xref: /netbsd-src/sys/arch/mips/alchemy/dev/if_aumac.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* $NetBSD: if_aumac.c,v 1.49 2020/09/29 02:58:52 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
40  * Access Controller.
41  *
42  * TODO:
43  *
44  *	Better Rx buffer management; we want to get new Rx buffers
45  *	to the chip more quickly than we currently do.
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.49 2020/09/29 02:58:52 msaitoh Exp $");
50 
51 
52 
53 #include <sys/param.h>
54 #include <sys/bus.h>
55 #include <sys/callout.h>
56 #include <sys/device.h>
57 #include <sys/endian.h>
58 #include <sys/errno.h>
59 #include <sys/intr.h>
60 #include <sys/ioctl.h>
61 #include <sys/kernel.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/socket.h>
65 
66 #include <uvm/uvm.h>		/* for PAGE_SIZE */
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #include <net/bpf.h>
74 #include <sys/rndsource.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <mips/alchemy/include/aureg.h>
80 #include <mips/alchemy/include/auvar.h>
81 #include <mips/alchemy/include/aubusvar.h>
82 #include <mips/alchemy/dev/if_aumacreg.h>
83 
84 /*
85  * The Au1X00 MAC has 4 transmit and receive descriptors.  Each buffer
86  * must consist of a single DMA segment, and must be aligned to a 2K
87  * boundary.  Therefore, this driver does not perform DMA directly
88  * to/from mbufs.  Instead, we copy the data to/from buffers allocated
89  * at device attach time.
90  *
91  * We also skip the bus_dma dance.  The MAC is built in to the CPU, so
92  * there's little point in not making assumptions based on the CPU type.
93  * We also program the Au1X00 cache to be DMA coherent, so the buffers
94  * are accessed via KSEG0 addresses.
95  */
96 #define	AUMAC_NTXDESC		4
97 #define	AUMAC_NTXDESC_MASK	(AUMAC_NTXDESC - 1)
98 
99 #define	AUMAC_NRXDESC		4
100 #define	AUMAC_NRXDESC_MASK	(AUMAC_NRXDESC - 1)
101 
102 #define	AUMAC_NEXTTX(x)		(((x) + 1) & AUMAC_NTXDESC_MASK)
103 #define	AUMAC_NEXTRX(x)		(((x) + 1) & AUMAC_NRXDESC_MASK)
104 
105 #define	AUMAC_TXBUF_OFFSET	0
106 #define	AUMAC_RXBUF_OFFSET	(MAC_BUFLEN * AUMAC_NTXDESC)
107 #define	AUMAC_BUFSIZE		(MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))
108 
109 struct aumac_buf {
110 	vaddr_t buf_vaddr;		/* virtual address of buffer */
111 	bus_addr_t buf_paddr;		/* DMA address of buffer */
112 };
113 
114 /*
115  * Software state per device.
