xref: /netbsd-src/sys/arch/mips/cavium/octeon_intr.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: octeon_intr.c,v 1.10 2017/03/30 08:43:40 skrll Exp $	*/
2 /*
3  * Copyright 2001, 2002 Wasabi Systems, Inc.
4  * All rights reserved.
5  *
6  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed for the NetBSD Project by
19  *      Wasabi Systems, Inc.
20  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21  *    or promote products derived from this software without specific prior
22  *    written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * Platform-specific interrupt support for the MIPS Malta.
39  */
40 
41 #include "opt_octeon.h"
42 #include "opt_multiprocessor.h"
43 
44 #include "cpunode.h"
45 #define __INTR_PRIVATE
46 
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.10 2017/03/30 08:43:40 skrll Exp $");
49 
50 #include <sys/param.h>
51 #include <sys/cpu.h>
52 #include <sys/systm.h>
53 #include <sys/device.h>
54 #include <sys/intr.h>
55 #include <sys/kernel.h>
56 #include <sys/kmem.h>
57 #include <sys/atomic.h>
58 
59 #include <lib/libkern/libkern.h>
60 
61 #include <mips/locore.h>
62 
63 #include <mips/cavium/dev/octeon_ciureg.h>
64 #include <mips/cavium/octeonvar.h>
65 
66 /*
67  * This is a mask of bits to clear in the SR when we go to a
68  * given hardware interrupt priority level.
69  */
70 static const struct ipl_sr_map octeon_ipl_sr_map = {
71     .sr_bits = {
72 	[IPL_NONE] =		0,
73 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
74 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
75 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
76 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
77 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
78 	[IPL_DDB] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
79 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
80 	[IPL_HIGH] =		MIPS_INT_MASK,
81     },
82 };
83 
84 const char * const octeon_intrnames[NIRQS] = {
85 	"workq 0",
86 	"workq 1",
87 	"workq 2",
88 	"workq 3",
89 	"workq 4",
90 	"workq 5",
91 	"workq 6",
92 	"workq 7",
93 	"workq 8",
94 	"workq 9",
95 	"workq 10",
96 	"workq 11",
97 	"workq 12",
98 	"workq 13",
99 	"workq 14",
100 	"workq 15",
101 	"gpio 0",
102 	"gpio 1",
103 	"gpio 2",
104 	"gpio 3",
105 	"gpio 4",
106 	"gpio 5",
107 	"gpio 6",
108 	"gpio 7",
109 	"gpio 8",
110 	"gpio 9",
111 	"gpio 10",
112 	"gpio 11",
113 	"gpio 12",
114 	"gpio 13",
115 	"gpio 14",
116 	"gpio 15",
117 	"mbox 0-15",
118 	"mbox 16-31",
119 	"uart 0",
120 	"uart 1",
121 	"pci inta",
122 	"pci intb",
123 	"pci intc",
124 	"pci intd",
125 	"pci msi 0-15",
126 	"pci msi 16-31",
127 	"pci msi 32-47",
128 	"pci msi 48-63",
129 	"wdog summary",
130 	"twsi",
131 	"rml",
132 	"trace",
133 	"gmx drop",
134 	"reserved",
135 	"ipd drop",
136 	"reserved",
137 	"timer 0",
138 	"timer 1",
139 	"timer 2",
140 	"timer 3",
141 	"usb",
142 	"pcm/tdm",
143 	"mpi/spi",
144 	"reserved",
145 	"reserved",
146 	"reserved",
147 	"reserved",
148 	"reserved",
149 };
150 
151 struct octeon_intrhand {
152 	int (*ih_func)(void *);
153 	void *ih_arg;
154 	int ih_irq;
155 	int ih_ipl;
156 };
157 
158 #ifdef MULTIPROCESSOR
159 static int octeon_send_ipi(struct cpu_info *, int);
160 static int octeon_ipi_intr(void *);
161 
162 struct octeon_intrhand ipi_intrhands[2] = {
163 	[0] = {
164 		.ih_func = octeon_ipi_intr,
165 		.ih_arg = (void *)(uintptr_t)__BITS(15,0),
166 		.ih_irq = _CIU_INT_MBOX_15_0_SHIFT,
167 		.ih_ipl = IPL_SCHED,
