc->sbm_macenable);
1366 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1367 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
1368 
1369 	/* We're stopped now. */
1370 
1371 	sc->sbm_state = sbmac_state_off;
1372 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1373 
1374 	/* Empty the receive and transmit rings */
1375 
1376 	sbdma_emptyring(&(sc->sbm_rxdma));
1377 	sbdma_emptyring(&(sc->sbm_txdma));
1378 }
1379 
1380 /*
1381  *  SBMAC_SET_CHANNEL_STATE(state)
1382  *
1383  *  Set the channel's state ON or OFF
1384  *
1385  *  Input parameters:
1386  *	state - new state
1387  *
1388  *  Return value:
1389  *	old state
1390  */
1391 
1392 static sbmac_state_t
1393 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1394 {
1395 	sbmac_state_t oldstate = sc->sbm_state;
1396 
1397 	/*
1398 	 * If same as previous state, return
1399 	 */
1400 
1401 	if (state == oldstate)
1402 		return oldstate;
1403 
1404 	/*
1405 	 * If new state is ON, turn channel on
1406 	 */
1407 
1408 	if (state == sbmac_state_on)
1409 		sbmac_channel_start(sc);
1410 	else
1411 		sbmac_channel_stop(sc);
1412 
1413 	/*
1414 	 * Return previous state
1415 	 */
1416 
1417 	return oldstate;
1418 }
1419 
1420 /*
1421  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
1422  *
1423  *  Turn on or off promiscuous mode
1424  *
1425  *  Input parameters:
1426  *	sc - softc
1427  *	enabled - true to turn on, false to turn off
1428  *
1429  *  Return value:
1430  *	nothing
1431  */
1432 
1433 static void
1434 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
1435 {
1436 	uint64_t reg;
1437 
1438 	if (sc->sbm_state != sbmac_state_on)
1439 		return;
1440 
1441 	if (enabled) {
1442 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1443 		reg |= M_MAC_ALLPKT_EN;
1444 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1445 	} else {
1446 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1447 		reg &= ~M_MAC_ALLPKT_EN;
1448 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1449 	}
1450 }
1451 
1452 /*
1453  *  SBMAC_INIT_AND_START(sc)
1454  *
1455  *  Stop the channel and restart it.  This is generally used
1456  *  when we have to do something to the channel that requires
1457  *  a swift kick.
1458  *
1459  *  Input parameters:
1460  *	sc - softc
1461  */
1462 
1463 static void
1464 sbmac_init_and_start(struct sbmac_softc *sc)
1465 {
1466 	int s;
1467 
1468 	s = splnet();
1469 
1470 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
1471 	sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */
1472 	sbmac_set_channel_state(sc, sbmac_state_on);
1473 
1474 	splx(s);
1475 }
1476 
1477 /*
1478  *  SBMAC_ADDR2REG(ptr)
1479  *
1480  *  Convert six bytes into the 64-bit register value that
1481  *  we typically write into the SBMAC's address/mcast registers
1482  *
1483  *  Input parameters:
1484  *	ptr - pointer to 6 bytes
1485  *
1486  *  Return value:
1487  *	register value
1488  */
1489 
1490 static uint64_t
1491 sbmac_addr2reg(u_char *ptr)
1492 {
1493 	uint64_t reg = 0;
1494 
1495 	ptr += 6;
1496 
1497 	reg |= (uint64_t) *(--ptr);
1498 	reg <<= 8;
1499 	reg |= (uint64_t) *(--ptr);
1500 	reg <<= 8;
1501 	reg |= (uint64_t) *(--ptr);
1502 	reg <<= 8;
1503 	reg |= (uint64_t) *(--ptr);
1504 	reg <<= 8;
1505 	reg |= (uint64_t) *(--ptr);
1506 	reg <<= 8;
1507 	reg |= (uint64_t) *(--ptr);
1508 
1509 	return reg;
1510 }
1511 
1512 /*
1513  *  SBMAC_SET_SPEED(sc, speed)
1514  *
1515  *  Configure LAN speed for the specified MAC.