116  */
117 struct aumac_softc {
118 	device_t sc_dev;		/* generic device information */
119 	bus_space_tag_t sc_st;		/* bus space tag */
120 	bus_space_handle_t sc_mac_sh;	/* MAC space handle */
121 	bus_space_handle_t sc_macen_sh;	/* MAC enable space handle */
122 	bus_space_handle_t sc_dma_sh;	/* DMA space handle */
123 	struct ethercom sc_ethercom;	/* Ethernet common data */
124 	void *sc_sdhook;		/* shutdown hook */
125 
126 	int sc_irq;
127 	void *sc_ih;			/* interrupt cookie */
128 
129 	struct mii_data sc_mii;		/* MII/media information */
130 
131 	struct callout sc_tick_ch;	/* tick callout */
132 
133 	/* Transmit and receive buffers */
134 	struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
135 	struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
136 	void *sc_bufaddr;
137 
138 	int sc_txfree;			/* number of free Tx descriptors */
139 	int sc_txnext;			/* next Tx descriptor to use */
140 	int sc_txdirty;			/* first dirty Tx descriptor */
141 
142 	int sc_rxptr;			/* next ready Rx descriptor */
143 
144 	krndsource_t rnd_source;
145 
146 #ifdef AUMAC_EVENT_COUNTERS
147 	struct evcnt sc_ev_txstall;	/* Tx stalled */
148 	struct evcnt sc_ev_rxstall;	/* Rx stalled */
149 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
150 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
151 #endif
152 
153 	uint32_t sc_control;		/* MAC_CONTROL contents */
154 	uint32_t sc_flowctrl;		/* MAC_FLOWCTRL contents */
155 };
156 
157 #ifdef AUMAC_EVENT_COUNTERS
158 #define	AUMAC_EVCNT_INCR(ev)	(ev)->ev_count++
159 #else
160 #define	AUMAC_EVCNT_INCR(ev)	/* nothing */
161 #endif
162 
163 #define	AUMAC_INIT_RXDESC(sc, x)					\
164 do {									\
165 	bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,			\
166 	    MACDMA_RX_STAT((x)), 0);					\
167 	bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,			\
168 	    MACDMA_RX_ADDR((x)),					\
169 	    (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN);		\
170 } while (/*CONSTCOND*/0)
171 
172 static void	aumac_start(struct ifnet *);
173 static void	aumac_watchdog(struct ifnet *);
174 static int	aumac_ioctl(struct ifnet *, u_long, void *);
175 static int	aumac_init(struct ifnet *);
176 static void	aumac_stop(struct ifnet *, int);
177 
178 static void	aumac_shutdown(void *);
179 
180 static void	aumac_tick(void *);
181 
182 static void	aumac_set_filter(struct aumac_softc *);
183 
184 static void	aumac_powerup(struct aumac_softc *);
185 static void	aumac_powerdown(struct aumac_softc *);
186 
187 static int	aumac_intr(void *);
188 static int	aumac_txintr(struct aumac_softc *);
189 static int	aumac_rxintr(struct aumac_softc *);
190 
191 static int	aumac_mii_readreg(device_t, int, int, uint16_t *);
192 static int	aumac_mii_writereg(device_t, int, int, uint16_t);
193 static void	aumac_mii_statchg(struct ifnet *);
194 static int	aumac_mii_wait(struct aumac_softc *, const char *);
195 
196 static int	aumac_match(device_t, struct cfdata *, void *);
197 static void	aumac_attach(device_t, device_t, void *);
198 
199 int	aumac_copy_small = 0;
200 
201 CFATTACH_DECL_NEW(aumac, sizeof(struct aumac_softc),
202     aumac_match, aumac_attach, NULL, NULL);
203 
204 static int
205 aumac_match(device_t parent, struct cfdata *cf, void *aux)
206 {
207 	struct aubus_attach_args *aa = aux;
208 
209 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
210 		return 1;
211 
212 	return 0;
213 }
214 
215 static void
216 aumac_attach(device_t parent, device_t self, void *aux)
217 {
218 	const uint8_t *enaddr;
219 	prop_data_t ea;
220 	struct aumac_softc *sc = device_private(self);
221 	struct aubus_attach_args *aa = aux;
222 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
223 	struct mii_data * const mii = &sc->sc_mii;
224 	struct pglist pglist;
225 	paddr_t bufaddr;
226 	vaddr_t vbufaddr;
227 	int i;
228 
229 	callout_init(&sc->sc_tick_ch, 0);
230 
231 	aprint_normal(": Au1X00 10/100 Ethernet\n");
232 	aprint_naive("\n");
233 
234 	sc->sc_dev = self;
235 	sc->sc_st = aa->aa_st;
236 
237 	/* Get the MAC address. */
238 	ea = prop_dictionary_get(device_properties(self), "mac-address");
239 	if (ea == NULL) {
240 		aprint_error_dev(self, "unable to get mac-addr property\n");
241 		return;
242 	}
243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 	enaddr = prop_data_data_nocopy(ea);
246 
247 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
248 
249 	/* Map the device. */
250 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
251 	    MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
252 		aprint_error_dev(self, "unable to map MAC registers\n");
253 		return;
254 	}
255 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
256 	    MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
257 		aprint_error_dev(self, "unable to map MACEN registers\n");
258 		return;
259 	}
260 	if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
261 	    MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
262 		aprint_error_dev(self, "unable to map MACDMA registers\n");
263 		return;
264 	}
265 
266 	/* Make sure the MAC is powered off. */
267 	aumac_powerdown(sc);
268 
269 	/* Hook up the interrupt handler. */
270 	sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
271 	    aumac_intr, sc);
272 	if (sc->sc_ih == NULL) {
273 		aprint_error_dev(self,
274 		    "unable to register interrupt handler\n");
275 		return;
276 	}
277 	sc->sc_irq = aa->aa_irq[0];
278 	au_intr_disable(sc->sc_irq);
279 
280 	/*
281 	 * Allocate space for the transmit and receive buffers.