168 	},
169 	[1] = {
170 		.ih_func = octeon_ipi_intr,
171 		.ih_arg = (void *)(uintptr_t)__BITS(31,16),
172 		.ih_irq = _CIU_INT_MBOX_31_16_SHIFT,
173 		.ih_ipl = IPL_HIGH,
174 	},
175 };
176 #endif
177 
178 struct octeon_intrhand *octeon_ciu_intrs[NIRQS] = {
179 #ifdef MULTIPROCESSOR
180 	[_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0],
181 	[_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1],
182 #endif
183 };
184 
185 kmutex_t octeon_intr_lock;
186 
187 #define X(a)	MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
188 
189 struct cpu_softc octeon_cpu0_softc = {
190 	.cpu_ci = &cpu_info_store,
191 	.cpu_int0_sum0 = X(CIU_INT0_SUM0),
192 	.cpu_int1_sum0 = X(CIU_INT1_SUM0),
193 	.cpu_int2_sum0 = X(CIU_INT4_SUM0),
194 
195 	.cpu_int0_en0 = X(CIU_INT0_EN0),
196 	.cpu_int1_en0 = X(CIU_INT1_EN0),
197 	.cpu_int2_en0 = X(CIU_INT4_EN00),
198 
199 	.cpu_int0_en1 = X(CIU_INT0_EN1),
200 	.cpu_int1_en1 = X(CIU_INT1_EN1),
201 	.cpu_int2_en1 = X(CIU_INT4_EN01),
202 
203 	.cpu_int32_en = X(CIU_INT32_EN0),
204 
205 	.cpu_wdog = X(CIU_WDOG0),
206 	.cpu_pp_poke = X(CIU_PP_POKE0),
207 
208 #ifdef MULTIPROCESSOR
209 	.cpu_mbox_set = X(CIU_MBOX_SET0),
210 	.cpu_mbox_clr = X(CIU_MBOX_CLR0),
211 #endif
212 };
213 
214 #ifdef MULTIPROCESSOR
215 struct cpu_softc octeon_cpu1_softc = {
216 	.cpu_int0_sum0 = X(CIU_INT2_SUM0),
217 	.cpu_int1_sum0 = X(CIU_INT3_SUM0),
218 	.cpu_int2_sum0 = X(CIU_INT4_SUM1),
219 
220 	.cpu_int0_en0 = X(CIU_INT2_EN0),
221 	.cpu_int1_en0 = X(CIU_INT3_EN0),
222 	.cpu_int2_en0 = X(CIU_INT4_EN10),
223 
224 	.cpu_int0_en1 = X(CIU_INT2_EN1),
225 	.cpu_int1_en1 = X(CIU_INT3_EN1),
226 	.cpu_int2_en1 = X(CIU_INT4_EN11),
227 
228 	.cpu_int32_en = X(CIU_INT32_EN1),
229 
230 	.cpu_wdog = X(CIU_WDOG1),
231 	.cpu_pp_poke = X(CIU_PP_POKE1),
232 
233 	.cpu_mbox_set = X(CIU_MBOX_SET1),
234 	.cpu_mbox_clr = X(CIU_MBOX_CLR1),
235 };
236 #endif
237 
238 #ifdef DEBUG
239 static void
240 octeon_mbox_test(void)
241 {
242 	const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
243 	const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
244 	const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
245 	const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
246 	const uint64_t int_sum0 = X(CIU_INT0_SUM0);
247 	const uint64_t int_sum1 = X(CIU_INT2_SUM0);
248 	const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT);
249 	const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT);
250 
251 	mips3_sd(mbox_clr0, ~0ULL);
252 	mips3_sd(mbox_clr1, ~0ULL);
253 
254 	uint32_t mbox0 = mips3_ld(mbox_set0);
255 	uint32_t mbox1 = mips3_ld(mbox_set1);
256 
257 	KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
258 	KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
259 
260 	mips3_sd(mbox_set0, __BIT(0));
261 
262 	mbox0 = mips3_ld(mbox_set0);
263 	mbox1 = mips3_ld(mbox_set1);
264 
265 	KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
266 	KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
267 
268 	uint64_t sum0 = mips3_ld(int_sum0);
269 	uint64_t sum1 = mips3_ld(int_sum1);
270 
271 	KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
272 	KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
273 
274 	KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
275 	KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
276 
277 	mips3_sd(mbox_clr0, mbox0);
278 	mbox0 = mips3_ld(mbox_set0);
279 	KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
280 
281 	mips3_sd(mbox_set0, __BIT(16));