1516  *  Warning: must be called when MAC is off!
1517  *
1518  *  Input parameters:
1519  *	sc - sbmac structure
1520  *	speed - speed to set MAC to (see sbmac_speed_t enum)
1521  *
1522  *  Return value:
1523  *	true if successful
1524  *	false indicates invalid parameters
1525  */
1526 
1527 static bool
1528 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
1529 {
1530 	uint64_t cfg;
1531 	uint64_t framecfg;
1532 
1533 	/*
1534 	 * Save new current values
1535 	 */
1536 
1537 	sc->sbm_speed = speed;
1538 
1539 	if (sc->sbm_state != sbmac_state_off)
1540 		panic("sbmac_set_speed while MAC not off");
1541 
1542 	/*
1543 	 * Read current register values
1544 	 */
1545 
1546 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
1547 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
1548 
1549 	/*
1550 	 * Mask out the stuff we want to change
1551 	 */
1552 
1553 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1554 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1555 	    M_MAC_SLOT_SIZE);
1556 
1557 	/*
1558 	 * Now add in the new bits
1559 	 */
1560 
1561 	switch (speed) {
1562 	case sbmac_speed_10:
1563 		framecfg |= V_MAC_IFG_RX_10 |
1564 		    V_MAC_IFG_TX_10 |
1565 		    K_MAC_IFG_THRSH_10 |
1566 		    V_MAC_SLOT_SIZE_10;
1567 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1568 		break;
1569 
1570 	case sbmac_speed_100:
1571 		framecfg |= V_MAC_IFG_RX_100 |
1572 		    V_MAC_IFG_TX_100 |
1573 		    V_MAC_IFG_THRSH_100 |
1574 		    V_MAC_SLOT_SIZE_100;
1575 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1576 		break;
1577 
1578 	case sbmac_speed_1000:
1579 		framecfg |= V_MAC_IFG_RX_1000 |
1580 		    V_MAC_IFG_TX_1000 |
1581 		    V_MAC_IFG_THRSH_1000 |
1582 		    V_MAC_SLOT_SIZE_1000;
1583 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1584 		break;
1585 
1586 	case sbmac_speed_auto:		/* XXX not implemented */
1587 		/* fall through */
1588 	default:
1589 		return false;
1590 	}
1591 
1592 	/*
1593 	 * Send the bits back to the hardware
1594 	 */
1595 
1596 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1597 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1598 
1599 	return true;
1600 }
1601 
1602 /*
1603  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
1604  *
1605  *  Set Ethernet duplex and flow control options for this MAC
1606  *  Warning: must be called when MAC is off!
1607  *
1608  *  Input parameters:
1609  *	sc - sbmac structure
1610  *	duplex - duplex setting (see sbmac_duplex_t)
1611  *	fc - flow control setting (see sbmac_fc_t)
1612  *
1613  *  Return value:
1614  *	true if ok
1615  *	false if an invalid parameter combination was specified
1616  */
1617 
1618 static bool
1619 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
1620 {
1621 	uint64_t cfg;
1622 
1623 	/*
1624 	 * Save new current values
1625 	 */
1626 
1627 	sc->sbm_duplex = duplex;
1628 	sc->sbm_fc = fc;
1629 
1630 	if (sc->sbm_state != sbmac_state_off)
1631 		panic("sbmac_set_duplex while MAC not off");
1632 
1633 	/*
1634 	 * Read current register values
1635 	 */
1636 
1637 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
1638 
1639 	/*
1640 	 * Mask off the stuff we're about to change
1641 	 */
1642 
1643 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1644 
1645 	switch (duplex) {
1646 	case sbmac_duplex_half:
1647 		switch (fc) {
1648 		case sbmac_fc_disabled:
1649 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1650 			break;
1651 
1652 		case sbmac_fc_collision:
1653 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1654 			break;
