xref: /netbsd-src/sys/arch/mips/alchemy/dev/if_aumac.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $NetBSD: if_aumac.c,v 1.44 2018/06/26 06:47:58 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
40  * Access Controller.
41  *
42  * TODO:
43  *
44  *	Better Rx buffer management; we want to get new Rx buffers
45  *	to the chip more quickly than we currently do.
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.44 2018/06/26 06:47:58 msaitoh Exp $");
50 
51 
52 
53 #include <sys/param.h>
54 #include <sys/bus.h>
55 #include <sys/callout.h>
56 #include <sys/device.h>
57 #include <sys/endian.h>
58 #include <sys/errno.h>
59 #include <sys/intr.h>
60 #include <sys/ioctl.h>
61 #include <sys/kernel.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/socket.h>
65 
66 #include <uvm/uvm.h>		/* for PAGE_SIZE */
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #include <net/bpf.h>
74 #include <sys/rndsource.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <mips/alchemy/include/aureg.h>
80 #include <mips/alchemy/include/auvar.h>
81 #include <mips/alchemy/include/aubusvar.h>
82 #include <mips/alchemy/dev/if_aumacreg.h>
83 
84 /*
85  * The Au1X00 MAC has 4 transmit and receive descriptors.  Each buffer
86  * must consist of a single DMA segment, and must be aligned to a 2K
87  * boundary.  Therefore, this driver does not perform DMA directly
88  * to/from mbufs.  Instead, we copy the data to/from buffers allocated
89  * at device attach time.
90  *
91  * We also skip the bus_dma dance.  The MAC is built in to the CPU, so
92  * there's little point in not making assumptions based on the CPU type.
93  * We also program the Au1X00 cache to be DMA coherent, so the buffers
94  * are accessed via KSEG0 addresses.
95  */
96 #define	AUMAC_NTXDESC		4
97 #define	AUMAC_NTXDESC_MASK	(AUMAC_NTXDESC - 1)
98 
99 #define	AUMAC_NRXDESC		4
100 #define	AUMAC_NRXDESC_MASK	(AUMAC_NRXDESC - 1)
101 
102 #define	AUMAC_NEXTTX(x)		(((x) + 1) & AUMAC_NTXDESC_MASK)
103 #define	AUMAC_NEXTRX(x)		(((x) + 1) & AUMAC_NRXDESC_MASK)
104 
105 #define	AUMAC_TXBUF_OFFSET	0
106 #define	AUMAC_RXBUF_OFFSET	(MAC_BUFLEN * AUMAC_NTXDESC)
107 #define	AUMAC_BUFSIZE		(MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))
108 
109 struct aumac_buf {
110 	vaddr_t buf_vaddr;		/* virtual address of buffer */
111 	bus_addr_t buf_paddr;		/* DMA address of buffer */
112 };
113 
114 /*
115  * Software state per device.