282 
283 	mbox0 = mips3_ld(mbox_set0);
284 	mbox1 = mips3_ld(mbox_set1);
285 
286 	KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
287 	KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
288 
289 	sum0 = mips3_ld(int_sum0);
290 	sum1 = mips3_ld(int_sum1);
291 
292 	KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
293 	KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
294 
295 	KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
296 	KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
297 }
298 #endif
299 
300 #undef X
301 
302 void
303 octeon_intr_init(struct cpu_info *ci)
304 {
305 #ifdef DIAGNOSTIC
306 	const int cpunum = cpu_index(ci);
307 #endif
308 	const char * const xname = cpu_name(ci);
309 	struct cpu_softc *cpu = ci->ci_softc;
310 
311 
312 	if (ci->ci_cpuid == 0) {
313 		KASSERT(ci->ci_softc == &octeon_cpu0_softc);
314 		ipl_sr_map = octeon_ipl_sr_map;
315 		mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
316 #ifdef MULTIPROCESSOR
317 		mips_locoresw.lsw_send_ipi = octeon_send_ipi;
318 #endif
319 #ifdef DEBUG
320 		octeon_mbox_test();
321 #endif
322 	} else {
323 		KASSERT(cpunum == 1);
324 #ifdef MULTIPROCESSOR
325 		KASSERT(ci->ci_softc == &octeon_cpu1_softc);
326 #endif
327 	}
328 
329 #ifdef MULTIPROCESSOR
330 	// Enable the IPIs
331 	cpu->cpu_int1_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT);
332 	cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT);
333 #endif
334 
335 	if (ci->ci_dev)
336 		aprint_verbose_dev(ci->ci_dev,
337 		    "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
338 		    cpu->cpu_int0_enable0, cpu->cpu_int1_enable0,
339 		    cpu->cpu_int2_enable0);
340 
341 	mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
342 	mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
343 	mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
344 
345 	mips3_sd(cpu->cpu_int32_en, 0);
346 
347 	mips3_sd(cpu->cpu_int0_en1, 0);	// WDOG IPL2
348 	mips3_sd(cpu->cpu_int1_en1, 0);	// WDOG IPL3
349 	mips3_sd(cpu->cpu_int2_en1, 0);	// WDOG IPL4
350 
351 #ifdef MULTIPROCESSOR
352 	mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
353 #endif
354 
355 	for (size_t i = 0; i < NIRQS; i++) {
356 		evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
357 		    EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
358 	}
359 }
360 
361 void
362 octeon_cal_timer(int corefreq)
363 {
364 	/* Compute the number of cycles per second. */
365 	curcpu()->ci_cpu_freq = corefreq;
366 
367 	/* Compute the number of ticks for hz. */
368 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
369 
370 	/* Compute the delay divisor and reciprical. */
371 	curcpu()->ci_divisor_delay =
372 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
373 #if 0
374 	MIPS_SET_CI_RECIPRICAL(curcpu());
375 #endif
376 
377 	mips3_cp0_count_write(0);
378 	mips3_cp0_compare_write(0);
379 }
380 
381 void *
382 octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
383 {
384 	struct octeon_intrhand *ih;
385 
386 	if (irq >= NIRQS)
387 		panic("octeon_intr_establish: bogus IRQ %d", irq);
388 	if (ipl < IPL_VM)
389 		panic("octeon_intr_establish: bogus IPL %d", ipl);
390 
391 	ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
392 	if (ih == NULL)
393 		return (NULL);
394 
395 	ih->ih_func = func;
396 	ih->ih_arg = arg;
397 	ih->ih_irq = irq;
398 	ih->ih_ipl = ipl;
399 
400 	mutex_enter(&octeon_intr_lock);
401 
402 	/*
403 	 * First, make it known.