282 	 */
283 	if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
284 	    &pglist, 1, 0))
285 		return;
286 
287 	bufaddr = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
288 	vbufaddr = MIPS_PHYS_TO_KSEG0(bufaddr);
289 
290 	for (i = 0; i < AUMAC_NTXDESC; i++) {
291 		int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);
292 
293 		sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
294 		sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
295 	}
296 
297 	for (i = 0; i < AUMAC_NRXDESC; i++) {
298 		int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);
299 
300 		sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
301 		sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
302 	}
303 
304 	/*
305 	 * Power up the MAC before accessing any MAC registers (including
306 	 * MII configuration.
307 	 */
308 	aumac_powerup(sc);
309 
310 	/*
311 	 * Initialize the media structures and probe the MII.
312 	 */
313 	mii->mii_ifp = ifp;
314 	mii->mii_readreg = aumac_mii_readreg;
315 	mii->mii_writereg = aumac_mii_writereg;
316 	mii->mii_statchg = aumac_mii_statchg;
317 	sc->sc_ethercom.ec_mii = mii;
318 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
319 
320 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
321 	    MII_OFFSET_ANY, 0);
322 
323 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
324 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
325 		    0, NULL);
326 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
327 	} else
328 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
329 
330 	strcpy(ifp->if_xname, device_xname(self));
331 	ifp->if_softc = sc;
332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 	ifp->if_ioctl = aumac_ioctl;
334 	ifp->if_start = aumac_start;
335 	ifp->if_watchdog = aumac_watchdog;
336 	ifp->if_init = aumac_init;
337 	ifp->if_stop = aumac_stop;
338 	IFQ_SET_READY(&ifp->if_snd);
339 
340 	/* Attach the interface. */
341 	if_attach(ifp);
342 	if_deferred_start_init(ifp, NULL);
343 	ether_ifattach(ifp, enaddr);
344 
345 	rnd_attach_source(&sc->rnd_source, device_xname(self),
346 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
347 
348 #ifdef AUMAC_EVENT_COUNTERS
349 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
350 	    NULL, device_xname(self), "txstall");
351 	evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
352 	    NULL, device_xname(self), "rxstall");
353 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
354 	    NULL, device_xname(self), "txintr");
355 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
356 	    NULL, device_xname(self), "rxintr");
357 #endif
358 
359 	/* Make sure the interface is shutdown during reboot. */
360 	sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
361 	if (sc->sc_sdhook == NULL)
362 		aprint_error_dev(self,
363 		    "WARNING: unable to establish shutdown hook\n");
364 	return;
365 }
366 
367 /*
368  * aumac_shutdown:
369  *
370  *	Make sure the interface is stopped at reboot time.
371  */
372 static void
373 aumac_shutdown(void *arg)
374 {
375 	struct aumac_softc *sc = arg;
376 
377 	aumac_stop(&sc->sc_ethercom.ec_if, 1);
378 
379 	/*
380 	 * XXX aumac_stop leaves device powered up at the moment
381 	 * XXX but this still isn't enough to keep yamon happy... :-(
382 	 */
383 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
384 }
385 
386 /*
387  * aumac_start:		[ifnet interface function]
388  *
389  *	Start packet transmission on the interface.
