xref: /netbsd-src/sys/arch/mips/sibyte/dev/sbmac.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /* $NetBSD: sbmac.c,v 1.62 2020/01/29 05:30:14 thorpej Exp $ */
2 
3 /*
4  * Copyright 2000, 2001, 2004
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.62 2020/01/29 05:30:14 thorpej Exp $");
37 
38 #include "opt_inet.h"
39 #include "opt_ns.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/kmem.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/queue.h>
49 #include <sys/device.h>
50 
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_ether.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/if_inarp.h>
62 #endif
63 
64 #include <mips/locore.h>
65 
66 #include "sbobiovar.h"
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71 
72 #include <mips/sibyte/include/sb1250_defs.h>
73 #include <mips/sibyte/include/sb1250_regs.h>
74 #include <mips/sibyte/include/sb1250_mac.h>
75 #include <mips/sibyte/include/sb1250_dma.h>
76 #include <mips/sibyte/include/sb1250_scd.h>
77 
78 #include <evbmips/sbmips/systemsw.h>
79 
80 /* Simple types */
81 
82 typedef u_long sbmac_port_t;
83 typedef uint64_t sbmac_physaddr_t;
84 typedef uint64_t sbmac_enetaddr_t;
85 
86 typedef enum { sbmac_speed_auto, sbmac_speed_10,
87 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
88 
89 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
90 	       sbmac_duplex_full } sbmac_duplex_t;
91 
92 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
93 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
94 
95 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
96 	       sbmac_state_broken } sbmac_state_t;
97 
98 
99 /* Macros */
100 
101 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
102 
103 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
104 
105 #define	CACHELINESIZE	32
106 #define	NUMCACHEBLKS(x)	(((x)+CACHELINESIZE-1)/CACHELINESIZE)
107 #define	KVTOPHYS(x)	kvtophys((vaddr_t)(x))
108 
109 #ifdef SBMACDEBUG
110 #define	dprintf(x)	printf x
111 #else
112 #define	dprintf(x)
113 #endif
114 
115 #define	SBMAC_READCSR(t) mips3_ld((register_t)(t))
116 #define	SBMAC_WRITECSR(t, v) mips3_sd((register_t)(t), (v))
117 
118 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
119 
120 /* These are limited to fit within one virtual page, and must be 2**N.  */
121 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
122 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
123 
124 /* DMA Descriptor structure */
125 
126 typedef struct sbdmadscr_s {
127 	uint64_t dscr_a;
128 	uint64_t dscr_b;
129 } sbdmadscr_t;
130 
131 
132 /* DMA Controller structure */
133 
134 typedef struct sbmacdma_s {
135 
136 	/*
137 	 * This stuff is used to identify the channel and the registers
138 	 * associated with it.
139 	 */
140 
141 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
142 	int		sbdma_channel;	/* channel number */
143 	int		sbdma_txdir;	/* direction (1=transmit) */
144 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
145 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
146 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
147 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
148 	sbmac_port_t	sbdma_dscrcnt;	/* Descriptor count register */
149 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
150 
151 	/*
152 	 * This stuff is for maintenance of the ring
153 	 */
154 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
155 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
156 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
157 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
158 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
159 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
160 } sbmacdma_t;
161 
162 
163 /* Ethernet softc structure */
164 
165 struct sbmac_softc {
166 
167 	/*
168 	 * NetBSD-specific things
169 	 */
170 	struct ethercom	sc_ethercom;	/* Ethernet common part */
171 	struct mii_data	sc_mii;
172 	struct callout	sc_tick_ch;
173 
174 	device_t	sc_dev;		/* device */
175 	u_short		sbm_if_flags;
176 	void		*sbm_intrhand;
177 
178 	/*
179 	 * Controller-specific things
180 	 */
181 
182 	sbmac_port_t	sbm_base;	/* MAC's base address */
183 	sbmac_state_t	sbm_state;	/* current state */
184 
185 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
186 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
187 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
188 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
189 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
190 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
191 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
192 
193 	sbmac_speed_t	sbm_speed;	/* current speed */
194 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
195 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
196 	int		sbm_rxflags;	/* received packet flags */
197 
198 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
199 
200 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
201 	sbmacdma_t	sbm_rxdma;
202 
203 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
204 
205 #ifdef SBMAC_EVENT_COUNTERS
206 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
207 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
208 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
209 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
210 
211 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
212 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
213 #endif
214 };
215 
216 
217 #ifdef SBMAC_EVENT_COUNTERS
218 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
219 #else
220 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
221 #endif
222 
223 /* Externs */
224 
225 extern paddr_t kvtophys(vaddr_t);
226 
227 /* Prototypes */
228 
229 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
230 static void sbdma_channel_start(sbmacdma_t *);
231 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
232 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
233 static void sbdma_emptyring(sbmacdma_t *);
234 static void sbdma_fillring(sbmacdma_t *);
235 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
236 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
237 static void sbmac_initctx(struct sbmac_softc *);
238 static void sbmac_channel_start(struct sbmac_softc *);
239 static void sbmac_channel_stop(struct sbmac_softc *);
240 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
241     sbmac_state_t);
242 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
243 static void sbmac_init_and_start(struct sbmac_softc *);
244 static uint64_t sbmac_addr2reg(u_char *);
245 static void sbmac_intr(void *, uint32_t, vaddr_t);
246 static void sbmac_start(struct ifnet *);
247 static void sbmac_setmulti(struct sbmac_softc *);
248 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
249 static int sbmac_ioctl(struct ifnet *, u_long, void *);
250 static void sbmac_watchdog(struct ifnet *);
251 static int sbmac_match(device_t, cfdata_t, void *);
252 static void sbmac_attach(device_t, device_t, void *);
253 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
254 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
255 static void sbmac_tick(void *);
256 
257 
258 /* Globals */
259 
260 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
261     sbmac_match, sbmac_attach, NULL, NULL);
262 
263 static uint32_t sbmac_mii_bitbang_read(device_t self);
264 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
265 
266 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
267 	sbmac_mii_bitbang_read,
268 	sbmac_mii_bitbang_write,
269 	{
270 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
271 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
272 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
273 		0,				/* MII_BIT_DIR_HOST_PHY */
274 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
275 	}
276 };
277 
278 static uint32_t
279 sbmac_mii_bitbang_read(device_t self)
280 {
281 	struct sbmac_softc *sc = device_private(self);
282 	sbmac_port_t reg;
283 
284 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
285 	return (uint32_t) SBMAC_READCSR(reg);
286 }
287 
288 static void
289 sbmac_mii_bitbang_write(device_t self, uint32_t val)
290 {
291 	struct sbmac_softc *sc = device_private(self);
292 	sbmac_port_t reg;
293 
294 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
295 
296 	SBMAC_WRITECSR(reg, (val &
297 	    (M_MAC_MDC | M_MAC_MDIO_DIR | M_MAC_MDIO_OUT | M_MAC_MDIO_IN)));
298 }
299 
300 /*
301  * Read an PHY register through the MII.
302  */
303 static int
304 sbmac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
305 {
306 
307 	return mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg,
308 	    val);
309 }
310 
311 /*
312  * Write to a PHY register through the MII.