404 	 */
405 	KASSERTMSG(octeon_ciu_intrs[irq] == NULL, "irq %d in use! (%p)",
406 	    irq, octeon_ciu_intrs[irq]);
407 
408 	octeon_ciu_intrs[irq] = ih;
409 	membar_producer();
410 
411 	/*
412 	 * Now enable it.
413 	 */
414 	const uint64_t irq_mask = __BIT(irq);
415 	struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
416 #if MULTIPROCESSOR
417 	struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
418 #endif
419 
420 	switch (ipl) {
421 	case IPL_VM:
422 		cpu0->cpu_int0_enable0 |= irq_mask;
423 		mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
424 		break;
425 
426 	case IPL_SCHED:
427 		cpu0->cpu_int1_enable0 |= irq_mask;
428 		mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
429 #ifdef MULTIPROCESSOR
430 		cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
431 		mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
432 #endif
433 		break;
434 
435 	case IPL_DDB:
436 	case IPL_HIGH:
437 		cpu0->cpu_int2_enable0 |= irq_mask;
438 		mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
439 #ifdef MULTIPROCESSOR
440 		cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
441 		mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
442 #endif
443 		break;
444 	}
445 
446 	mutex_exit(&octeon_intr_lock);
447 
448 	return ih;
449 }
450 
451 void
452 octeon_intr_disestablish(void *cookie)
453 {
454 	struct octeon_intrhand * const ih = cookie;
455 	const int irq = ih->ih_irq & (NIRQS-1);
456 	const int ipl = ih->ih_ipl;
457 
458 	mutex_enter(&octeon_intr_lock);
459 
460 	/*
461 	 * First disable it.
462 	 */
463 	const uint64_t irq_mask = ~__BIT(irq);
464 	struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
465 #if MULTIPROCESSOR
466 	struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
467 #endif
468 
469 	switch (ipl) {
470 	case IPL_VM:
471 		cpu0->cpu_int0_enable0 &= ~irq_mask;
472 		mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
473 		break;
474 
475 	case IPL_SCHED:
476 		cpu0->cpu_int1_enable0 &= ~irq_mask;
477 		mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
478 #ifdef MULTIPROCESSOR
479 		cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
480 		mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
481 #endif
482 		break;
483 
484 	case IPL_DDB:
485 	case IPL_HIGH:
486 		cpu0->cpu_int2_enable0 &= ~irq_mask;
487 		mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
488 #ifdef MULTIPROCESSOR
489 		cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
490 		mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
491 #endif
492 		break;
493 	}
494 
495 	/*
496 	 * Now remove it since we shouldn't get interrupts for it.