1655 
1656 		case sbmac_fc_carrier:
1657 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1658 			break;
1659 
1660 		case sbmac_fc_auto:		/* XXX not implemented */
1661 			/* fall through */
1662 		case sbmac_fc_frame:		/* not valid in half duplex */
1663 		default:			/* invalid selection */
1664 			panic("%s: invalid half duplex fc selection %d",
1665 			    device_xname(sc->sc_dev), fc);
1666 			return false;
1667 		}
1668 		break;
1669 
1670 	case sbmac_duplex_full:
1671 		switch (fc) {
1672 		case sbmac_fc_disabled:
1673 			cfg |= V_MAC_FC_CMD_DISABLED;
1674 			break;
1675 
1676 		case sbmac_fc_frame:
1677 			cfg |= V_MAC_FC_CMD_ENABLED;
1678 			break;
1679 
1680 		case sbmac_fc_collision:	/* not valid in full duplex */
1681 		case sbmac_fc_carrier:		/* not valid in full duplex */
1682 		case sbmac_fc_auto:		/* XXX not implemented */
1683 			/* fall through */
1684 		default:
1685 			panic("%s: invalid full duplex fc selection %d",
1686 			    device_xname(sc->sc_dev), fc);
1687 			return false;
1688 		}
1689 		break;
1690 
1691 	default:
1692 		/* fall through */
1693 	case sbmac_duplex_auto:
1694 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
1695 		/* XXX not implemented */
1696 		break;
1697 	}
1698 
1699 	/*
1700 	 * Send the bits back to the hardware
1701 	 */
1702 
1703 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1704 
1705 	return true;
1706 }
1707 
1708 /*
1709  *  SBMAC_INTR()
1710  *
1711  *  Interrupt handler for MAC interrupts
1712  *
1713  *  Input parameters:
1714  *	MAC structure
1715  *
1716  *  Return value:
1717  *	nothing
1718  */
1719 
1720 /* ARGSUSED */
1721 static void
1722 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
1723 {
1724 	struct sbmac_softc *sc = xsc;
1725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1726 	uint64_t isr;
1727 
1728 	for (;;) {
1729 
1730 		/*
1731 		 * Read the ISR (this clears the bits in the real register)
1732 		 */
1733 
1734 		isr = SBMAC_READCSR(sc->sbm_isr);
1735 
1736 		if (isr == 0)
1737 			break;
1738 
1739 		/*
1740 		 * Transmits on channel 0
1741 		 */
1742 
1743 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1744 			sbdma_tx_process(sc, &(sc->sbm_txdma));
1745 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1746 		}
1747 
1748 		/*
1749 		 * Receives on channel 0
1750 		 */
1751 
1752 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1753 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
1754 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1755 		}
1756 	}
1757 
1758 	/* try to get more packets going */
1759 	sbmac_start(ifp);
1760 }
1761 
1762 
1763 /*
1764  *  SBMAC_START(ifp)
1765  *
1766  *  Start output on the specified interface.  Basically, we
1767  *  queue as many buffers as we can until the ring fills up, or
1768  *  we run off the end of the queue, whichever comes first.
1769  *
1770  *  Input parameters:
1771  *	ifp - interface
1772  *
1773  *  Return value:
1774  *	nothing
1775  */
1776 
1777 static void
1778 sbmac_start(struct ifnet *ifp)
1779 {
1780 	struct sbmac_softc	*sc;
1781 	struct mbuf		*m_head = NULL;
1782 	int			rv;
1783 
1784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1785 		return;
1786 
1787 	sc = ifp->if_softc;
1788 
1789 	for (;;) {
1790 
1791 		IF_DEQUEUE(&ifp->if_snd, m_head);
1792 		if (m_head == NULL)
1793 		    break;
1794 
1795 		/*
1796 		 * Put the buffer on the transmit ring.  If we
1797 		 * don't have room, set the OACTIVE flag and wait
1798 		 * for the NIC to drain the ring.