313  */
314 static int
315 sbmac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
316 {
317 
318 	return mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg,
319 	    val);
320 }
321 
322 static void
323 sbmac_mii_statchg(struct ifnet *ifp)
324 {
325 	struct sbmac_softc *sc = ifp->if_softc;
326 	sbmac_state_t oldstate;
327 
328 	/* Stop the MAC in preparation for changing all of the parameters. */
329 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
330 
331 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
332 	default:		/* if autonegotiation fails, assume 10Mbit */
333 	case IF_Mbps(10):
334 		sbmac_set_speed(sc, sbmac_speed_10);
335 		break;
336 
337 	case IF_Mbps(100):
338 		sbmac_set_speed(sc, sbmac_speed_100);
339 		break;
340 
341 	case IF_Mbps(1000):
342 		sbmac_set_speed(sc, sbmac_speed_1000);
343 		break;
344 	}
345 
346 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
347 		/* Configure for full-duplex */
348 		/* XXX: is flow control right for 10, 100? */
349 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
350 	} else {
351 		/* Configure for half-duplex */
352 		/* XXX: is flow control right? */
353 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
354 	}
355 
356 	/* And put it back into its former state. */
357 	sbmac_set_channel_state(sc, oldstate);
358 }
359 
360 /*
361  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
362  *
363  *  Initialize a DMA channel context.  Since there are potentially
364  *  eight DMA channels per MAC, it's nice to do this in a standard
365  *  way.
366  *
367  *  Input parameters:
368  *	d - sbmacdma_t structure (DMA channel context)
369  *	sc - sbmac_softc structure (pointer to a MAC)
370  *	chan - channel number (0..1 right now)
371  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
372  *	maxdescr - number of descriptors
373  *
374  *  Return value:
375  *	nothing
376  */
377 
378 static void
379 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
380     int maxdescr)
381 {
382 	uintptr_t ptr;
383 
384 	/*
385 	 * Save away interesting stuff in the structure
386 	 */
387 
388 	d->sbdma_eth = sc;
389 	d->sbdma_channel = chan;
390 	d->sbdma_txdir = txrx;
391 
392 	/*
393 	 * initialize register pointers
394 	 */
395 
396 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
397 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
398 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
400 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
402 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
404 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
406 
407 	/*
408 	 * Allocate memory for the ring.  This must be aligned to a
409 	 * 32-byte cache line boundary on pass1 or pass2 silicon.
410 	 */
411 
412 	d->sbdma_maxdescr = maxdescr;
413 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
414 	ptr = (uintptr_t)kmem_zalloc(d->sbdma_maxdescr * sizeof(sbdmadscr_t) +
415 	    CACHELINESIZE - 1, KM_SLEEP);
416 	d->sbdma_dscrtable = (sbdmadscr_t *)roundup2(ptr, CACHELINESIZE);
417 
418 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
419 
420 	/*
421 	 * And context table
422 	 */
423 
424 	d->sbdma_ctxtable = (struct mbuf **)
425 	    kmem_zalloc(d->sbdma_maxdescr * sizeof(struct mbuf *), KM_SLEEP);
426 }
427 
428 /*
429  *  SBDMA_CHANNEL_START(d)
430  *
431  *  Initialize the hardware registers for a DMA channel.
432  *
433  *  Input parameters:
434  *	d - DMA channel to init (context must be previously init'd
435  *
436  *  Return value:
437  *	nothing
438  */
439 
440 static void
441 sbdma_channel_start(sbmacdma_t *d)
442 {
443 	/*
444 	 * Turn on the DMA channel
445 	 */
446 
447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
448 
449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
450 
451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
452 
453 	/*
454 	 * Initialize ring pointers
455 	 */
456 
457 	d->sbdma_add_index = 0;
458 	d->sbdma_rem_index = 0;
459 }
460 
461 /*
462  *  SBDMA_ADD_RCVBUFFER(d, m)
463  *
464  *  Add a buffer to the specified DMA channel.   For receive channels,
465  *  this queues a buffer for inbound packets.
466  *
467  *  Input parameters:
468  *	d - DMA channel descriptor
469  *	m - mbuf to add, or NULL if we should allocate one.
470  *
471  *  Return value:
472  *	0 if buffer could not be added (ring is full)
473  *	1 if buffer added successfully
474  */
475 
476 static int
477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
478 {
479 	unsigned int dsc, nextdsc;
480 	struct mbuf *m_new = NULL;
481 
482 	/* get pointer to our current place in the ring */
483 
484 	dsc = d->sbdma_add_index;
485 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
486 
487 	/*
488 	 * figure out if the ring is full - if the next descriptor
489 	 * is the same as the one that we're going to remove from
490 	 * the ring, the ring is full
491 	 */
492 
493 	if (nextdsc == d->sbdma_rem_index)
494 		return ENOSPC;
495 
496 	/*
497 	 * Allocate an mbuf if we don't already have one.
498 	 * If we do have an mbuf, reset it so that it's empty.
499 	 */
500 
501 	if (m == NULL) {
502 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
503 		if (m_new == NULL) {
504 			aprint_error_dev(d->sbdma_eth->sc_dev,
505 			    "mbuf allocation failed\n");
506 			return ENOBUFS;
507 		}
508 
509 		MCLGET(m_new, M_DONTWAIT);
510 		if (!(m_new->m_flags & M_EXT)) {
511 			aprint_error_dev(d->sbdma_eth->sc_dev,
512 			    "mbuf cluster allocation failed\n");
513 			m_freem(m_new);
514 			return ENOBUFS;
515 		}
516 
517 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
518 		m_adj(m_new, ETHER_ALIGN);
519 	} else {
520 		m_new = m;
521 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
522 		m_new->m_data = m_new->m_ext.ext_buf;
523 		m_adj(m_new, ETHER_ALIGN);
524 	}
525 
526 	/*
527 	 * fill in the descriptor
528 	 */
529 
530 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
531 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
532 	    M_DMA_DSCRA_INTERRUPT;
533 
534 	/* receiving: no options */
535 	d->sbdma_dscrtable[dsc].dscr_b = 0;
536 
537 	/*
538 	 * fill in the context
539 	 */
540 
541 	d->sbdma_ctxtable[dsc] = m_new;
542 
543 	/*
544 	 * point at next packet
545 	 */
546 
547 	d->sbdma_add_index = nextdsc;
548 
549 	/*
550 	 * Give the buffer to the DMA engine.
551 	 */
552 
553 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
554 
555 	return 0;					/* we did it */
556 }
557 
558 /*
559  *  SBDMA_ADD_TXBUFFER(d, m)
560  *
561  *  Add a transmit buffer to the specified DMA channel, causing a
562  *  transmit to start.
563  *
564  *  Input parameters:
565  *	d - DMA channel descriptor
566  *	m - mbuf to add
567  *
568  *  Return value:
569  *	0 transmit queued successfully
570  *	otherwise error code
571  */
572 
573 static int
574 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
575 {
576 	unsigned int dsc, nextdsc, prevdsc, origdesc;
577 	int length;
578 	int num_mbufs = 0;
579 	struct sbmac_softc *sc = d->sbdma_eth;
580 
581 	/* get pointer to our current place in the ring */
582 
583 	dsc = d->sbdma_add_index;
584 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
585 
586 	/*
587 	 * figure out if the ring is full - if the next descriptor
588 	 * is the same as the one that we're going to remove from
589 	 * the ring, the ring is full
590 	 */
591 
592 	if (nextdsc == d->sbdma_rem_index) {
593 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
594 		return ENOSPC;
595 	}
596 
597 	/*
598 	 * PASS3 parts do not have buffer alignment restriction.
599 	 * No need to copy/coalesce to new mbuf.  Also has different
600 	 * descriptor format
601 	 */
602 	if (sc->sbm_pass3_dma) {
603 		struct mbuf *m_temp = NULL;
604 
605 		/*
606 		 * Loop thru this mbuf record.
607 		 * The head mbuf will have SOP set.
608 		 */
609 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m, void *)) |
610 		    M_DMA_ETHTX_SOP;
611 
612 		/*
613 		 * transmitting: set outbound options,buffer A size(+ low 5
614 		 * bits of start addr),and packet length.
