1 /* $NetBSD: octeon_intr.c,v 1.4 2015/06/06 20:52:16 matt Exp $ */ 2 /* 3 * Copyright 2001, 2002 Wasabi Systems, Inc. 4 * All rights reserved. 5 * 6 * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed for the NetBSD Project by 19 * Wasabi Systems, Inc. 20 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 21 * or promote products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 /* 38 * Platform-specific interrupt support for the MIPS Malta. 39 */ 40 41 #include "opt_octeon.h" 42 #include "cpunode.h" 43 #define __INTR_PRIVATE 44 45 #include <sys/cdefs.h> 46 __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.4 2015/06/06 20:52:16 matt Exp $"); 47 48 #include <sys/param.h> 49 #include <sys/cpu.h> 50 #include <sys/systm.h> 51 #include <sys/device.h> 52 #include <sys/intr.h> 53 #include <sys/kernel.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 57 #include <lib/libkern/libkern.h> 58 59 #include <mips/locore.h> 60 61 #include <mips/cavium/dev/octeon_ciureg.h> 62 #include <mips/cavium/octeonvar.h> 63 64 /* 65 * This is a mask of bits to clear in the SR when we go to a 66 * given hardware interrupt priority level. 67 */ 68 static const struct ipl_sr_map octeon_ipl_sr_map = { 69 .sr_bits = { 70 [IPL_NONE] = 0, 71 [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0, 72 [IPL_SOFTNET] = MIPS_SOFT_INT_MASK, 73 [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0, 74 [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0 75 | MIPS_INT_MASK_5, 76 [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0 77 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5, 78 [IPL_HIGH] = MIPS_INT_MASK, 79 }, 80 }; 81 82 const char * const octeon_intrnames[NIRQS] = { 83 "workq 0", 84 "workq 1", 85 "workq 2", 86 "workq 3", 87 "workq 4", 88 "workq 5", 89 "workq 6", 90 "workq 7", 91 "workq 8", 92 "workq 9", 93 "workq 10", 94 "workq 11", 95 "workq 12", 96 "workq 13", 97 "workq 14", 98 "workq 15", 99 "gpio 0", 100 "gpio 1", 101 "gpio 2", 102 "gpio 3", 103 "gpio 4", 104 "gpio 5", 105 "gpio 6", 106 "gpio 7", 107 "gpio 8", 108 "gpio 9", 109 "gpio 10", 110 "gpio 11", 111 "gpio 12", 112 "gpio 13", 113 "gpio 14", 114 "gpio 15", 115 "mbox 0-15", 116 "mbox 16-31", 117 "uart 0", 118 "uart 1", 119 "pci inta", 120 "pci intb", 121 "pci intc", 122 "pci intd", 123 "pci msi 0-15", 124 "pci msi 16-31", 125 "pci msi 32-47", 126 "pci msi 48-63", 127 "wdog summary", 128 "twsi", 129 "rml", 130 "trace", 131 "gmx drop", 132 "reserved", 133 "ipd drop", 134 "reserved", 135 "timer 0", 136 "timer 1", 137 "timer 2", 138 "timer 3", 139 "usb", 140 "pcm/tdm", 141 "mpi/spi", 142 "reserved", 143 "reserved", 144 "reserved", 145 "reserved", 146 "reserved", 147 }; 148 149 struct octeon_intrhand { 150 int (*ih_func)(void *); 151 void *ih_arg; 152 int ih_irq; 153 int ih_ipl; 154 }; 155 156 #ifdef MULTIPROCESSOR 157 static int octeon_send_ipi(struct cpu_info *, int); 158 static int octeon_ipi_intr(void *); 159 160 struct octeon_intrhand ipi_intrhands[2] = { 161 [0] = { 162 .ih_func = octeon_ipi_intr, 163 .ih_arg = (void *)(uintptr_t)__BITS(15,0), 164 .ih_irq = _CIU_INT_MBOX_15_0_SHIFT, 165 .ih_ipl = IPL_SCHED, 166 }, 167 [1] = { 168 .ih_func = octeon_ipi_intr, 169 .ih_arg = (void *)(uintptr_t)__BITS(31,16), 170 .ih_irq = _CIU_INT_MBOX_31_16_SHIFT, 171 .ih_ipl = IPL_HIGH, 172 }, 173 }; 174 #endif 175 176 struct octeon_intrhand *octeon_ciu_intrs[NIRQS] = { 177 #ifdef MULTIPROCESSOR 178 [_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0], 179 [_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1], 180 #endif 181 }; 182 183 kmutex_t octeon_intr_lock; 184 185 #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a)) 186 187 struct cpu_softc octeon_cpu0_softc = { 188 .cpu_ci = &cpu_info_store, 189 .cpu_int0_sum0 = X(CIU_INT0_SUM0), 190 .cpu_int1_sum0 = X(CIU_INT1_SUM0), 191 .cpu_int2_sum0 = X(CIU_INT4_SUM0), 192 193 .cpu_int0_en0 = X(CIU_INT0_EN0), 194 .cpu_int1_en0 = X(CIU_INT1_EN0), 195 .cpu_int2_en0 = X(CIU_INT4_EN00), 196 197 .cpu_int0_en1 = X(CIU_INT0_EN1), 198 .cpu_int1_en1 = X(CIU_INT1_EN1), 199 .cpu_int2_en1 = X(CIU_INT4_EN01), 200 201 .cpu_int32_en = X(CIU_INT32_EN0), 202 203 .cpu_wdog = X(CIU_WDOG0), 204 .cpu_pp_poke = X(CIU_PP_POKE0), 205 206 #ifdef MULTIPROCESSOR 207 .cpu_mbox_set = X(CIU_MBOX_SET0), 208 .cpu_mbox_clr = X(CIU_MBOX_CLR0), 209 #endif 210 }; 211 212 #ifdef MULTIPROCESSOR 213 struct cpu_softc octeon_cpu1_softc = { 214 .cpu_int0_sum0 = X(CIU_INT2_SUM0), 215 .cpu_int1_sum0 = X(CIU_INT3_SUM0), 216 .cpu_int2_sum0 = X(CIU_INT4_SUM1), 217 218 .cpu_int0_en0 = X(CIU_INT2_EN0), 219 .cpu_int1_en0 = X(CIU_INT3_EN0), 220 .cpu_int2_en0 = X(CIU_INT4_EN10), 221 222 .cpu_int0_en1 = X(CIU_INT2_EN1), 223 .cpu_int1_en1 = X(CIU_INT3_EN1), 224 .cpu_int2_en1 = X(CIU_INT4_EN11), 225 226 .cpu_int32_en = X(CIU_INT32_EN1), 227 228 .cpu_wdog = X(CIU_WDOG1), 229 .cpu_pp_poke = X(CIU_PP_POKE1), 230 231 .cpu_mbox_set = X(CIU_MBOX_SET1), 232 .cpu_mbox_clr = X(CIU_MBOX_CLR1), 233 }; 234 #endif 235 236 #ifdef DEBUG 237 static void 238 octeon_mbox_test(void) 239 { 240 const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0); 241 const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1); 242 const uint64_t mbox_set0 = X(CIU_MBOX_SET0); 243 const uint64_t mbox_set1 = X(CIU_MBOX_SET1); 244 const uint64_t int_sum0 = X(CIU_INT0_SUM0); 245 const uint64_t int_sum1 = X(CIU_INT2_SUM0); 246 const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT); 247 const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT); 248 249 mips64_sd_a64(mbox_clr0, ~0ULL); 250 mips64_sd_a64(mbox_clr1, ~0ULL); 251 252 uint32_t mbox0 = mips64_ld_a64(mbox_set0); 253 uint32_t mbox1 = mips64_ld_a64(mbox_set1); 254 255 KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 256 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 257 258 mips64_sd_a64(mbox_set0, __BIT(0)); 259 260 mbox0 = mips64_ld_a64(mbox_set0); 261 mbox1 = mips64_ld_a64(mbox_set1); 262 263 KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 264 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 265 266 uint64_t sum0 = mips64_ld_a64(int_sum0); 267 uint64_t sum1 = mips64_ld_a64(int_sum1); 268 269 KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0); 270 KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0); 271 272 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1); 273 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1); 274 275 mips64_sd_a64(mbox_clr0, mbox0); 276 mbox0 = mips64_ld_a64(mbox_set0); 277 KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0); 278 279 mips64_sd_a64(mbox_set0, __BIT(16)); 280 281 mbox0 = mips64_ld_a64(mbox_set0); 282 mbox1 = mips64_ld_a64(mbox_set1); 283 284 KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0); 285 KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1); 286 287 sum0 = mips64_ld_a64(int_sum0); 288 sum1 = mips64_ld_a64(int_sum1); 289 290 KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0); 291 KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0); 292 293 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1); 294 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1); 295 } 296 #endif 297 298 #undef X 299 300 void 301 octeon_intr_init(struct cpu_info *ci) 302 { 303 const int cpunum = cpu_index(ci); 304 const char * const xname = cpu_name(ci); 305 struct cpu_softc *cpu = ci->ci_softc; 306 307 308 if (ci->ci_cpuid == 0) { 309 KASSERT(ci->ci_softc == &octeon_cpu0_softc); 310 ipl_sr_map = octeon_ipl_sr_map; 311 mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH); 312 #ifdef MULTIPROCESSOR 313 mips_locoresw.lsw_send_ipi = octeon_send_ipi; 314 #endif 315 #ifdef DEBUG 316 octeon_mbox_test(); 317 #endif 318 } else { 319 KASSERT(cpunum == 1); 320 #ifdef MULTIPROCESSOR 321 KASSERT(ci->ci_softc == &octeon_cpu1_softc); 322 #endif 323 } 324 325 #ifdef MULTIPROCESSOR 326 // Enable the IPIs 327 cpu->cpu_int0_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT); 328 cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT); 329 #endif 330 331 if (ci->ci_dev) 332 aprint_verbose_dev(ci->ci_dev, 333 "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n", 334 cpu->cpu_int0_enable0, cpu->cpu_int1_enable0, cpu->cpu_int2_enable0); 335 336 mips64_sd_a64(cpu->cpu_int0_en0, cpu->cpu_int0_enable0); 337 mips64_sd_a64(cpu->cpu_int1_en0, cpu->cpu_int1_enable0); 338 mips64_sd_a64(cpu->cpu_int2_en0, cpu->cpu_int2_enable0); 339 340 mips64_sd_a64(cpu->cpu_int32_en, 0); 341 342 mips64_sd_a64(cpu->cpu_int0_en1, 0); // WDOG IPL2 343 mips64_sd_a64(cpu->cpu_int1_en1, 0); // WDOG IPL3 344 mips64_sd_a64(cpu->cpu_int2_en1, 0); // WDOG IPL4 345 346 #ifdef MULTIPROCESSOR 347 mips64_sd_a64(cpu->cpu_mbox_clr, __BITS(31,0)); 348 #endif 349 350 for (size_t i = 0; i < NIRQS; i++) { 351 evcnt_attach_dynamic(&cpu->cpu_intr_evs[i], 352 EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]); 353 } 354 } 355 356 void 357 octeon_cal_timer(int corefreq) 358 { 359 /* Compute the number of cycles per second. */ 360 curcpu()->ci_cpu_freq = corefreq; 361 362 /* Compute the number of ticks for hz. */ 363 curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz; 364 365 /* Compute the delay divisor and reciprical. */ 366 curcpu()->ci_divisor_delay = 367 ((curcpu()->ci_cpu_freq + 500000) / 1000000); 368 #if 0 369 MIPS_SET_CI_RECIPRICAL(curcpu()); 370 #endif 371 372 mips3_cp0_count_write(0); 373 mips3_cp0_compare_write(0); 374 } 375 376 void * 377 octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg) 378 { 379 struct octeon_intrhand *ih; 380 381 if (irq >= NIRQS) 382 panic("octeon_intr_establish: bogus IRQ %d", irq); 383 if (ipl < IPL_VM) 384 panic("octeon_intr_establish: bogus IPL %d", ipl); 385 386 ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP); 387 if (ih == NULL) 388 return (NULL); 389 390 ih->ih_func = func; 391 ih->ih_arg = arg; 392 ih->ih_irq = irq; 393 ih->ih_ipl = ipl; 394 395 mutex_enter(&octeon_intr_lock); 396 397 /* 398 * First, make it known. 