116  */
117 struct aumac_softc {
118 	device_t sc_dev;		/* generic device information */
119 	bus_space_tag_t sc_st;		/* bus space tag */
120 	bus_space_handle_t sc_mac_sh;	/* MAC space handle */
121 	bus_space_handle_t sc_macen_sh;	/* MAC enable space handle */
122 	bus_space_handle_t sc_dma_sh;	/* DMA space handle */
123 	struct ethercom sc_ethercom;	/* Ethernet common data */
124 	void *sc_sdhook;		/* shutdown hook */
125 
126 	int sc_irq;
127 	void *sc_ih;			/* interrupt cookie */
128 
129 	struct mii_data sc_mii;		/* MII/media information */
130 
131 	struct callout sc_tick_ch;	/* tick callout */
132 
133 	/* Transmit and receive buffers */
134 	struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
135 	struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
136 	void *sc_bufaddr;
137 
138 	int sc_txfree;			/* number of free Tx descriptors */
139 	int sc_txnext;			/* next Tx descriptor to use */
140 	int sc_txdirty;			/* first dirty Tx descriptor */
141 
142 	int sc_rxptr;			/* next ready Rx descriptor */
143 
144 	krndsource_t rnd_source;
145 
146 #ifdef AUMAC_EVENT_COUNTERS
147 	struct evcnt sc_ev_txstall;	/* Tx stalled */
148 	struct evcnt sc_ev_rxstall;	/* Rx stalled */
149 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
150 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
151 #endif
152 
153 	uint32_t sc_control;		/* MAC_CONTROL contents */
154 	uint32_t sc_flowctrl;		/* MAC_FLOWCTRL contents */
155 };
156 
157 #ifdef AUMAC_EVENT_COUNTERS
158 #define	AUMAC_EVCNT_INCR(ev)	(ev)->ev_count++
159 #else
160 #define	AUMAC_EVCNT_INCR(ev)	/* nothing */
161 #endif
162 
163 #define	AUMAC_INIT_RXDESC(sc, x)					\
164 do {									\
165 	bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,			\
166 	    MACDMA_RX_STAT((x)), 0);					\
167 	bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,			\
168 	    MACDMA_RX_ADDR((x)),					\
169 	    (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN);		\
170 } while (/*CONSTCOND*/0)
171 
172 static void	aumac_start(struct ifnet *);
173 static void	aumac_watchdog(struct ifnet *);
174 static int	aumac_ioctl(struct ifnet *, u_long, void *);
175 static int	aumac_init(struct ifnet *);
176 static void	aumac_stop(struct ifnet *, int);
177 
178 static void	aumac_shutdown(void *);
179 
180 static void	aumac_tick(void *);
181 
182 static void	aumac_set_filter(struct aumac_softc *);
183 
184 static void	aumac_powerup(struct aumac_softc *);
185 static void	aumac_powerdown(struct aumac_softc *);
186 
187 static int	aumac_intr(void *);
188 static int	aumac_txintr(struct aumac_softc *);
189 static int	aumac_rxintr(struct aumac_softc *);
190 
191 static int	aumac_mii_readreg(device_t, int, int);
192 static void	aumac_mii_writereg(device_t, int, int, int);
193 static void	aumac_mii_statchg(struct ifnet *);
194 static int	aumac_mii_wait(struct aumac_softc *, const char *);
195 
196 static int	aumac_match(device_t, struct cfdata *, void *);
197 static void	aumac_attach(device_t, device_t, void *);
198 
199 int	aumac_copy_small = 0;
200 
201 CFATTACH_DECL_NEW(aumac, sizeof(struct aumac_softc),
202     aumac_match, aumac_attach, NULL, NULL);
203 
204 static int
205 aumac_match(device_t parent, struct cfdata *cf, void *aux)
206 {
207 	struct aubus_attach_args *aa = aux;
208 
209 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
210 		return (1);
211 
212 	return (0);
213 }
214 
215 static void
216 aumac_attach(device_t parent, device_t self, void *aux)
217 {
218 	const uint8_t *enaddr;
219 	prop_data_t ea;
220 	struct aumac_softc *sc = device_private(self);
221 	struct aubus_attach_args *aa = aux;
222 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
223 	struct pglist pglist;
224 	paddr_t bufaddr;
225 	vaddr_t vbufaddr;
226 	int i;
227 
228 	callout_init(&sc->sc_tick_ch, 0);
229 
230 	aprint_normal(": Au1X00 10/100 Ethernet\n");
231 	aprint_naive("\n");
232 
233 	sc->sc_dev = self;
234 	sc->sc_st = aa->aa_st;
235 
236 	/* Get the MAC address. */
237 	ea = prop_dictionary_get(device_properties(self), "mac-address");
238 	if (ea == NULL) {
239 		aprint_error_dev(self, "unable to get mac-addr property\n");
240 		return;
241 	}
242 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
243 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
244 	enaddr = prop_data_data_nocopy(ea);
245 
246 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
247 
248 	/* Map the device. */
249 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
250 	    MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
251 		aprint_error_dev(self, "unable to map MAC registers\n");
252 		return;
253 	}
254 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
255 	    MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
256 		aprint_error_dev(self, "unable to map MACEN registers\n");
257 		return;
258 	}
259 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
260 	    MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
261 		aprint_error_dev(self, "unable to map MACDMA registers\n");
262 		return;
263 	}
264 
265 	/* Make sure the MAC is powered off. */
266 	aumac_powerdown(sc);
267 
268 	/* Hook up the interrupt handler. */
269 	sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
270 	    aumac_intr, sc);
271 	if (sc->sc_ih == NULL) {
272 		aprint_error_dev(self,
273 		    "unable to register interrupt handler\n");
274 		return;
275 	}
276 	sc->sc_irq = aa->aa_irq[0];
277 	au_intr_disable(sc->sc_irq);
278 
279 	/*
280 	 * Allocate space for the transmit and receive buffers.