390  */
391 static void
392 aumac_start(struct ifnet *ifp)
393 {
394 	struct aumac_softc *sc = ifp->if_softc;
395 	struct mbuf *m;
396 	int nexttx;
397 
398 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
399 		return;
400 
401 	/*
402 	 * Loop through the send queue, setting up transmit descriptors
403 	 * unitl we drain the queue, or use up all available transmit
404 	 * descriptors.
405 	 */
406 	for (;;) {
407 		/* Grab a packet off the queue. */
408 		IFQ_POLL(&ifp->if_snd, m);
409 		if (m == NULL)
410 			return;
411 
412 		/* Get a spare descriptor. */
413 		if (sc->sc_txfree == 0) {
414 			/* No more slots left; notify upper layer. */
415 			ifp->if_flags |= IFF_OACTIVE;
416 			AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
417 			return;
418 		}
419 		nexttx = sc->sc_txnext;
420 
421 		IFQ_DEQUEUE(&ifp->if_snd, m);
422 
423 		/*
424 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
425 		 */
426 
427 		m_copydata(m, 0, m->m_pkthdr.len,
428 		    (void *)sc->sc_txbufs[nexttx].buf_vaddr);
429 
430 		/* Zero out the remainder of any short packets. */
431 		if (m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
432 			memset((char *)sc->sc_txbufs[nexttx].buf_vaddr +
433 			    m->m_pkthdr.len, 0,
434 			    ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len);
435 
436 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
437 		    MACDMA_TX_STAT(nexttx), 0);
438 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
439 		    MACDMA_TX_LEN(nexttx),
440 		    m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
441 		    ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
442 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
443 		    MACDMA_TX_ADDR(nexttx),
444 		    sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
445 		/* XXX - needed??  we should be coherent */
446 		bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
447 		    0 /* XXX */, BUS_SPACE_BARRIER_WRITE);
448 
449 		/* Advance the Tx pointer. */
450 		sc->sc_txfree--;
451 		sc->sc_txnext = AUMAC_NEXTTX(nexttx);
452 
453 		/* Pass the packet to any BPF listeners. */
454 		bpf_mtap(ifp, m, BPF_D_OUT);
455 
456 		m_freem(m);
457 
458 		/* Set a watchdog timer in case the chip flakes out. */
459 		ifp->if_timer = 5;
460 	}
461 	/* NOTREACHED */
462 }
463 
464 /*
465  * aumac_watchdog:	[ifnet interface function]
466  *
467  *	Watchdog timer handler.
468  */
469 static void
470 aumac_watchdog(struct ifnet *ifp)
471 {
472 	struct aumac_softc *sc = ifp->if_softc;
473 
474 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
475 	(void) aumac_init(ifp);
476 
477 	/* Try to get more packets going. */
478 	aumac_start(ifp);
479 }
480 
481 /*
482  * aumac_ioctl:		[ifnet interface function]
483  *
484  *	Handle control requests from the operator.
485  */
486 static int
487 aumac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
488 {
489 	struct aumac_softc *sc = ifp->if_softc;
490 	int s, error;
491 
492 	s = splnet();
493 
494 	error = ether_ioctl(ifp, cmd, data);
495 	if (error == ENETRESET) {
496 		/*
497 		 * Multicast list has changed; set the hardware filter
498 		 * accordingly.
499 		 */
500 		if (ifp->if_flags & IFF_RUNNING)
501 			aumac_set_filter(sc);
502 		error = 0;
503 	}
504 
505 	/* Try to get more packets going. */
506 	aumac_start(ifp);
507 
508 	splx(s);
509 	return error;
510 }
511 
512 /*
513  * aumac_intr:
514  *
515  *	Interrupt service routine.