615 		 */
616 		d->sbdma_dscrtable[dsc].dscr_b =
617 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
618 		    V_DMA_DSCRB_A_SIZE((m->m_len +
619 		      (mtod(m, uintptr_t) & 0x0000001F))) |
620 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
621 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
622 
623 		d->sbdma_add_index = nextdsc;
624 		origdesc = prevdsc = dsc;
625 		dsc = d->sbdma_add_index;
626 		num_mbufs++;
627 
628 		/* Start with first non-head mbuf */
629 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
630 			int len, next_len;
631 			uint64_t addr;
632 
633 			if (m_temp->m_len == 0)
634 				continue;	/* Skip 0-length mbufs */
635 
636 			len = m_temp->m_len;
637 			addr = KVTOPHYS(mtod(m_temp, void *));
638 
639 			/*
640 			 * Check to see if the mbuf spans a page boundary.  If
641 			 * it does, and the physical pages behind the virtual
642 			 * pages are not contiguous, split it so that each
643 			 * virtual page uses its own Tx descriptor.
644 			 */
645 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
646 				next_len = (addr + len) - trunc_page(addr + len);
647 
648 				len -= next_len;
649 
650 				if (addr + len ==
651 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
652 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
653 					len += next_len;
654 					next_len = 0;
655 				} else {
656 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
657 				}
658 			} else {
659 				next_len = 0;
660 			}
661 
662 again:
663 			/*
664 			 * fill in the descriptor
665 			 */
666 			d->sbdma_dscrtable[dsc].dscr_a = addr;
667 
668 			/*
669 			 * transmitting: set outbound options,buffer A
670 			 * size(+ low 5 bits of start addr)
671 			 */
672 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
673 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
674 
675 			d->sbdma_ctxtable[dsc] = NULL;
676 
677 			/*
678 			 * point at next descriptor
679 			 */
680 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
681 			if (nextdsc == d->sbdma_rem_index) {
682 				d->sbdma_add_index = origdesc;
683 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
684 				return ENOSPC;
685 			}
686 			d->sbdma_add_index = nextdsc;
687 
688 			prevdsc = dsc;
689 			dsc = d->sbdma_add_index;
690 			num_mbufs++;
691 
692 			if (next_len != 0) {
693 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
694 				len = next_len;
695 
696 				next_len = 0;
697 				goto again;
698 			}
699 
700 		}
701 		/* Set head mbuf to last context index */
702 		d->sbdma_ctxtable[prevdsc] = m;
703 
704 		/* Interrupt on last dscr of packet.  */
705 		d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
706 	} else {
707 		struct mbuf *m_new = NULL;
708 		/*
709 		 * [BEGIN XXX]
710 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
711 		 * assume it will fit).  This is a temporary hack to get us
712 		 * going.
713 		 */
714 
715 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
716 		if (m_new == NULL) {
717 			aprint_error_dev(d->sbdma_eth->sc_dev,
718 			    "mbuf allocation failed\n");
719 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
720 			return ENOBUFS;
721 		}
722 
723 		MCLGET(m_new, M_DONTWAIT);
724 		if (!(m_new->m_flags & M_EXT)) {
725 			aprint_error_dev(d->sbdma_eth->sc_dev,
726 			    "mbuf cluster allocation failed\n");
727 			m_freem(m_new);
728 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
729 			return ENOBUFS;
730 		}
731 
732 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
733 		/*m_adj(m_new, ETHER_ALIGN);*/
734 
735 		/*
736 		 * XXX Don't forget to include the offset portion in the
737 		 * XXX cache block calculation when this code is rewritten!
738 		 */
739 
740 		/*
741 		 * Copy data
742 		 */
743 
744 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
745 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
746 
747 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
748 
749 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
750 		// XXX: function succeeds.
751 		// m_freem(m);
752 		length = m_new->m_len;
753 
754 		/* [END XXX] */
755 		/*
756 		 * fill in the descriptor
757 		 */
758 
759 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
760 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
761 		    M_DMA_DSCRA_INTERRUPT |
762 		    M_DMA_ETHTX_SOP;
763 
764 		/* transmitting: set outbound options and length */
765 		d->sbdma_dscrtable[dsc].dscr_b =
766 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
767 		    V_DMA_DSCRB_PKT_SIZE(length);
768 
769 		num_mbufs++;
770 
771 		/*
772 		 * fill in the context
773 		 */
774 
775 		d->sbdma_ctxtable[dsc] = m_new;
776 
777 		/*
778 		 * point at next packet
779 		 */
780 		d->sbdma_add_index = nextdsc;
781 	}
782 
783 	/*
784 	 * Give the buffer to the DMA engine.
785 	 */
786 
787 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
788 
789 	return 0;					/* we did it */
790 }
791 
792 /*
793  *  SBDMA_EMPTYRING(d)
794  *
795  *  Free all allocated mbufs on the specified DMA channel;
796  *
797  *  Input parameters:
798  *	d  - DMA channel
799  *
800  *  Return value:
801  *	nothing
802  */
803 
804 static void
805 sbdma_emptyring(sbmacdma_t *d)
806 {
807 	int idx;
808 	struct mbuf *m;
809 
810 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
811 		m = d->sbdma_ctxtable[idx];
812 		if (m) {
813 			m_freem(m);
814 			d->sbdma_ctxtable[idx] = NULL;
815 		}
816 	}
817 }
818 
819 /*
820  *  SBDMA_FILLRING(d)
821  *
822  *  Fill the specified DMA channel (must be receive channel)
823  *  with mbufs
824  *
825  *  Input parameters:
826  *	d - DMA channel
827  *
828  *  Return value:
829  *	nothing
830  */
831 
832 static void
833 sbdma_fillring(sbmacdma_t *d)
834 {
835 	int idx;
836 
837 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
838 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
839 			break;
840 }
841 
842 /*
843  *  SBDMA_RX_PROCESS(sc, d)
844  *
845  *  Process "completed" receive buffers on the specified DMA channel.
846  *  Note that this isn't really ideal for priority channels, since
847  *  it processes all of the packets on a given channel before
848  *  returning.
849  *
850  *  Input parameters:
851  *	sc - softc structure
852  *	d - DMA channel context
853  *
854  *  Return value:
855  *	nothing
856  */
857 
858 static void
859 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
860 {
861 	int curidx;
862 	int hwidx;
863 	sbdmadscr_t *dscp;
864 	struct mbuf *m;
865 	int len;
866 
867 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
868 
869 	for (;;) {
870 		/*
871 		 * figure out where we are (as an index) and where
872 		 * the hardware is (also as an index)
873 		 *
874 		 * This could be done faster if (for example) the
875 		 * descriptor table was page-aligned and contiguous in
876 		 * both virtual and physical memory -- you could then
877 		 * just compare the low-order bits of the virtual address
878 		 * (sbdma_rem_index) and the physical address
879 		 * (sbdma_curdscr CSR).
880 		 */
881 
882 		curidx = d->sbdma_rem_index;
883 		hwidx = (int)
884 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
885 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
886 
887 		/*
888 		 * If they're the same, that means we've processed all
889 		 * of the descriptors up to (but not including) the one that
890 		 * the hardware is working on right now.
891 		 */
892 
893 		if (curidx == hwidx)
894 			break;
895 
896 		/*
897 		 * Otherwise, get the packet's mbuf ptr back
898 		 */
899 
900 		dscp = &(d->sbdma_dscrtable[curidx]);
901 		m = d->sbdma_ctxtable[curidx];
902 		d->sbdma_ctxtable[curidx] = NULL;
903 
904 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
905 
906 		/*
907 		 * Check packet status.  If good, process it.
908 		 * If not, silently drop it and put it back on the
909 		 * receive ring.
910 		 */
911 
912 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
913 
914 			/*
915 			 * Set length into the packet
916 			 * XXX do we remove the CRC here?
917 			 */
918 			m->m_pkthdr.len = m->m_len = len;
919 
920 			m_set_rcvif(m, ifp);
921 
922 
923 			/*
924 			 * Add a new buffer to replace the old one.
925 			 */
926 			sbdma_add_rcvbuffer(d, NULL);
927 
928 			/*
929 			 * Handle BPF listeners. Let the BPF user see the
930 			 * packet, but don't pass it up to the ether_input()
931 			 * layer unless it's a broadcast packet, multicast
932 			 * packet, matches our ethernet address or the
933 			 * interface is in promiscuous mode.