497 	 */
498 	octeon_ciu_intrs[irq] = NULL;
499 
500 	mutex_exit(&octeon_intr_lock);
501 
502 	kmem_free(ih, sizeof(*ih));
503 }
504 
505 void
506 octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
507 {
508 	struct cpu_info * const ci = curcpu();
509 	struct cpu_softc * const cpu = ci->ci_softc;
510 
511 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
512 	KASSERT((ipending & ~MIPS_INT_MASK) == 0);
513 	KASSERT(ipending & MIPS_HARD_INT_MASK);
514 	uint64_t hwpend = 0;
515 
516 	if (ipending & MIPS_INT_MASK_2) {
517 		hwpend = mips3_ld(cpu->cpu_int2_sum0)
518 		    & cpu->cpu_int2_enable0;
519 	} else if (ipending & MIPS_INT_MASK_1) {
520 		hwpend = mips3_ld(cpu->cpu_int1_sum0)
521 		    & cpu->cpu_int1_enable0;
522 	} else if (ipending & MIPS_INT_MASK_0) {
523 		hwpend = mips3_ld(cpu->cpu_int0_sum0)
524 		    & cpu->cpu_int0_enable0;
525 	} else {
526 		panic("octeon_iointr: unexpected ipending %#x", ipending);
527 	}
528 	while (hwpend != 0) {
529 		const int irq = ffs64(hwpend) - 1;
530 		hwpend &= ~__BIT(irq);
531 
532 		struct octeon_intrhand * const ih = octeon_ciu_intrs[irq];
533 		cpu->cpu_intr_evs[irq].ev_count++;
534 		if (__predict_true(ih != NULL)) {
535 #ifdef MULTIPROCESSOR
536 			if (ipl == IPL_VM) {
537 				KERNEL_LOCK(1, NULL);
538 #endif
539 				(*ih->ih_func)(ih->ih_arg);
540 #ifdef MULTIPROCESSOR
541 				KERNEL_UNLOCK_ONE(NULL);
542 			} else {
543 				(*ih->ih_func)(ih->ih_arg);
544 			}
545 #endif
546 			KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
547 		}
548 	}
549 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
550 }
551 
552 #ifdef MULTIPROCESSOR
553 __CTASSERT(NIPIS < 16);
554 
555 int
556 octeon_ipi_intr(void *arg)
557 {
558 	struct cpu_info * const ci = curcpu();
559 	struct cpu_softc * const cpu = ci->ci_softc;
560 	uint32_t ipi_mask = (uintptr_t) arg;
561 
562 	KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
563 	    "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
564 
565 	ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
566 	if (ipi_mask == 0)
567 		return 0;
568 
569 	mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
570 
571 	ipi_mask |= (ipi_mask >> 16);
572 	ipi_mask &= __BITS(15,0);
573 
574 	KASSERT(ipi_mask < __BIT(NIPIS));
575 
576 #if NWDOG > 0
577 	// Handle WDOG requests ourselves.
578 	if (ipi_mask & __BIT(IPI_WDOG)) {
579 		softint_schedule(cpu->cpu_wdog_sih);
580 		atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
581 		ipi_mask &= ~__BIT(IPI_WDOG);
582 		ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
583 		if (__predict_true(ipi_mask == 0))
584 			return 1;
585 	}
586 #endif
587 
588 	/* if the request is clear, it was previously processed */
589 	if ((ci->ci_request_ipis & ipi_mask) == 0)
590 		return 0;
591 
592 	atomic_or_64(&ci->ci_active_ipis, ipi_mask);
593 	atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
594 
595 	ipi_process(ci, ipi_mask);
596 
597 	atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
598 
599 	return 1;
600 }
601 
602 int
603 octeon_send_ipi(struct cpu_info *ci, int req)
604 {
605 	KASSERT(req < NIPIS);
606 	if (ci == NULL) {
607 		CPU_INFO_ITERATOR cii;
608 		for (CPU_INFO_FOREACH(cii, ci)) {
609 			if (ci != curcpu()) {
610 				octeon_send_ipi(ci, req);
611 			}
612 		}
613 		return 0;
614 	}
615 	KASSERT(cold || ci->ci_softc != NULL);
616 	if (ci->ci_softc == NULL)
617 		return -1;
618 
619 	struct cpu_softc * const cpu = ci->ci_softc;
620 	uint64_t ipi_mask = __BIT(req);
621 
622 	atomic_or_64(&ci->ci_request_ipis, ipi_mask);
623 	if (req == IPI_SUSPEND || req == IPI_WDOG) {
624 		ipi_mask <<= 16;
625 	}
626 
627 	mips3_sd(cpu->cpu_mbox_set, ipi_mask);
628 	return 0;
629 }
630 #endif	/* MULTIPROCESSOR */
631