1799 		 */
1800 
1801 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1802 
1803 		if (rv == 0) {
1804 			/*
1805 			 * If there's a BPF listener, bounce a copy of this
1806 			 * frame to it.
1807 			 */
1808 			bpf_mtap(ifp, m_head);
1809 			if (!sc->sbm_pass3_dma) {
1810 				/*
1811 				 * Don't free mbuf if we're not copying to new
1812 				 * mbuf in sbdma_add_txbuffer.  It will be
1813 				 * freed in sbdma_tx_process.
1814 				 */
1815 				m_freem(m_head);
1816 			}
1817 		} else {
1818 		    IF_PREPEND(&ifp->if_snd, m_head);
1819 		    ifp->if_flags |= IFF_OACTIVE;
1820 		    break;
1821 		}
1822 	}
1823 }
1824 
1825 /*
1826  *  SBMAC_SETMULTI(sc)
1827  *
1828  *  Reprogram the multicast table into the hardware, given
1829  *  the list of multicasts associated with the interface
1830  *  structure.
1831  *
1832  *  Input parameters:
1833  *	sc - softc
1834  *
1835  *  Return value:
1836  *	nothing
1837  */
1838 
1839 static void
1840 sbmac_setmulti(struct sbmac_softc *sc)
1841 {
1842 	struct ifnet *ifp;
1843 	uint64_t reg;
1844 	sbmac_port_t port;
1845 	int idx;
1846 	struct ether_multi *enm;
1847 	struct ether_multistep step;
1848 
1849 	ifp = &sc->sc_ethercom.ec_if;
1850 
1851 	/*
1852 	 * Clear out entire multicast table.  We do this by nuking
1853 	 * the entire hash table and all the direct matches except
1854 	 * the first one, which is used for our station address
1855 	 */
1856 
1857 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1858 		port = PKSEG1(sc->sbm_base +
1859 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1860 		SBMAC_WRITECSR(port, 0);
1861 	}
1862 
1863 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1864 		port = PKSEG1(sc->sbm_base +
1865 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1866 		SBMAC_WRITECSR(port, 0);
1867 	}
1868 
1869 	/*
1870 	 * Clear the filter to say we don't want any multicasts.
1871 	 */
1872 
1873 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
1874 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1875 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1876 
1877 	if (ifp->if_flags & IFF_ALLMULTI) {
1878 		/*
1879 		 * Enable ALL multicasts.  Do this by inverting the
1880 		 * multicast enable bit.
1881 		 */
1882 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1883 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1884 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1885 		return;
1886 	}
1887 
1888 	/*
1889 	 * Progam new multicast entries.  For now, only use the
1890 	 * perfect filter.  In the future we'll need to use the
1891 	 * hash filter if the perfect filter overflows
1892 	 */
1893 
1894 	/*
1895 	 * XXX only using perfect filter for now, need to use hash
1896 	 * XXX if the table overflows
1897 	 */
1898 
1899 	idx = 1;		/* skip station address */
1900 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1901 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1902 		reg = sbmac_addr2reg(enm->enm_addrlo);
1903 		port = PKSEG1(sc->sbm_base +
1904 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1905 		SBMAC_WRITECSR(port, reg);
1906 		idx++;
1907 		ETHER_NEXT_MULTI(step, enm);
1908 	}
1909 
1910 	/*
1911 	 * Enable the "accept multicast bits" if we programmed at least one
1912 	 * multicast.
1913 	 */
1914 
1915 	if (idx > 1) {
1916 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
1917 	    reg |= M_MAC_MCAST_EN;
1918 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1919 	}
1920 }
1921 
1922 /*
1923  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
1924  *
1925  *  Generic IOCTL requests for this interface.  The basic
1926  *  stuff is handled here for bringing the interface up,
1927  *  handling multicasts, etc.