934 			 */
935 
936 			/*
937 			 * Pass the buffer to the kernel
938 			 */
939 			if_percpuq_enqueue(ifp->if_percpuq, m);
940 		} else {
941 			/*
942 			 * Packet was mangled somehow.  Just drop it and
943 			 * put it back on the receive ring.
944 			 */
945 			sbdma_add_rcvbuffer(d, m);
946 		}
947 
948 		/*
949 		 * .. and advance to the next buffer.
950 		 */
951 
952 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
953 	}
954 }
955 
956 /*
957  *  SBDMA_TX_PROCESS(sc, d)
958  *
959  *  Process "completed" transmit buffers on the specified DMA channel.
960  *  This is normally called within the interrupt service routine.
961  *  Note that this isn't really ideal for priority channels, since
962  *  it processes all of the packets on a given channel before
963  *  returning.
964  *
965  *  Input parameters:
966  *	sc - softc structure
967  *	d - DMA channel context
968  *
969  *  Return value:
970  *	nothing
971  */
972 
973 static void
974 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
975 {
976 	int curidx;
977 	int hwidx;
978 	struct mbuf *m;
979 
980 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
981 
982 	for (;;) {
983 		/*
984 		 * figure out where we are (as an index) and where
985 		 * the hardware is (also as an index)
986 		 *
987 		 * This could be done faster if (for example) the
988 		 * descriptor table was page-aligned and contiguous in
989 		 * both virtual and physical memory -- you could then
990 		 * just compare the low-order bits of the virtual address
991 		 * (sbdma_rem_index) and the physical address
992 		 * (sbdma_curdscr CSR).
993 		 */
994 
995 		curidx = d->sbdma_rem_index;
996 		hwidx = (int)
997 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
998 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
999 
1000 		/*
1001 		 * If they're the same, that means we've processed all
1002 		 * of the descriptors up to (but not including) the one that
1003 		 * the hardware is working on right now.
1004 		 */
1005 
1006 		if (curidx == hwidx)
1007 			break;
1008 
1009 		/*
1010 		 * Otherwise, get the packet's mbuf ptr back
1011 		 */
1012 
1013 		m = d->sbdma_ctxtable[curidx];
1014 		d->sbdma_ctxtable[curidx] = NULL;
1015 
1016 		/*
1017 		 * for transmits we just free buffers and count packets.
1018 		 */
1019 		if_statinc(ifp, if_opackets);
1020 		m_freem(m);
1021 
1022 		/*
1023 		 * .. and advance to the next buffer.
1024 		 */
1025 
1026 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1027 	}
1028 
1029 	/*
1030 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
1031 	 * It's supposed to reflect if the interface is actively
1032 	 * transmitting, but that's really hard to do quickly.
1033 	 */
1034 
1035 	ifp->if_flags &= ~IFF_OACTIVE;
1036 }
1037 
1038 /*
1039  *  SBMAC_INITCTX(s)
1040  *
1041  *  Initialize an Ethernet context structure - this is called
1042  *  once per MAC on the 1250.  Memory is allocated here, so don't
1043  *  call it again from inside the ioctl routines that bring the
1044  *  interface up/down
1045  *
1046  *  Input parameters:
1047  *	sc - sbmac context structure
1048  *
1049  *  Return value:
1050  *	0
1051  */
1052 
1053 static void
1054 sbmac_initctx(struct sbmac_softc *sc)
1055 {
1056 	uint64_t sysrev;
1057 
1058 	/*
1059 	 * figure out the addresses of some ports
1060 	 */
1061 
1062 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
1063 	sc->sbm_maccfg	  = PKSEG1(sc->sbm_base + R_MAC_CFG);
1064 	sc->sbm_fifocfg	  = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
1065 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
1066 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
1067 	sc->sbm_isr	  = PKSEG1(sc->sbm_base + R_MAC_STATUS);
1068 	sc->sbm_imr	  = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
1069 
1070 	/*
1071 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1072 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1073 	 */
1074 
1075 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1076 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1077 
1078 	/*
1079 	 * initial state is OFF
1080 	 */
1081 
1082 	sc->sbm_state = sbmac_state_off;
1083 
1084 	/*
1085 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1086 	 */
1087 
1088 	sc->sbm_speed = sbmac_speed_10;
1089 	sc->sbm_duplex = sbmac_duplex_half;
1090 	sc->sbm_fc = sbmac_fc_disabled;
1091 
1092 	/*
1093 	 * Determine SOC type.  112x has Pass3 SOC features.
1094 	 */
1095 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1096 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1097 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1098 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1099 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1100 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1101 #ifdef SBMAC_EVENT_COUNTERS
1102 	const char * const xname = device_xname(sc->sc_dev);
1103 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1104 	    NULL, xname, "rxintr");
1105 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
1106 	    NULL, xname, "txintr");
1107 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1108 	    NULL, xname, "txdrop");
1109 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
1110 	    NULL, xname, "txstall");
1111 	if (sc->sbm_pass3_dma) {
1112 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1113 		    NULL, xname, "pass3tx-split");
1114 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1115 		    NULL, xname, "pass3tx-keep");
1116 	}
1117 #endif
1118 }
1119 
1120 /*
1121  *  SBMAC_CHANNEL_START(s)
1122  *
1123  *  Start packet processing on this MAC.
1124  *
1125  *  Input parameters:
1126  *	sc - sbmac structure
1127  *
1128  *  Return value:
1129  *	nothing
1130  */
1131 
1132 static void
1133 sbmac_channel_start(struct sbmac_softc *sc)
1134 {
1135 	uint64_t reg;
1136 	sbmac_port_t port;
1137 	uint64_t cfg, fifo, framecfg;
1138 	int idx;
1139 	uint64_t dma_cfg0, fifo_cfg;
1140 	sbmacdma_t *txdma;
1141 
1142 	/*
1143 	 * Don't do this if running
1144 	 */
1145 
1146 	if (sc->sbm_state == sbmac_state_on)
1147 		return;
1148 
1149 	/*
1150 	 * Bring the controller out of reset, but leave it off.
1151 	 */
1152 
1153 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
1154 
1155 	/*
1156 	 * Ignore all received packets
1157 	 */
1158 
1159 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1160 
1161 	/*
1162 	 * Calculate values for various control registers.
1163 	 */
1164 
1165 	cfg = M_MAC_RETRY_EN |
1166 	      M_MAC_TX_HOLD_SOP_EN |
1167 	      V_MAC_TX_PAUSE_CNT_16K |
1168 	      M_MAC_AP_STAT_EN |
1169 	      M_MAC_SS_EN |
1170 	      0;
1171 
1172 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1173 	       V_MAC_TX_RD_THRSH(4) |
1174 	       V_MAC_TX_RL_THRSH(4) |
1175 	       V_MAC_RX_PL_THRSH(4) |
1176 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1177 	       V_MAC_RX_PL_THRSH(4) |
1178 	       V_MAC_RX_RL_THRSH(8) |
1179 	       0;
1180 
1181 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1182 	    V_MAC_MAX_FRAMESZ_DEFAULT |
1183 	    V_MAC_BACKOFF_SEL(1);
1184 
1185 	/*
1186 	 * Clear out the hash address map
1187 	 */
1188 
1189 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
1190 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1191 		SBMAC_WRITECSR(port, 0);
1192 		port += sizeof(uint64_t);
1193 	}
1194 
1195 	/*
1196 	 * Clear out the exact-match table
1197 	 */
1198 
1199 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1200 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1201 		SBMAC_WRITECSR(port, 0);
1202 		port += sizeof(uint64_t);
1203 	}
1204 
1205 	/*
1206 	 * Clear out the DMA Channel mapping table registers
1207 	 */
1208 
1209 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
1210 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1211 		SBMAC_WRITECSR(port, 0);
1212 		port += sizeof(uint64_t);
1213 	}
1214 
1215 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
1216 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1217 		SBMAC_WRITECSR(port, 0);
1218 		port += sizeof(uint64_t);
1219 	}
1220 
1221 	/*
1222 	 * Program the hardware address.  It goes into the hardware-address
1223 	 * register as well as the first filter register.