281 	 */
282 	if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
283 	    &pglist, 1, 0))
284 		return;
285 
286 	bufaddr = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
287 	vbufaddr = MIPS_PHYS_TO_KSEG0(bufaddr);
288 
289 	for (i = 0; i < AUMAC_NTXDESC; i++) {
290 		int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);
291 
292 		sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
293 		sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
294 	}
295 
296 	for (i = 0; i < AUMAC_NRXDESC; i++) {
297 		int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);
298 
299 		sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
300 		sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
301 	}
302 
303 	/*
304 	 * Power up the MAC before accessing any MAC registers (including
305 	 * MII configuration.
306 	 */
307 	aumac_powerup(sc);
308 
309 	/*
310 	 * Initialize the media structures and probe the MII.
311 	 */
312 	sc->sc_mii.mii_ifp = ifp;
313 	sc->sc_mii.mii_readreg = aumac_mii_readreg;
314 	sc->sc_mii.mii_writereg = aumac_mii_writereg;
315 	sc->sc_mii.mii_statchg = aumac_mii_statchg;
316 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
317 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
318 	    ether_mediastatus);
319 
320 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
321 	    MII_OFFSET_ANY, 0);
322 
323 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
324 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
325 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
326 	} else
327 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
328 
329 	strcpy(ifp->if_xname, device_xname(self));
330 	ifp->if_softc = sc;
331 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 	ifp->if_ioctl = aumac_ioctl;
333 	ifp->if_start = aumac_start;
334 	ifp->if_watchdog = aumac_watchdog;
335 	ifp->if_init = aumac_init;
336 	ifp->if_stop = aumac_stop;
337 	IFQ_SET_READY(&ifp->if_snd);
338 
339 	/* Attach the interface. */
340 	if_attach(ifp);
341 	if_deferred_start_init(ifp, NULL);
342 	ether_ifattach(ifp, enaddr);
343 
344 	rnd_attach_source(&sc->rnd_source, device_xname(self),
345 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
346 
347 #ifdef AUMAC_EVENT_COUNTERS
348 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
349 	    NULL, device_xname(self), "txstall");
350 	evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
351 	    NULL, device_xname(self), "rxstall");
352 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
353 	    NULL, device_xname(self), "txintr");
354 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
355 	    NULL, device_xname(self), "rxintr");
356 #endif
357 
358 	/* Make sure the interface is shutdown during reboot. */
359 	sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
360 	if (sc->sc_sdhook == NULL)
361 		aprint_error_dev(self,
362 		    "WARNING: unable to establish shutdown hook\n");
363 	return;
364 }
365 
366 /*
367  * aumac_shutdown:
368  *
369  *	Make sure the interface is stopped at reboot time.
370  */
371 static void
372 aumac_shutdown(void *arg)
373 {
374 	struct aumac_softc *sc = arg;
375 
376 	aumac_stop(&sc->sc_ethercom.ec_if, 1);
377 
378 	/*
379 	 * XXX aumac_stop leaves device powered up at the moment
380 	 * XXX but this still isn't enough to keep yamon happy... :-(
381 	 */
382 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
383 }
384 
385 /*
386  * aumac_start:		[ifnet interface function]
387  *
388  *	Start packet transmission on the interface.