516  */
517 static int
518 aumac_intr(void *arg)
519 {
520 	struct aumac_softc *sc = arg;
521 	int status;
522 
523 	/*
524 	 * There aren't really any interrupt status bits on the
525 	 * Au1X00 MAC, and each MAC has a dedicated interrupt
526 	 * in the CPU's built-in interrupt controller.  Just
527 	 * check for new incoming packets, and then Tx completions
528 	 * (for status updating).
529 	 */
530 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
531 		return 0;
532 
533 	status = aumac_rxintr(sc);
534 	status += aumac_txintr(sc);
535 
536 	rnd_add_uint32(&sc->rnd_source, status);
537 
538 	return status;
539 }
540 
541 /*
542  * aumac_txintr:
543  *
544  *	Helper; handle transmit interrupts.
545  */
546 static int
547 aumac_txintr(struct aumac_softc *sc)
548 {
549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
550 	uint32_t stat;
551 	int i;
552 	int pkts = 0;
553 
554 	for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
555 	     i = AUMAC_NEXTTX(i)) {
556 		if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
557 		     MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
558 			break;
559 		pkts++;
560 
561 		/* ACK interrupt. */
562 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
563 		    MACDMA_TX_ADDR(i), 0);
564 
565 		stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
566 		    MACDMA_TX_STAT(i));
567 
568 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
569 		if (stat & TX_STAT_FA) {
570 			/* XXX STATS */
571 			if_statinc_ref(nsr, if_oerrors);
572 		} else
573 			if_statinc_ref(nsr, if_opackets);
574 
575 		if (stat & TX_STAT_EC)
576 			if_statadd_ref(nsr, if_collisions, 16);
577 		else if (TX_STAT_CC(stat))
578 			if_statadd_ref(nsr, if_collisions, TX_STAT_CC(stat));
579 		IF_STAT_PUTREF(ifp);
580 
581 		sc->sc_txfree++;
582 		ifp->if_flags &= ~IFF_OACTIVE;
583 
584 		/* Try to queue more packets. */
585 		if_schedule_deferred_start(ifp);
586 	}
587 
588 	if (pkts)
589 		AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);
590 
591 	/* Update the dirty descriptor pointer. */
592 	sc->sc_txdirty = i;
593 
594 	/*
595 	 * If there are no more pending transmissions, cancel the watchdog
596 	 * timer.
597 	 */
598 	if (sc->sc_txfree == AUMAC_NTXDESC)
599 		ifp->if_timer = 0;
600 
601 	return pkts;
602 }
603 
604 /*
605  * aumac_rxintr:
606  *
607  *	Helper; handle receive interrupts.
608  */
609 static int
610 aumac_rxintr(struct aumac_softc *sc)
611 {
612 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
613 	struct mbuf *m;
614 	uint32_t stat;
615 	int i, len;
616 	int pkts = 0;
617 
618 	for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
619 		if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
620 		     MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
621 			break;
622 		pkts++;
623 
624 		stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
625 		    MACDMA_RX_STAT(i));
626 
627 #define PRINTERR(str)							\
628 	do {								\
629 		error++;						\
630 		printf("%s: %s\n", device_xname(sc->sc_dev), str);	\
631 	} while (0)
632 
633 		if (stat & RX_STAT_ERRS) {
634 			int error = 0;
635 
636 #if 0	/*
637 	 * Missed frames are a semi-frequent occurrence with this hardware,
638 	 * and reporting of them just makes everything run slower and fills
639 	 * the system log.  Be silent.
640 	 *
641 	 * Additionally, this missed bit indicates an error with the previous
642 	 * packet, and not with this one!  So PRINTERR is definitely wrong
643 	 * here.
644 	 *
645 	 * These should probably all be converted to evcnt counters anyway.