399 */ 400 KASSERTMSG(octeon_ciu_intrs[irq] == NULL, "irq %d in use! (%p)", 401 irq, octeon_ciu_intrs[irq]); 402 403 octeon_ciu_intrs[irq] = ih; 404 membar_producer(); 405 406 /* 407 * Now enable it. 408 */ 409 const uint64_t irq_mask = __BIT(irq); 410 struct cpu_softc * const cpu0 = &octeon_cpu0_softc; 411 #if MULTIPROCESSOR 412 struct cpu_softc * const cpu1 = &octeon_cpu1_softc; 413 #endif 414 415 switch (ipl) { 416 case IPL_VM: 417 cpu0->cpu_int0_enable0 |= irq_mask; 418 mips64_sd_a64(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0); 419 break; 420 421 case IPL_SCHED: 422 cpu0->cpu_int1_enable0 |= irq_mask; 423 mips64_sd_a64(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0); 424 #ifdef MULTIPROCESSOR 425 cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0; 426 mips64_sd_a64(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0); 427 #endif 428 break; 429 430 case IPL_DDB: 431 case IPL_HIGH: 432 cpu0->cpu_int2_enable0 |= irq_mask; 433 mips64_sd_a64(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0); 434 #ifdef MULTIPROCESSOR 435 cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0; 436 mips64_sd_a64(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0); 437 #endif 438 break; 439 } 440 441 mutex_exit(&octeon_intr_lock); 442 443 return ih; 444 } 445 446 void 447 octeon_intr_disestablish(void *cookie) 448 { 449 struct octeon_intrhand * const ih = cookie; 450 const int irq = ih->ih_irq & (NIRQS-1); 451 const int ipl = ih->ih_ipl; 452 453 mutex_enter(&octeon_intr_lock); 454 455 /* 456 * First disable it. 457 */ 458 const uint64_t irq_mask = ~__BIT(irq); 459 struct cpu_softc * const cpu0 = &octeon_cpu0_softc; 460 #if MULTIPROCESSOR 461 struct cpu_softc * const cpu1 = &octeon_cpu1_softc; 462 #endif 463 464 switch (ipl) { 465 case IPL_VM: 466 cpu0->cpu_int0_enable0 &= ~irq_mask; 467 mips64_sd_a64(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0); 468 break; 469 470 case IPL_SCHED: 471 cpu0->cpu_int1_enable0 &= ~irq_mask; 472 mips64_sd_a64(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0); 473 #ifdef MULTIPROCESSOR 474 cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0; 475 mips64_sd_a64(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0); 476 #endif 477 break; 478 479 case IPL_DDB: 480 case IPL_HIGH: 481 cpu0->cpu_int2_enable0 &= ~irq_mask; 482 mips64_sd_a64(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0); 483 #ifdef MULTIPROCESSOR 484 cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0; 485 mips64_sd_a64(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0); 486 #endif 487 break; 488 } 489 490 /* 491 * Now remove it since we shouldn't get interrupts for it. 492 */ 493 octeon_ciu_intrs[irq] = NULL; 494 495 mutex_exit(&octeon_intr_lock); 496 497 kmem_free(ih, sizeof(*ih)); 498 } 499 500 void 501 octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending) 502 { 503 struct cpu_info * const ci = curcpu(); 504 struct cpu_softc * const cpu = ci->ci_softc; 