389  */
390 static void
391 aumac_start(struct ifnet *ifp)
392 {
393 	struct aumac_softc *sc = ifp->if_softc;
394 	struct mbuf *m;
395 	int nexttx;
396 
397 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
398 		return;
399 
400 	/*
401 	 * Loop through the send queue, setting up transmit descriptors
402 	 * unitl we drain the queue, or use up all available transmit
403 	 * descriptors.
404 	 */
405 	for (;;) {
406 		/* Grab a packet off the queue. */
407 		IFQ_POLL(&ifp->if_snd, m);
408 		if (m == NULL)
409 			return;
410 
411 		/* Get a spare descriptor. */
412 		if (sc->sc_txfree == 0) {
413 			/* No more slots left; notify upper layer. */
414 			ifp->if_flags |= IFF_OACTIVE;
415 			AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
416 			return;
417 		}
418 		nexttx = sc->sc_txnext;
419 
420 		IFQ_DEQUEUE(&ifp->if_snd, m);
421 
422 		/*
423 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
424 		 */
425 
426 		m_copydata(m, 0, m->m_pkthdr.len,
427 		    (void *)sc->sc_txbufs[nexttx].buf_vaddr);
428 
429 		/* Zero out the remainder of any short packets. */
430 		if (m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
431 			memset((char *)sc->sc_txbufs[nexttx].buf_vaddr +
432 			    m->m_pkthdr.len, 0,
433 			    ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len);
434 
435 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
436 		    MACDMA_TX_STAT(nexttx), 0);
437 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
438 		    MACDMA_TX_LEN(nexttx),
439 		    m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
440 		    ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
441 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
442 		    MACDMA_TX_ADDR(nexttx),
443 		    sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
444 		/* XXX - needed??  we should be coherent */
445 		bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
446 		    0 /* XXX */, BUS_SPACE_BARRIER_WRITE);
447 
448 		/* Advance the Tx pointer. */
449 		sc->sc_txfree--;
450 		sc->sc_txnext = AUMAC_NEXTTX(nexttx);
451 
452 		/* Pass the packet to any BPF listeners. */
453 		bpf_mtap(ifp, m, BPF_D_OUT);
454 
455 		m_freem(m);
456 
457 		/* Set a watchdog timer in case the chip flakes out. */
458 		ifp->if_timer = 5;
459 	}
460 	/* NOTREACHED */
461 }
462 
463 /*
464  * aumac_watchdog:	[ifnet interface function]
465  *
466  *	Watchdog timer handler.
467  */
468 static void
469 aumac_watchdog(struct ifnet *ifp)
470 {
471 	struct aumac_softc *sc = ifp->if_softc;
472 
473 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
474 	(void) aumac_init(ifp);
475 
476 	/* Try to get more packets going. */
477 	aumac_start(ifp);
478 }
479 
480 /*
481  * aumac_ioctl:		[ifnet interface function]
482  *
483  *	Handle control requests from the operator.
484  */
485 static int
486 aumac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
487 {
488 	struct aumac_softc *sc = ifp->if_softc;
489 	int s, error;
490 
491 	s = splnet();
492 
493 	error = ether_ioctl(ifp, cmd, data);
494 	if (error == ENETRESET) {
495 		/*
496 		 * Multicast list has changed; set the hardware filter
497 		 * accordingly.
498 		 */
499 		if (ifp->if_flags & IFF_RUNNING)
500 			aumac_set_filter(sc);
501 		error = 0;
502 	}
503 
504 	/* Try to get more packets going. */
505 	aumac_start(ifp);
506 
507 	splx(s);
508 	return (error);
509 }
510 
511 /*
512  * aumac_intr:
513  *
514  *	Interrupt service routine.