1224 	 */
1225 
1226 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
1227 
1228 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1229 	SBMAC_WRITECSR(port, reg);
1230 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
1231 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
1232 
1233 	/*
1234 	 * Set the receive filter for no packets, and write values
1235 	 * to the various config registers
1236 	 */
1237 
1238 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1239 	SBMAC_WRITECSR(sc->sbm_imr, 0);
1240 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1241 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
1242 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1243 
1244 	/*
1245 	 * Initialize DMA channels (rings should be ok now)
1246 	 */
1247 
1248 	sbdma_channel_start(&(sc->sbm_rxdma));
1249 	sbdma_channel_start(&(sc->sbm_txdma));
1250 
1251 	/*
1252 	 * Configure the speed, duplex, and flow control
1253 	 */
1254 
1255 	sbmac_set_speed(sc, sc->sbm_speed);
1256 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
1257 
1258 	/*
1259 	 * Fill the receive ring
1260 	 */
1261 
1262 	sbdma_fillring(&(sc->sbm_rxdma));
1263 
1264 	/*
1265 	 * Turn on the rest of the bits in the enable register
1266 	 */
1267 
1268 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1269 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1270 
1271 
1272 	/*
1273 	 * Accept any kind of interrupt on TX and RX DMA channel 0
1274 	 */
1275 	SBMAC_WRITECSR(sc->sbm_imr,
1276 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1277 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1278 
1279 	/*
1280 	 * Enable receiving unicasts and broadcasts
1281 	 */
1282 
1283 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1284 
1285 	/*
1286 	 * On chips which support unaligned DMA features, set the descriptor
1287 	 * ring for transmit channels to use the unaligned buffer format.
1288 	 */
1289 	txdma = &(sc->sbm_txdma);
1290 
1291 	if (sc->sbm_pass3_dma) {
1292 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1293 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1294 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
1295 		SBMAC_WRITECSR(txdma->sbdma_config0, dma_cfg0);
1296 
1297 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
1298 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1299 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1300 		SBMAC_WRITECSR(sc->sbm_fifocfg, fifo_cfg);
1301 	}
1302 
1303 	/*
1304 	 * we're running now.
1305 	 */
1306 
1307 	sc->sbm_state = sbmac_state_on;
1308 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1309 
1310 	/*
1311 	 * Program multicast addresses
1312 	 */
1313 
1314 	sbmac_setmulti(sc);
1315 
1316 	/*
1317 	 * If channel was in promiscuous mode before, turn that on
1318 	 */
1319 
1320 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1321 		sbmac_promiscuous_mode(sc, true);
1322 
1323 	/*
1324 	 * Turn on the once-per-second timer
1325 	 */
1326 
1327 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
1328 }
1329 
1330 /*
1331  *  SBMAC_CHANNEL_STOP(s)
1332  *
1333  *  Stop packet processing on this MAC.
1334  *
1335  *  Input parameters:
1336  *	sc - sbmac structure
1337  *
1338  *  Return value:
1339  *	nothing
1340  */
1341 
1342 static void
1343 sbmac_channel_stop(struct sbmac_softc *sc)
1344 {
1345 	uint64_t ctl;
1346 
1347 	/* don't do this if already stopped */
1348 
1349 	if (sc->sbm_state == sbmac_state_off)
1350 		return;
1351 
1352 	/* don't accept any packets, disable all interrupts */
1353 
1354 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1355 	SBMAC_WRITECSR(sc->sbm_imr, 0);
1356 
1357 	/* Turn off ticker */
1358 
1359 	callout_stop(&(sc->sc_tick_ch));
1360 
1361 	/* turn off receiver and transmitter */
1362 
1363 	ctl = SBMAC_READCSR(sc->sbm_macenable);
1364 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1365 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
1366 
1367 	/* We're stopped now. */
1368 
1369 	sc->sbm_state = sbmac_state_off;
1370 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1371 
1372 	/* Empty the receive and transmit rings */
1373 
1374 	sbdma_emptyring(&(sc->sbm_rxdma));
1375 	sbdma_emptyring(&(sc->sbm_txdma));
1376 }
1377 
1378 /*
1379  *  SBMAC_SET_CHANNEL_STATE(state)
1380  *
1381  *  Set the channel's state ON or OFF
1382  *
1383  *  Input parameters:
1384  *	state - new state
1385  *
1386  *  Return value:
1387  *	old state
1388  */
1389 
1390 static sbmac_state_t
1391 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1392 {
1393 	sbmac_state_t oldstate = sc->sbm_state;
1394 
1395 	/*
1396 	 * If same as previous state, return
1397 	 */
1398 
1399 	if (state == oldstate)
1400 		return oldstate;
1401 
1402 	/*
1403 	 * If new state is ON, turn channel on
1404 	 */
1405 
1406 	if (state == sbmac_state_on)
1407 		sbmac_channel_start(sc);
1408 	else
1409 		sbmac_channel_stop(sc);
1410 
1411 	/*
1412 	 * Return previous state
1413 	 */
1414 
1415 	return oldstate;
1416 }
1417 
1418 /*
1419  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
1420  *
1421  *  Turn on or off promiscuous mode
1422  *
1423  *  Input parameters:
1424  *	sc - softc
1425  *	enabled - true to turn on, false to turn off
1426  *
1427  *  Return value:
1428  *	nothing
1429  */
1430 
1431 static void
1432 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
1433 {
1434 	uint64_t reg;
1435 
1436 	if (sc->sbm_state != sbmac_state_on)
1437 		return;
1438 
1439 	if (enabled) {
1440 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1441 		reg |= M_MAC_ALLPKT_EN;
1442 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1443 	} else {
1444 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1445 		reg &= ~M_MAC_ALLPKT_EN;
1446 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1447 	}
1448 }
1449 
1450 /*
1451  *  SBMAC_INIT_AND_START(sc)
1452  *
1453  *  Stop the channel and restart it.  This is generally used
1454  *  when we have to do something to the channel that requires
1455  *  a swift kick.
1456  *
1457  *  Input parameters:
1458  *	sc - softc
1459  */
1460 
1461 static void
1462 sbmac_init_and_start(struct sbmac_softc *sc)
1463 {
1464 	int s;
1465 
1466 	s = splnet();
1467 
1468 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
1469 	sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */
1470 	sbmac_set_channel_state(sc, sbmac_state_on);
1471 
1472 	splx(s);
1473 }
1474 
1475 /*
1476  *  SBMAC_ADDR2REG(ptr)
1477  *
1478  *  Convert six bytes into the 64-bit register value that
1479  *  we typically write into the SBMAC's address/mcast registers
1480  *
1481  *  Input parameters:
1482  *	ptr - pointer to 6 bytes
1483  *
1484  *  Return value:
1485  *	register value
1486  */
1487 
1488 static uint64_t
1489 sbmac_addr2reg(u_char *ptr)
1490 {
1491 	uint64_t reg = 0;
1492 
1493 	ptr += 6;
1494 
1495 	reg |= (uint64_t) *(--ptr);
1496 	reg <<= 8;
1497 	reg |= (uint64_t) *(--ptr);
1498 	reg <<= 8;
1499 	reg |= (uint64_t) *(--ptr);
1500 	reg <<= 8;
1501 	reg |= (uint64_t) *(--ptr);
1502 	reg <<= 8;
1503 	reg |= (uint64_t) *(--ptr);
1504 	reg <<= 8;
1505 	reg |= (uint64_t) *(--ptr);
1506 
1507 	return reg;
1508 }
1509 
1510 /*
1511  *  SBMAC_SET_SPEED(sc, speed)
1512  *
1513  *  Configure LAN speed for the specified MAC.