1928  *
1929  *  Input parameters:
1930  *	ifp - interface structure
1931  *	cmd - command code
1932  *	data - pointer to data
1933  *
1934  *  Return value:
1935  *	return value (0 is success)
1936  */
1937 
1938 static int
1939 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1940 {
1941 	struct ifaddr *ifa = (struct ifaddr *) data;
1942 	struct sbmac_softc *sc = ifp->if_softc;
1943 
1944 	switch (cmd) {
1945 	case SIOCINITIFADDR:
1946 		ifp->if_flags |= IFF_UP;
1947 
1948 		switch (ifa->ifa_addr->sa_family) {
1949 #ifdef INET
1950 		case AF_INET:
1951 			sbmac_init_and_start(sc);
1952 			arp_ifinit(ifp, ifa);
1953 			break;
1954 #endif
1955 		default:
1956 			sbmac_init_and_start(sc);
1957 			break;
1958 		}
1959 		break;
1960 
1961 	default:
1962 		return ENOTTY;
1963 	}
1964 
1965 	return (0);
1966 }
1967 
1968 /*
1969  *  SBMAC_IOCTL(ifp, cmd, data)
1970  *
1971  *  Main IOCTL handler - dispatches to other IOCTLs for various
1972  *  types of requests.
1973  *
1974  *  Input parameters:
1975  *	ifp - interface pointer
1976  *	cmd - command code
1977  *	data - pointer to argument data
1978  *
1979  *  Return value:
1980  *	0 if ok
1981  *	else error code
1982  */
1983 
1984 static int
1985 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1986 {
1987 	struct sbmac_softc *sc = ifp->if_softc;
1988 	struct ifreq *ifr = (struct ifreq *) data;
1989 	int s, error = 0;
1990 
1991 	s = splnet();
1992 
1993 	switch (cmd) {
1994 	case SIOCINITIFADDR:
1995 		error = sbmac_ether_ioctl(ifp, cmd, data);
1996 		break;
1997 	case SIOCSIFMTU:
1998 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
1999 			error = EINVAL;
2000 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
2001 			/* XXX Program new MTU here */
2002 			error = 0;
2003 		break;
2004 	case SIOCSIFFLAGS:
2005 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2006 			break;
2007 		if (ifp->if_flags & IFF_UP) {
2008 			/*
2009 			 * If only the state of the PROMISC flag changed,
2010 			 * just tweak the hardware registers.
2011 			 */
2012 			if ((ifp->if_flags & IFF_RUNNING) &&
2013 			    (ifp->if_flags & IFF_PROMISC)) {
2014 				/* turn on promiscuous mode */
2015 				sbmac_promiscuous_mode(sc, true);
2016 			} else if (ifp->if_flags & IFF_RUNNING &&
2017 			    !(ifp->if_flags & IFF_PROMISC)) {
2018 			    /* turn off promiscuous mode */
2019 			    sbmac_promiscuous_mode(sc, false);
2020 			} else
2021 			    sbmac_set_channel_state(sc, sbmac_state_on);
2022 		} else {
2023 			if (ifp->if_flags & IFF_RUNNING)
2024 				sbmac_set_channel_state(sc, sbmac_state_off);
2025 		}
2026 
2027 		sc->sbm_if_flags = ifp->if_flags;
2028 		error = 0;
2029 		break;
2030 
2031 	case SIOCADDMULTI:
2032 	case SIOCDELMULTI:
2033 	case SIOCSIFMEDIA:
2034 	case SIOCGIFMEDIA:
2035 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2036 			error = 0;
2037 			if (ifp->if_flags & IFF_RUNNING)
2038 				sbmac_setmulti(sc);
2039 		}
2040 		break;
2041 	default:
2042 		error = ether_ioctl(ifp, cmd, data);
2043 		break;
2044 	}
2045 
2046 	(void)splx(s);
2047 
2048 	return(error);
2049 }
2050 
2051 /*
2052  *  SBMAC_IFMEDIA_UPD(ifp)
2053  *
2054  *  Configure an appropriate media type for this interface,
2055  *  given the data in the interface structure
2056  *
2057  *  Input parameters:
2058  *	ifp - interface
2059  *
2060  *  Return value:
2061  *	0 if ok
2062  *	else error code
2063  */
2064 
2065 /*
2066  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
2067  *
2068  *  Report current media status (used by ifconfig, for example)
2069  *
2070  *  Input parameters:
2071  *	ifp - interface structure
2072  *	ifmr - media request structure
2073  *
2074  *  Return value:
2075  *	nothing
2076  */
2077 
2078 /*
2079  *  SBMAC_WATCHDOG(ifp)
2080  *
2081  *  Called periodically to make sure we're still happy.