515  */
516 static int
517 aumac_intr(void *arg)
518 {
519 	struct aumac_softc *sc = arg;
520 	int status;
521 
522 	/*
523 	 * There aren't really any interrupt status bits on the
524 	 * Au1X00 MAC, and each MAC has a dedicated interrupt
525 	 * in the CPU's built-in interrupt controller.  Just
526 	 * check for new incoming packets, and then Tx completions
527 	 * (for status updating).
528 	 */
529 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
530 		return (0);
531 
532 	status = aumac_rxintr(sc);
533 	status += aumac_txintr(sc);
534 
535 	rnd_add_uint32(&sc->rnd_source, status);
536 
537 	return status;
538 }
539 
540 /*
541  * aumac_txintr:
542  *
543  *	Helper; handle transmit interrupts.
544  */
545 static int
546 aumac_txintr(struct aumac_softc *sc)
547 {
548 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
549 	uint32_t stat;
550 	int i;
551 	int pkts = 0;
552 
553 	for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
554 	     i = AUMAC_NEXTTX(i)) {
555 		if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
556 		     MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
557 			break;
558 		pkts++;
559 
560 		/* ACK interrupt. */
561 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
562 		    MACDMA_TX_ADDR(i), 0);
563 
564 		stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
565 		    MACDMA_TX_STAT(i));
566 
567 		if (stat & TX_STAT_FA) {
568 			/* XXX STATS */
569 			ifp->if_oerrors++;
570 		} else
571 			ifp->if_opackets++;
572 
573 		if (stat & TX_STAT_EC)
574 			ifp->if_collisions += 16;
575 		else
576 			ifp->if_collisions += TX_STAT_CC(stat);
577 
578 		sc->sc_txfree++;
579 		ifp->if_flags &= ~IFF_OACTIVE;
580 
581 		/* Try to queue more packets. */
582 		if_schedule_deferred_start(ifp);
583 	}
584 
585 	if (pkts)
586 		AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);
587 
588 	/* Update the dirty descriptor pointer. */
589 	sc->sc_txdirty = i;
590 
591 	/*
592 	 * If there are no more pending transmissions, cancel the watchdog
593 	 * timer.
594 	 */
595 	if (sc->sc_txfree == AUMAC_NTXDESC)
596 		ifp->if_timer = 0;
597 
598 	return pkts;
599 }
600 
601 /*
602  * aumac_rxintr:
603  *
604  *	Helper; handle receive interrupts.
605  */
606 static int
607 aumac_rxintr(struct aumac_softc *sc)
608 {
609 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
610 	struct mbuf *m;
611 	uint32_t stat;
612 	int i, len;
613 	int pkts = 0;
614 
615 	for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
616 		if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
617 		     MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
618 			break;
619 		pkts++;
620 
621 		stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
622 		    MACDMA_RX_STAT(i));
623 
624 #define PRINTERR(str)							\
625 	do {								\
626 		error++;						\
627 		printf("%s: %s\n", device_xname(sc->sc_dev), str);	\
628 	} while (0)
629 
630 		if (stat & RX_STAT_ERRS) {
631 			int error = 0;
632 
633 #if 0	/*
634 	 * Missed frames are a semi-frequent occurence with this hardware,
635 	 * and reporting of them just makes everything run slower and fills
636 	 * the system log.  Be silent.
637 	 *
638 	 * Additionally, this missed bit indicates an error with the previous
639 	 * packet, and not with this one!  So PRINTERR is definitely wrong
640 	 * here.
641 	 *
642 	 * These should probably all be converted to evcnt counters anyway.