505 506 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 507 KASSERT((ipending & ~MIPS_INT_MASK) == 0); 508 KASSERT(ipending & MIPS_HARD_INT_MASK); 509 uint64_t hwpend = 0; 510 511 if (ipending & MIPS_INT_MASK_2) { 512 hwpend = mips64_ld_a64(cpu->cpu_int2_sum0) 513 & cpu->cpu_int2_enable0; 514 } else if (ipending & MIPS_INT_MASK_1) { 515 hwpend = mips64_ld_a64(cpu->cpu_int1_sum0) 516 & cpu->cpu_int1_enable0; 517 } else if (ipending & MIPS_INT_MASK_0) { 518 hwpend = mips64_ld_a64(cpu->cpu_int0_sum0) 519 & cpu->cpu_int0_enable0; 520 } else { 521 panic("octeon_iointr: unexpected ipending %#x", ipending); 522 } 523 while (hwpend != 0) { 524 const int irq = ffs64(hwpend) - 1; 525 hwpend &= ~__BIT(irq); 526 527 struct octeon_intrhand * const ih = octeon_ciu_intrs[irq]; 528 cpu->cpu_intr_evs[irq].ev_count++; 529 if (__predict_true(ih != NULL)) { 530 #ifdef MULTIPROCESSOR 531 if (ipl == IPL_VM) { 532 KERNEL_LOCK(1, NULL); 533 #endif 534 (*ih->ih_func)(ih->ih_arg); 535 #ifdef MULTIPROCESSOR 536 KERNEL_UNLOCK_ONE(NULL); 537 } else { 538 (*ih->ih_func)(ih->ih_arg); 539 } 540 #endif 541 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 542 } 543 } 544 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 545 } 546 547 #ifdef MULTIPROCESSOR 548 __CTASSERT(NIPIS < 16); 549 550 int 551 octeon_ipi_intr(void *arg) 552 { 553 struct cpu_info * const ci = curcpu(); 554 struct cpu_softc * const cpu = ci->ci_softc; 555 uint32_t ipi_mask = (uintptr_t) arg; 556 557 KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED, 558 "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl); 559 560 ipi_mask &= mips64_ld_a64(cpu->cpu_mbox_set); 561 if (ipi_mask == 0) 562 return 0; 563 564 mips64_sd_a64(cpu->cpu_mbox_clr, ipi_mask); 565 566 ipi_mask |= (ipi_mask >> 16); 567 ipi_mask &= __BITS(15,0); 568 569 KASSERT(ipi_mask < __BIT(NIPIS)); 570 571 #if NWDOG > 0 572 // Handle WDOG requests ourselves. 573 if (ipi_mask & __BIT(IPI_WDOG)) { 574 softint_schedule(cpu->cpu_wdog_sih); 575 atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG)); 576 ipi_mask &= ~__BIT(IPI_WDOG); 577 ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++; 578 if (__predict_true(ipi_mask == 0)) 579 return 1; 580 } 581 #endif 582 583 /* if the request is clear, it was previously processed */ 584 if ((ci->ci_request_ipis & ipi_mask) == 0) 585 return 0; 586 587 atomic_or_64(&ci->ci_active_ipis, ipi_mask); 588 atomic_and_64(&ci->ci_request_ipis, ~ipi_mask); 589 590 ipi_process(ci, ipi_mask); 591 592 atomic_and_64(&ci->ci_active_ipis, ~ipi_mask); 593 594 return 1; 595 } 596 597 int 598 octeon_send_ipi(struct cpu_info *ci, int req) 599 { 600 KASSERT(req < NIPIS); 601 if (ci == NULL) { 602 CPU_INFO_ITERATOR cii; 603 for (CPU_INFO_FOREACH(cii, ci)) { 604 if (ci != curcpu()) { 605 octeon_send_ipi(ci, req); 606 } 607 } 608 return 0; 609 } 610 KASSERT(cold || ci->ci_softc != NULL); 611 if (ci->ci_softc == NULL) 612 return -1; 613 614 struct cpu_softc * const cpu = ci->ci_softc; 615 uint64_t ipi_mask = __BIT(req); 616 617 if (__BIT(req) == (__BIT(IPI_SUSPEND)|__BIT(IPI_WDOG))) { 618 ipi_mask <<= 16; 619 } 620 621 mips64_sd_a64(cpu->cpu_mbox_set, ipi_mask); 622 return 0; 623 } 624 #endif /* MULTIPROCESSOR */ 625