1514  *  Warning: must be called when MAC is off!
1515  *
1516  *  Input parameters:
1517  *	sc - sbmac structure
1518  *	speed - speed to set MAC to (see sbmac_speed_t enum)
1519  *
1520  *  Return value:
1521  *	true if successful
1522  *	false indicates invalid parameters
1523  */
1524 
1525 static bool
1526 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
1527 {
1528 	uint64_t cfg;
1529 	uint64_t framecfg;
1530 
1531 	/*
1532 	 * Save new current values
1533 	 */
1534 
1535 	sc->sbm_speed = speed;
1536 
1537 	if (sc->sbm_state != sbmac_state_off)
1538 		panic("sbmac_set_speed while MAC not off");
1539 
1540 	/*
1541 	 * Read current register values
1542 	 */
1543 
1544 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
1545 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
1546 
1547 	/*
1548 	 * Mask out the stuff we want to change
1549 	 */
1550 
1551 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1552 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1553 	    M_MAC_SLOT_SIZE);
1554 
1555 	/*
1556 	 * Now add in the new bits
1557 	 */
1558 
1559 	switch (speed) {
1560 	case sbmac_speed_10:
1561 		framecfg |= V_MAC_IFG_RX_10 |
1562 		    V_MAC_IFG_TX_10 |
1563 		    K_MAC_IFG_THRSH_10 |
1564 		    V_MAC_SLOT_SIZE_10;
1565 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1566 		break;
1567 
1568 	case sbmac_speed_100:
1569 		framecfg |= V_MAC_IFG_RX_100 |
1570 		    V_MAC_IFG_TX_100 |
1571 		    V_MAC_IFG_THRSH_100 |
1572 		    V_MAC_SLOT_SIZE_100;
1573 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1574 		break;
1575 
1576 	case sbmac_speed_1000:
1577 		framecfg |= V_MAC_IFG_RX_1000 |
1578 		    V_MAC_IFG_TX_1000 |
1579 		    V_MAC_IFG_THRSH_1000 |
1580 		    V_MAC_SLOT_SIZE_1000;
1581 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1582 		break;
1583 
1584 	case sbmac_speed_auto:		/* XXX not implemented */
1585 		/* fall through */
1586 	default:
1587 		return false;
1588 	}
1589 
1590 	/*
1591 	 * Send the bits back to the hardware
1592 	 */
1593 
1594 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1595 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1596 
1597 	return true;
1598 }
1599 
1600 /*
1601  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
1602  *
1603  *  Set Ethernet duplex and flow control options for this MAC
1604  *  Warning: must be called when MAC is off!
1605  *
1606  *  Input parameters:
1607  *	sc - sbmac structure
1608  *	duplex - duplex setting (see sbmac_duplex_t)
1609  *	fc - flow control setting (see sbmac_fc_t)
1610  *
1611  *  Return value:
1612  *	true if ok
1613  *	false if an invalid parameter combination was specified
1614  */
1615 
1616 static bool
1617 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
1618 {
1619 	uint64_t cfg;
1620 
1621 	/*
1622 	 * Save new current values
1623 	 */
1624 
1625 	sc->sbm_duplex = duplex;
1626 	sc->sbm_fc = fc;
1627 
1628 	if (sc->sbm_state != sbmac_state_off)
1629 		panic("sbmac_set_duplex while MAC not off");
1630 
1631 	/*
1632 	 * Read current register values
1633 	 */
1634 
1635 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
1636 
1637 	/*
1638 	 * Mask off the stuff we're about to change
1639 	 */
1640 
1641 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1642 
1643 	switch (duplex) {
1644 	case sbmac_duplex_half:
1645 		switch (fc) {
1646 		case sbmac_fc_disabled:
1647 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1648 			break;
1649 
1650 		case sbmac_fc_collision:
1651 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1652 			break;
1653 
1654 		case sbmac_fc_carrier:
1655 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1656 			break;
1657 
1658 		case sbmac_fc_auto:		/* XXX not implemented */
1659 			/* fall through */
1660 		case sbmac_fc_frame:		/* not valid in half duplex */
1661 		default:			/* invalid selection */
1662 			panic("%s: invalid half duplex fc selection %d",
1663 			    device_xname(sc->sc_dev), fc);
1664 			return false;
1665 		}
1666 		break;
1667 
1668 	case sbmac_duplex_full:
1669 		switch (fc) {
1670 		case sbmac_fc_disabled:
1671 			cfg |= V_MAC_FC_CMD_DISABLED;
1672 			break;
1673 
1674 		case sbmac_fc_frame:
1675 			cfg |= V_MAC_FC_CMD_ENABLED;
1676 			break;
1677 
1678 		case sbmac_fc_collision:	/* not valid in full duplex */
1679 		case sbmac_fc_carrier:		/* not valid in full duplex */
1680 		case sbmac_fc_auto:		/* XXX not implemented */
1681 			/* fall through */
1682 		default:
1683 			panic("%s: invalid full duplex fc selection %d",
1684 			    device_xname(sc->sc_dev), fc);
1685 			return false;
1686 		}
1687 		break;
1688 
1689 	default:
1690 		/* fall through */
1691 	case sbmac_duplex_auto:
1692 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
1693 		/* XXX not implemented */
1694 		break;
1695 	}
1696 
1697 	/*
1698 	 * Send the bits back to the hardware
1699 	 */
1700 
1701 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1702 
1703 	return true;
1704 }
1705 
1706 /*
1707  *  SBMAC_INTR()
1708  *
1709  *  Interrupt handler for MAC interrupts
1710  *
1711  *  Input parameters:
1712  *	MAC structure
1713  *
1714  *  Return value:
1715  *	nothing
1716  */
1717 
1718 /* ARGSUSED */
1719 static void
1720 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
1721 {
1722 	struct sbmac_softc *sc = xsc;
1723 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1724 	uint64_t isr;
1725 
1726 	for (;;) {
1727 
1728 		/*
1729 		 * Read the ISR (this clears the bits in the real register)
1730 		 */
1731 
1732 		isr = SBMAC_READCSR(sc->sbm_isr);
1733 
1734 		if (isr == 0)
1735 			break;
1736 
1737 		/*
1738 		 * Transmits on channel 0
1739 		 */
1740 
1741 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1742 			sbdma_tx_process(sc, &(sc->sbm_txdma));
1743 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1744 		}
1745 
1746 		/*
1747 		 * Receives on channel 0
1748 		 */
1749 
1750 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1751 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
1752 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1753 		}
1754 	}
1755 
1756 	/* try to get more packets going */
1757 	if_schedule_deferred_start(ifp);
1758 }
1759 
1760 
1761 /*
1762  *  SBMAC_START(ifp)
1763  *
1764  *  Start output on the specified interface.  Basically, we
1765  *  queue as many buffers as we can until the ring fills up, or
1766  *  we run off the end of the queue, whichever comes first.
1767  *
1768  *  Input parameters:
1769  *	ifp - interface
1770  *
1771  *  Return value:
1772  *	nothing
1773  */
1774 
1775 static void
1776 sbmac_start(struct ifnet *ifp)
1777 {
1778 	struct sbmac_softc	*sc;
1779 	struct mbuf		*m_head = NULL;
1780 	int			rv;
1781 
1782 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1783 		return;
1784 
1785 	sc = ifp->if_softc;
1786 
1787 	for (;;) {
1788 
1789 		IF_DEQUEUE(&ifp->if_snd, m_head);
1790 		if (m_head == NULL)
1791 		    break;
1792 
1793 		/*
1794 		 * Put the buffer on the transmit ring.  If we
1795 		 * don't have room, set the OACTIVE flag and wait
1796 		 * for the NIC to drain the ring.