643 	 */
644 			if (stat & RX_STAT_MI)
645 				PRINTERR("missed frame");
646 #endif
647 			if (stat & RX_STAT_UC)
648 				PRINTERR("unknown control frame");
649 			if (stat & RX_STAT_LE)
650 				PRINTERR("short frame");
651 			if (stat & RX_STAT_CR)
652 				PRINTERR("CRC error");
653 			if (stat & RX_STAT_ME)
654 				PRINTERR("medium error");
655 			if (stat & RX_STAT_CS)
656 				PRINTERR("late collision");
657 			if (stat & RX_STAT_FL)
658 				PRINTERR("frame too big");
659 			if (stat & RX_STAT_RF)
660 				PRINTERR("runt frame (collision)");
661 			if (stat & RX_STAT_WT)
662 				PRINTERR("watch dog");
663 			if (stat & RX_STAT_DB) {
664 				if (stat & (RX_STAT_CS | RX_STAT_RF |
665 				    RX_STAT_CR)) {
666 					if (!error)
667 						goto pktok;
668 				} else
669 					PRINTERR("dribbling bit");
670 			}
671 #undef PRINTERR
672 			ifp->if_ierrors++;
673 
674  dropit:
675 			/* reuse the current descriptor */
676 			AUMAC_INIT_RXDESC(sc, i);
677 			continue;
678 		}
679  pktok:
680 		len = RX_STAT_L(stat);
681 
682 		/*
683 		 * The Au1X00 MAC includes the CRC with every packet;
684 		 * trim it off here.
685 		 */
686 		len -= ETHER_CRC_LEN;
687 
688 		/*
689 		 * Truncate the packet if it's too big to fit in
690 		 * a single mbuf cluster.
691 		 */
692 		if (len > MCLBYTES - 2)
693 			len = MCLBYTES - 2;
694 
695 		MGETHDR(m, M_DONTWAIT, MT_DATA);
696 		if (m == NULL) {
697 			printf("%s: unable to allocate Rx mbuf\n",
698 			    device_xname(sc->sc_dev));
699 			goto dropit;
700 		}
701 		if (len > MHLEN - 2) {
702 			MCLGET(m, M_DONTWAIT);
703 			if ((m->m_flags & M_EXT) == 0) {
704 				printf("%s: unable to allocate Rx cluster\n",
705 				    device_xname(sc->sc_dev));
706 				m_freem(m);
707 				goto dropit;
708 			}
709 		}
710 
711 		m->m_data += 2;		/* align payload */
712 		memcpy(mtod(m, void *),
713 		    (void *)sc->sc_rxbufs[i].buf_vaddr, len);
714 		AUMAC_INIT_RXDESC(sc, i);
715 
716 		m_set_rcvif(m, ifp);
717 		m->m_pkthdr.len = m->m_len = len;
718 
719 		/* Pass it on. */
720 		if_percpuq_enqueue(ifp->if_percpuq, m);
721 	}
722 	if (pkts)
723 		AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
724 	if (pkts == AUMAC_NRXDESC)
725 		AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);
726 
727 	/* Update the receive pointer. */
728 	sc->sc_rxptr = i;
729 
730 	return pkts;
731 }
732 
733 /*
734  * aumac_tick:
735  *
736  *	One second timer, used to tick the MII.
737  */
738 static void
739 aumac_tick(void *arg)
740 {
741 	struct aumac_softc *sc = arg;
742 	int s;
743 
744 	s = splnet();
745 	mii_tick(&sc->sc_mii);
746 	splx(s);
747 
748 	callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
749 }
750 
751 /*
752  * aumac_init:		[ifnet interface function]
753  *
754  *	Initialize the interface.  Must be called at splnet().
755  */
756 static int
757 aumac_init(struct ifnet *ifp)
758 {
759 	struct aumac_softc *sc = ifp->if_softc;
760 	int i, error = 0;
761 
762 	/* Cancel any pending I/O, reset MAC. */
763 	aumac_stop(ifp, 0);
764 
765 	/* Set up the transmit ring. */
766 	for (i = 0; i < AUMAC_NTXDESC; i++) {
767 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
768 		    MACDMA_TX_STAT(i), 0);
769 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
770 		    MACDMA_TX_LEN(i), 0);
771 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
772 		    MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
773 	}
774 	sc->sc_txfree = AUMAC_NTXDESC;
775 	sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
776 	    MACDMA_TX_ADDR(0)));
777 	sc->sc_txdirty = sc->sc_txnext;
778 
779 	/* Set up the receive ring. */
780 	for (i = 0; i < AUMAC_NRXDESC; i++)
781 			AUMAC_INIT_RXDESC(sc, i);
782 	sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
783 	    MACDMA_RX_ADDR(0)));
784 
785 	/*
786 	 * Power up the MAC.