2082  *
2083  *  Input parameters:
2084  *	ifp - interface structure
2085  *
2086  *  Return value:
2087  *	nothing
2088  */
2089 
2090 static void
2091 sbmac_watchdog(struct ifnet *ifp)
2092 {
2093 
2094 	/* XXX do something */
2095 }
2096 
2097 /*
2098  * One second timer, used to tick MII.
2099  */
2100 static void
2101 sbmac_tick(void *arg)
2102 {
2103 	struct sbmac_softc *sc = arg;
2104 	int s;
2105 
2106 	s = splnet();
2107 	mii_tick(&sc->sc_mii);
2108 	splx(s);
2109 
2110 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2111 }
2112 
2113 
2114 /*
2115  *  SBMAC_MATCH(parent, match, aux)
2116  *
2117  *  Part of the config process - see if this device matches the
2118  *  info about what we expect to find on the bus.
2119  *
2120  *  Input parameters:
2121  *	parent - parent bus structure
2122  *	match -
2123  *	aux - bus-specific args
2124  *
2125  *  Return value:
2126  *	1 if we match
2127  *	0 if we don't match
2128  */
2129 
2130 static int
2131 sbmac_match(device_t parent, cfdata_t match, void *aux)
2132 {
2133 	struct sbobio_attach_args *sa = aux;
2134 
2135 	/*
2136 	 * Make sure it's a MAC
2137 	 */
2138 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2139 		return 0;
2140 
2141 	/*
2142 	 * Yup, it is.
2143 	 */
2144 
2145 	return 1;
2146 }
2147 
2148 /*
2149  *  SBMAC_PARSE_XDIGIT(str)
2150  *
2151  *  Parse a hex digit, returning its value
2152  *
2153  *  Input parameters:
2154  *	str - character
2155  *
2156  *  Return value:
2157  *	hex value, or -1 if invalid
2158  */
2159 
2160 static int
2161 sbmac_parse_xdigit(char str)
2162 {
2163 	int digit;
2164 
2165 	if ((str >= '0') && (str <= '9'))
2166 		digit = str - '0';
2167 	else if ((str >= 'a') && (str <= 'f'))
2168 		digit = str - 'a' + 10;
2169 	else if ((str >= 'A') && (str <= 'F'))
2170 		digit = str - 'A' + 10;
2171 	else
2172 		digit = -1;
2173 
2174 	return digit;
2175 }
2176 
2177 /*
2178  *  SBMAC_PARSE_HWADDR(str, hwaddr)
2179  *
2180  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2181  *  Ethernet address.
2182  *
2183  *  Input parameters:
2184  *	str - string
2185  *	hwaddr - pointer to hardware address
2186  *
2187  *  Return value:
2188  *	0 if ok, else -1
2189  */
2190 
2191 static int
2192 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2193 {
2194 	int digit1, digit2;
2195 	int idx = 6;
2196 
2197 	while (*str && (idx > 0)) {
2198 		digit1 = sbmac_parse_xdigit(*str);
2199 		if (digit1 < 0)
2200 			return -1;
2201 		str++;
2202 		if (!*str)
2203 			return -1;
2204 
2205 		if ((*str == ':') || (*str == '-')) {
2206 			digit2 = digit1;
2207 			digit1 = 0;
2208 		} else {
2209 			digit2 = sbmac_parse_xdigit(*str);
2210 			if (digit2 < 0)
2211 				return -1;
2212 			str++;
2213 		}
2214 
2215 		*hwaddr++ = (digit1 << 4) | digit2;
2216 		idx--;
2217 
2218 		if (*str == '-')
2219 			str++;
2220 		if (*str == ':')
2221 			str++;
2222 	}
2223 	return 0;
2224 }
2225 
2226 /*
2227  *  SBMAC_ATTACH(parent, self, aux)
2228  *
2229  *  Attach routine - init hardware and hook ourselves into NetBSD.