1797 		 */
1798 
1799 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1800 
1801 		if (rv == 0) {
1802 			/*
1803 			 * If there's a BPF listener, bounce a copy of this
1804 			 * frame to it.
1805 			 */
1806 			bpf_mtap(ifp, m_head, BPF_D_OUT);
1807 			if (!sc->sbm_pass3_dma) {
1808 				/*
1809 				 * Don't free mbuf if we're not copying to new
1810 				 * mbuf in sbdma_add_txbuffer.  It will be
1811 				 * freed in sbdma_tx_process.
1812 				 */
1813 				m_freem(m_head);
1814 			}
1815 		} else {
1816 		    IF_PREPEND(&ifp->if_snd, m_head);
1817 		    ifp->if_flags |= IFF_OACTIVE;
1818 		    break;
1819 		}
1820 	}
1821 }
1822 
1823 /*
1824  *  SBMAC_SETMULTI(sc)
1825  *
1826  *  Reprogram the multicast table into the hardware, given
1827  *  the list of multicasts associated with the interface
1828  *  structure.
1829  *
1830  *  Input parameters:
1831  *	sc - softc
1832  *
1833  *  Return value:
1834  *	nothing
1835  */
1836 
1837 static void
1838 sbmac_setmulti(struct sbmac_softc *sc)
1839 {
1840 	struct ethercom *ec = &sc->sc_ethercom;
1841 	struct ifnet *ifp = &ec->ec_if;
1842 	uint64_t reg;
1843 	sbmac_port_t port;
1844 	int idx;
1845 	struct ether_multi *enm;
1846 	struct ether_multistep step;
1847 
1848 	/*
1849 	 * Clear out entire multicast table.  We do this by nuking
1850 	 * the entire hash table and all the direct matches except
1851 	 * the first one, which is used for our station address
1852 	 */
1853 
1854 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1855 		port = PKSEG1(sc->sbm_base +
1856 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1857 		SBMAC_WRITECSR(port, 0);
1858 	}
1859 
1860 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1861 		port = PKSEG1(sc->sbm_base +
1862 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1863 		SBMAC_WRITECSR(port, 0);
1864 	}
1865 
1866 	/*
1867 	 * Clear the filter to say we don't want any multicasts.
1868 	 */
1869 
1870 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
1871 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1872 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1873 
1874 	if (ifp->if_flags & IFF_ALLMULTI) {
1875 		/*
1876 		 * Enable ALL multicasts.  Do this by inverting the
1877 		 * multicast enable bit.
1878 		 */
1879 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
1880 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1881 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1882 		return;
1883 	}
1884 
1885 	/*
1886 	 * Progam new multicast entries.  For now, only use the
1887 	 * perfect filter.  In the future we'll need to use the
1888 	 * hash filter if the perfect filter overflows
1889 	 */
1890 
1891 	/*
1892 	 * XXX only using perfect filter for now, need to use hash
1893 	 * XXX if the table overflows
1894 	 */
1895 
1896 	idx = 1;		/* skip station address */
1897 	ETHER_LOCK(ec);
1898 	ETHER_FIRST_MULTI(step, ec, enm);
1899 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1900 		reg = sbmac_addr2reg(enm->enm_addrlo);
1901 		port = PKSEG1(sc->sbm_base +
1902 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1903 		SBMAC_WRITECSR(port, reg);
1904 		idx++;
1905 		ETHER_NEXT_MULTI(step, enm);
1906 	}
1907 	ETHER_UNLOCK(ec);
1908 
1909 	/*
1910 	 * Enable the "accept multicast bits" if we programmed at least one
1911 	 * multicast.
1912 	 */
1913 
1914 	if (idx > 1) {
1915 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
1916 	    reg |= M_MAC_MCAST_EN;
1917 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1918 	}
1919 }
1920 
1921 /*
1922  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
1923  *
1924  *  Generic IOCTL requests for this interface.  The basic
1925  *  stuff is handled here for bringing the interface up,
1926  *  handling multicasts, etc.
1927  *
1928  *  Input parameters:
1929  *	ifp - interface structure
1930  *	cmd - command code
1931  *	data - pointer to data
1932  *
1933  *  Return value:
1934  *	return value (0 is success)
1935  */
1936 
1937 static int
1938 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1939 {
1940 	struct ifaddr *ifa = (struct ifaddr *) data;
1941 	struct sbmac_softc *sc = ifp->if_softc;
1942 
1943 	switch (cmd) {
1944 	case SIOCINITIFADDR:
1945 		ifp->if_flags |= IFF_UP;
1946 
1947 		switch (ifa->ifa_addr->sa_family) {
1948 #ifdef INET
1949 		case AF_INET:
1950 			sbmac_init_and_start(sc);
1951 			arp_ifinit(ifp, ifa);
1952 			break;
1953 #endif
1954 		default:
1955 			sbmac_init_and_start(sc);
1956 			break;
1957 		}
1958 		break;
1959 
1960 	default:
1961 		return ENOTTY;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 /*
1968  *  SBMAC_IOCTL(ifp, cmd, data)
1969  *
1970  *  Main IOCTL handler - dispatches to other IOCTLs for various
1971  *  types of requests.
1972  *
1973  *  Input parameters:
1974  *	ifp - interface pointer
1975  *	cmd - command code
1976  *	data - pointer to argument data
1977  *
1978  *  Return value:
1979  *	0 if ok
1980  *	else error code
1981  */
1982 
1983 static int
1984 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1985 {
1986 	struct sbmac_softc *sc = ifp->if_softc;
1987 	struct ifreq *ifr = (struct ifreq *) data;
1988 	int s, error = 0;
1989 
1990 	s = splnet();
1991 
1992 	switch (cmd) {
1993 	case SIOCINITIFADDR:
1994 		error = sbmac_ether_ioctl(ifp, cmd, data);
1995 		break;
1996 	case SIOCSIFMTU:
1997 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
1998 			error = EINVAL;
1999 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
2000 			/* XXX Program new MTU here */
2001 			error = 0;
2002 		break;
2003 	case SIOCSIFFLAGS:
2004 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2005 			break;
2006 		if (ifp->if_flags & IFF_UP) {
2007 			/*
2008 			 * If only the state of the PROMISC flag changed,
2009 			 * just tweak the hardware registers.
2010 			 */
2011 			if ((ifp->if_flags & IFF_RUNNING) &&
2012 			    (ifp->if_flags & IFF_PROMISC)) {
2013 				/* turn on promiscuous mode */
2014 				sbmac_promiscuous_mode(sc, true);
2015 			} else if (ifp->if_flags & IFF_RUNNING &&
2016 			    !(ifp->if_flags & IFF_PROMISC)) {
2017 			    /* turn off promiscuous mode */
2018 			    sbmac_promiscuous_mode(sc, false);
2019 			} else
2020 			    sbmac_set_channel_state(sc, sbmac_state_on);
2021 		} else {
2022 			if (ifp->if_flags & IFF_RUNNING)
2023 				sbmac_set_channel_state(sc, sbmac_state_off);
2024 		}
2025 
2026 		sc->sbm_if_flags = ifp->if_flags;
2027 		error = 0;
2028 		break;
2029 
2030 	default:
2031 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2032 			error = 0;
2033 			if (ifp->if_flags & IFF_RUNNING)
2034 				sbmac_setmulti(sc);
2035 		}
2036 		break;
2037 	}
2038 
2039 	(void)splx(s);
2040 
2041 	return error;
2042 }
2043 
2044 /*
2045  *  SBMAC_IFMEDIA_UPD(ifp)
2046  *
2047  *  Configure an appropriate media type for this interface,
2048  *  given the data in the interface structure
2049  *
2050  *  Input parameters:
2051  *	ifp - interface
2052  *
2053  *  Return value:
2054  *	0 if ok
2055  *	else error code
2056  */
2057 
2058 /*
2059  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
2060  *
2061  *  Report current media status (used by ifconfig, for example)
2062  *
2063  *  Input parameters:
2064  *	ifp - interface structure
2065  *	ifmr - media request structure
2066  *
2067  *  Return value:
2068  *	nothing
2069  */
2070 
2071 /*
2072  *  SBMAC_WATCHDOG(ifp)
2073  *
2074  *  Called periodically to make sure we're still happy.