787 	 */
788 	aumac_powerup(sc);
789 
790 	sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
791 #if _BYTE_ORDER == _BIG_ENDIAN
792 	sc->sc_control |= CONTROL_EM;
793 #endif
794 
795 	/* Set the media. */
796 	if ((error = ether_mediachange(ifp)) != 0)
797 		goto out;
798 
799 	/*
800 	 * Set the receive filter.  This will actually start the transmit
801 	 * and receive processes.
802 	 */
803 	aumac_set_filter(sc);
804 
805 	/* Start the one second clock. */
806 	callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
807 
808 	/* ...all done! */
809 	ifp->if_flags |= IFF_RUNNING;
810 	ifp->if_flags &= ~IFF_OACTIVE;
811 
812 	au_intr_enable(sc->sc_irq);
813 out:
814 	if (error)
815 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
816 	return (error);
817 }
818 
819 /*
820  * aumac_stop:		[ifnet interface function]
821  *
822  *	Stop transmission on the interface.
823  */
824 static void
825 aumac_stop(struct ifnet *ifp, int disable)
826 {
827 	struct aumac_softc *sc = ifp->if_softc;
828 
829 	/* Stop the one-second clock. */
830 	callout_stop(&sc->sc_tick_ch);
831 
832 	/* Down the MII. */
833 	mii_down(&sc->sc_mii);
834 
835 	/* Stop the transmit and receive processes. */
836 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);
837 
838 	/* Power down/reset the MAC. */
839 	aumac_powerdown(sc);
840 
841 	au_intr_disable(sc->sc_irq);
842 
843 	/* Mark the interface as down and cancel the watchdog timer. */
844 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
845 	ifp->if_timer = 0;
846 }
847 
848 /*
849  * aumac_powerdown:
850  *
851  *	Power down the MAC.
852  */
853 static void
854 aumac_powerdown(struct aumac_softc *sc)
855 {
856 
857 	/* Disable the MAC clocks, and place the device in reset. */
858 	// bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);
859 
860 	// delay(10000);
861 }
862 
863 /*
864  * aumac_powerup:
865  *
866  *	Bring the device out of reset.
867  */
868 static void
869 aumac_powerup(struct aumac_softc *sc)
870 {
871 
872 	/* Enable clocks to the MAC. */
873 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP|MACEN_CE);
874 
875 	/* Enable MAC, coherent transactions, pass only valid frames. */
876 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
877 	    MACEN_E2|MACEN_E1|MACEN_E0|MACEN_CE);
878 
879 	delay(20000);
880 }
881 
882 /*
883  * aumac_set_filter:
884  *
885  *	Set up the receive filter.
886  */
887 static void
888 aumac_set_filter(struct aumac_softc *sc)
889 {
890 	struct ethercom *ec = &sc->sc_ethercom;
891 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
892 	struct ether_multi *enm;
893 	struct ether_multistep step;
894 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
895 	uint32_t mchash[2], crc;
896 
897 	sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);
898 
899 	/* Stop the receiver. */
900 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
901 	    sc->sc_control & ~CONTROL_RE);
902 
903 	if (ifp->if_flags & IFF_PROMISC) {
904 		sc->sc_control |= CONTROL_PR;
905 		goto allmulti;
906 	}
907 
908 	/* Set the station address. */
909 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
910 	    enaddr[4] | (enaddr[5] << 8));
911 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
912 	    enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
913 	    (enaddr[3] << 24));
914 
915 	sc->sc_control |= CONTROL_HP;
916 
917 	mchash[0] = mchash[1] = 0;
918 
919 	/*
920 	 * Set up the multicast address filter by passing all multicast
921 	 * addresses through a CRC generator, and then using the high
922 	 * order 6 bits as an index into the 64-bit multicast hash table.