2230  *
2231  *  Input parameters:
2232  *	parent - parent bus device
2233  *	self - our softc
2234  *	aux - attach data
2235  *
2236  *  Return value:
2237  *	nothing
2238  */
2239 
2240 static void
2241 sbmac_attach(device_t parent, device_t self, void *aux)
2242 {
2243 	struct sbmac_softc * const sc = device_private(self);
2244 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2245 	struct sbobio_attach_args * const sa = aux;
2246 	u_char *eaddr;
2247 	static int unit = 0;	/* XXX */
2248 	uint64_t ea_reg;
2249 	int idx;
2250 
2251 	sc->sc_dev = self;
2252 
2253 	/* Determine controller base address */
2254 
2255 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
2256 
2257 	eaddr = sc->sbm_hwaddr;
2258 
2259 	/*
2260 	 * Initialize context (get pointers to registers and stuff), then
2261 	 * allocate the memory for the descriptor tables.
2262 	 */
2263 
2264 	sbmac_initctx(sc);
2265 
2266 	callout_init(&(sc->sc_tick_ch), 0);
2267 
2268 	/*
2269 	 * Read the ethernet address.  The firwmare left this programmed
2270 	 * for us in the ethernet address register for each mac.
2271 	 */
2272 
2273 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2274 	for (idx = 0; idx < 6; idx++) {
2275 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2276 		ea_reg >>= 8;
2277 	}
2278 
2279 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2280 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2281 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2282 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2283 		eaddr[5] = unit;
2284 	}
2285 
2286 #ifdef SBMAC_ETH0_HWADDR
2287 	if (unit == 0)
2288 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2289 #endif
2290 #ifdef SBMAC_ETH1_HWADDR
2291 	if (unit == 1)
2292 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2293 #endif
2294 #ifdef SBMAC_ETH2_HWADDR
2295 	if (unit == 2)
2296 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2297 #endif
2298 	unit++;
2299 
2300 	/*
2301 	 * Display Ethernet address (this is called during the config process
2302 	 * so we need to finish off the config message that was being displayed)
2303 	 */
2304 	aprint_normal(": Ethernet%s\n",
2305 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2306 	aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr));
2307 
2308 
2309 	/*
2310 	 * Set up ifnet structure
2311 	 */
2312 
2313 	ifp->if_softc = sc;
2314 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
2315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2316 	    IFF_NOTRAILERS;
2317 	ifp->if_ioctl = sbmac_ioctl;
2318 	ifp->if_start = sbmac_start;
2319 	ifp->if_watchdog = sbmac_watchdog;
2320 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2321 
2322 	/*
2323 	 * Set up ifmedia support.
2324 	 */
2325 
2326 	/*
2327 	 * Initialize MII/media info.
2328 	 */
2329 	sc->sc_mii.mii_ifp      = ifp;
2330 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
2331 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2332 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
2333 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
2334 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2335 	    ether_mediastatus);
2336 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2337 	    MII_OFFSET_ANY, 0);
2338 
2339 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2340 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2341 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2342 	} else {
2343 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2344 	}
2345 
2346 
2347 	/*
2348 	 * map/route interrupt
2349 	 */
2350 
2351 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
2352 	    sbmac_intr, sc);
2353 
2354 	/*
2355 	 * Call MI attach routines.
2356 	 */
2357 	if_attach(ifp);
2358 	ether_ifattach(ifp, eaddr);
2359 }
2360