2075  *
2076  *  Input parameters:
2077  *	ifp - interface structure
2078  *
2079  *  Return value:
2080  *	nothing
2081  */
2082 
2083 static void
2084 sbmac_watchdog(struct ifnet *ifp)
2085 {
2086 
2087 	/* XXX do something */
2088 }
2089 
2090 /*
2091  * One second timer, used to tick MII.
2092  */
2093 static void
2094 sbmac_tick(void *arg)
2095 {
2096 	struct sbmac_softc *sc = arg;
2097 	int s;
2098 
2099 	s = splnet();
2100 	mii_tick(&sc->sc_mii);
2101 	splx(s);
2102 
2103 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2104 }
2105 
2106 
2107 /*
2108  *  SBMAC_MATCH(parent, match, aux)
2109  *
2110  *  Part of the config process - see if this device matches the
2111  *  info about what we expect to find on the bus.
2112  *
2113  *  Input parameters:
2114  *	parent - parent bus structure
2115  *	match -
2116  *	aux - bus-specific args
2117  *
2118  *  Return value:
2119  *	1 if we match
2120  *	0 if we don't match
2121  */
2122 
2123 static int
2124 sbmac_match(device_t parent, cfdata_t match, void *aux)
2125 {
2126 	struct sbobio_attach_args *sa = aux;
2127 
2128 	/*
2129 	 * Make sure it's a MAC
2130 	 */
2131 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2132 		return 0;
2133 
2134 	/*
2135 	 * Yup, it is.
2136 	 */
2137 
2138 	return 1;
2139 }
2140 
2141 /*
2142  *  SBMAC_PARSE_XDIGIT(str)
2143  *
2144  *  Parse a hex digit, returning its value
2145  *
2146  *  Input parameters:
2147  *	str - character
2148  *
2149  *  Return value:
2150  *	hex value, or -1 if invalid
2151  */
2152 
2153 static int
2154 sbmac_parse_xdigit(char str)
2155 {
2156 	int digit;
2157 
2158 	if ((str >= '0') && (str <= '9'))
2159 		digit = str - '0';
2160 	else if ((str >= 'a') && (str <= 'f'))
2161 		digit = str - 'a' + 10;
2162 	else if ((str >= 'A') && (str <= 'F'))
2163 		digit = str - 'A' + 10;
2164 	else
2165 		digit = -1;
2166 
2167 	return digit;
2168 }
2169 
2170 /*
2171  *  SBMAC_PARSE_HWADDR(str, hwaddr)
2172  *
2173  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2174  *  Ethernet address.
2175  *
2176  *  Input parameters:
2177  *	str - string
2178  *	hwaddr - pointer to hardware address
2179  *
2180  *  Return value:
2181  *	0 if ok, else -1
2182  */
2183 
2184 static int
2185 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2186 {
2187 	int digit1, digit2;
2188 	int idx = 6;
2189 
2190 	while (*str && (idx > 0)) {
2191 		digit1 = sbmac_parse_xdigit(*str);
2192 		if (digit1 < 0)
2193 			return -1;
2194 		str++;
2195 		if (!*str)
2196 			return -1;
2197 
2198 		if ((*str == ':') || (*str == '-')) {
2199 			digit2 = digit1;
2200 			digit1 = 0;
2201 		} else {
2202 			digit2 = sbmac_parse_xdigit(*str);
2203 			if (digit2 < 0)
2204 				return -1;
2205 			str++;
2206 		}
2207 
2208 		*hwaddr++ = (digit1 << 4) | digit2;
2209 		idx--;
2210 
2211 		if (*str == '-')
2212 			str++;
2213 		if (*str == ':')
2214 			str++;
2215 	}
2216 	return 0;
2217 }
2218 
2219 /*
2220  *  SBMAC_ATTACH(parent, self, aux)
2221  *
2222  *  Attach routine - init hardware and hook ourselves into NetBSD.
2223  *
2224  *  Input parameters:
2225  *	parent - parent bus device
2226  *	self - our softc
2227  *	aux - attach data
2228  *
2229  *  Return value:
2230  *	nothing
2231  */
2232 
2233 static void
2234 sbmac_attach(device_t parent, device_t self, void *aux)
2235 {
2236 	struct sbmac_softc * const sc = device_private(self);
2237 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2238 	struct mii_data * const mii = &sc->sc_mii;
2239 	struct sbobio_attach_args * const sa = aux;
2240 	u_char *eaddr;
2241 	static int unit = 0;	/* XXX */
2242 	uint64_t ea_reg;
2243 	int idx;
2244 
2245 	sc->sc_dev = self;
2246 
2247 	/* Determine controller base address */
2248 
2249 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
2250 
2251 	eaddr = sc->sbm_hwaddr;
2252 
2253 	/*
2254 	 * Initialize context (get pointers to registers and stuff), then
2255 	 * allocate the memory for the descriptor tables.
2256 	 */
2257 
2258 	sbmac_initctx(sc);
2259 
2260 	callout_init(&(sc->sc_tick_ch), 0);
2261 
2262 	/*
2263 	 * Read the ethernet address.  The firwmare left this programmed
2264 	 * for us in the ethernet address register for each mac.
2265 	 */
2266 
2267 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2268 	for (idx = 0; idx < 6; idx++) {
2269 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2270 		ea_reg >>= 8;
2271 	}
2272 
2273 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2274 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2275 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2276 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2277 		eaddr[5] = unit;
2278 	}
2279 
2280 #ifdef SBMAC_ETH0_HWADDR
2281 	if (unit == 0)
2282 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2283 #endif
2284 #ifdef SBMAC_ETH1_HWADDR
2285 	if (unit == 1)
2286 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2287 #endif
2288 #ifdef SBMAC_ETH2_HWADDR
2289 	if (unit == 2)
2290 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2291 #endif
2292 	unit++;
2293 
2294 	/*
2295 	 * Display Ethernet address (this is called during the config process
2296 	 * so we need to finish off the config message that was being displayed)
2297 	 */
2298 	aprint_normal(": Ethernet%s\n",
2299 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2300 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
2301 
2302 
2303 	/*
2304 	 * Set up ifnet structure
2305 	 */
2306 
2307 	ifp->if_softc = sc;
2308 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
2309 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2310 	ifp->if_ioctl = sbmac_ioctl;
2311 	ifp->if_start = sbmac_start;
2312 	ifp->if_watchdog = sbmac_watchdog;
2313 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2314 
2315 	/*
2316 	 * Set up ifmedia support.
2317 	 */
2318 
2319 	/*
2320 	 * Initialize MII/media info.
2321 	 */
2322 	mii->mii_ifp	  = ifp;
2323 	mii->mii_readreg  = sbmac_mii_readreg;
2324 	mii->mii_writereg = sbmac_mii_writereg;
2325 	mii->mii_statchg  = sbmac_mii_statchg;
2326 	sc->sc_ethercom.ec_mii = mii;
2327 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
2328 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
2329 	    MII_OFFSET_ANY, 0);
2330 
2331 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
2332 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
2333 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
2334 	} else
2335 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2336 
2337 	/*
2338 	 * map/route interrupt
2339 	 */
2340 
2341 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
2342 	    sbmac_intr, sc);
2343 
2344 	/*
2345 	 * Call MI attach routines.
2346 	 */
2347 	if_attach(ifp);
2348 	if_deferred_start_init(ifp, NULL);
2349 	ether_ifattach(ifp, eaddr);
2350 }
2351