923 	 * The high order bits select the word, while the rest of the bits
924 	 * select the bit within the word.
925 	 */
926 	ETHER_FIRST_MULTI(step, ec, enm);
927 	while (enm != NULL) {
928 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
929 			/*
930 			 * We must listen to a range of multicast addresses.
931 			 * For now, just accept all multicasts, rather than
932 			 * trying to set only those filter bits needed to match
933 			 * the range.  (At this time, the only use of address
934 			 * ranges is for IP multicast routing, for which the
935 			 * range is large enough to require all bits set.)
936 			 */
937 			goto allmulti;
938 		}
939 
940 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
941 
942 		/* Just want the 6 most significant bits. */
943 		crc >>= 26;
944 
945 		/* Set the corresponding bit in the filter. */
946 		mchash[crc >> 5] |= 1U << (crc & 0x1f);
947 
948 		ETHER_NEXT_MULTI(step, enm);
949 	}
950 
951 	ifp->if_flags &= ~IFF_ALLMULTI;
952 
953 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
954 	    mchash[1]);
955 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
956 	    mchash[0]);
957 
958 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
959 	    sc->sc_control);
960 	return;
961 
962  allmulti:
963 	sc->sc_control |= CONTROL_PM;
964 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
965 	    sc->sc_control);
966 }
967 
968 /*
969  * aumac_mii_wait:
970  *
971  *	Wait for the MII interface to not be busy.
972  */
973 static int
974 aumac_mii_wait(struct aumac_softc *sc, const char *msg)
975 {
976 	int i;
977 
978 	for (i = 0; i < 10000; i++) {
979 		if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
980 		     MAC_MIICTRL) & MIICTRL_MB) == 0)
981 			return (0);
982 		delay(10);
983 	}
984 
985 	printf("%s: MII failed to %s\n", device_xname(sc->sc_dev), msg);
986 	return (1);
987 }
988 
989 /*
990  * aumac_mii_readreg:	[mii interface function]
991  *
992  *	Read a PHY register on the MII.
993  */
994 static int
995 aumac_mii_readreg(device_t self, int phy, int reg)
996 {
997 	struct aumac_softc *sc = device_private(self);
998 
999 	if (aumac_mii_wait(sc, "become ready"))
1000 		return (0);
1001 
1002 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1003 	    MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));
1004 
1005 	if (aumac_mii_wait(sc, "complete"))
1006 		return (0);
1007 
1008 	return (bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA) &
1009 	    MIIDATA_MASK);
1010 }
1011 
1012 /*
1013  * aumac_mii_writereg:	[mii interface function]
1014  *
1015  *	Write a PHY register on the MII.
1016  */
1017 static void
1018 aumac_mii_writereg(device_t self, int phy, int reg, int val)
1019 {
1020 	struct aumac_softc *sc = device_private(self);
1021 
1022 	if (aumac_mii_wait(sc, "become ready"))
1023 		return;
1024 
1025 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
1026 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1027 	    MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);
1028 
1029 	(void) aumac_mii_wait(sc, "complete");
1030 }
1031 
1032 /*
1033  * aumac_mii_statchg:	[mii interface function]
1034  *
1035  *	Callback from MII layer when media changes.
1036  */
1037 static void
1038 aumac_mii_statchg(struct ifnet *ifp)
1039 {
1040 	struct aumac_softc *sc = ifp->if_softc;
1041 
1042 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1043 		sc->sc_control |= CONTROL_F;
1044 	else
1045 		sc->sc_control &= ~CONTROL_F;
1046 
1047 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
1048 	    sc->sc_control);
1049 }
1050