646 	 */
647 			if (stat & RX_STAT_MI)
648 				PRINTERR("missed frame");
649 #endif
650 			if (stat & RX_STAT_UC)
651 				PRINTERR("unknown control frame");
652 			if (stat & RX_STAT_LE)
653 				PRINTERR("short frame");
654 			if (stat & RX_STAT_CR)
655 				PRINTERR("CRC error");
656 			if (stat & RX_STAT_ME)
657 				PRINTERR("medium error");
658 			if (stat & RX_STAT_CS)
659 				PRINTERR("late collision");
660 			if (stat & RX_STAT_FL)
661 				PRINTERR("frame too big");
662 			if (stat & RX_STAT_RF)
663 				PRINTERR("runt frame (collision)");
664 			if (stat & RX_STAT_WT)
665 				PRINTERR("watch dog");
666 			if (stat & RX_STAT_DB) {
667 				if (stat & (RX_STAT_CS | RX_STAT_RF |
668 				    RX_STAT_CR)) {
669 					if (!error)
670 						goto pktok;
671 				} else
672 					PRINTERR("dribbling bit");
673 			}
674 #undef PRINTERR
675 			if_statinc(ifp, if_ierrors);
676 
677  dropit:
678 			/* reuse the current descriptor */
679 			AUMAC_INIT_RXDESC(sc, i);
680 			continue;
681 		}
682  pktok:
683 		len = RX_STAT_L(stat);
684 
685 		/*
686 		 * The Au1X00 MAC includes the CRC with every packet;
687 		 * trim it off here.
688 		 */
689 		len -= ETHER_CRC_LEN;
690 
691 		/*
692 		 * Truncate the packet if it's too big to fit in
693 		 * a single mbuf cluster.
694 		 */
695 		if (len > MCLBYTES - 2)
696 			len = MCLBYTES - 2;
697 
698 		MGETHDR(m, M_DONTWAIT, MT_DATA);
699 		if (m == NULL) {
700 			printf("%s: unable to allocate Rx mbuf\n",
701 			    device_xname(sc->sc_dev));
702 			goto dropit;
703 		}
704 		if (len > MHLEN - 2) {
705 			MCLGET(m, M_DONTWAIT);
706 			if ((m->m_flags & M_EXT) == 0) {
707 				printf("%s: unable to allocate Rx cluster\n",
708 				    device_xname(sc->sc_dev));
709 				m_freem(m);
710 				goto dropit;
711 			}
712 		}
713 
714 		m->m_data += 2;		/* align payload */
715 		memcpy(mtod(m, void *),
716 		    (void *)sc->sc_rxbufs[i].buf_vaddr, len);
717 		AUMAC_INIT_RXDESC(sc, i);
718 
719 		m_set_rcvif(m, ifp);
720 		m->m_pkthdr.len = m->m_len = len;
721 
722 		/* Pass it on. */
723 		if_percpuq_enqueue(ifp->if_percpuq, m);
724 	}
725 	if (pkts)
726 		AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
727 	if (pkts == AUMAC_NRXDESC)
728 		AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);
729 
730 	/* Update the receive pointer. */
731 	sc->sc_rxptr = i;
732 
733 	return pkts;
734 }
735 
736 /*
737  * aumac_tick:
738  *
739  *	One second timer, used to tick the MII.
740  */
741 static void
742 aumac_tick(void *arg)
743 {
744 	struct aumac_softc *sc = arg;
745 	int s;
746 
747 	s = splnet();
748 	mii_tick(&sc->sc_mii);
749 	splx(s);
750 
751 	callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
752 }
753 
754 /*
755  * aumac_init:		[ifnet interface function]
756  *
757  *	Initialize the interface.  Must be called at splnet().
758  */
759 static int
760 aumac_init(struct ifnet *ifp)
761 {
762 	struct aumac_softc *sc = ifp->if_softc;
763 	int i, error = 0;
764 
765 	/* Cancel any pending I/O, reset MAC. */
766 	aumac_stop(ifp, 0);
767 
768 	/* Set up the transmit ring. */
769 	for (i = 0; i < AUMAC_NTXDESC; i++) {
770 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
771 		    MACDMA_TX_STAT(i), 0);
772 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
773 		    MACDMA_TX_LEN(i), 0);
774 		bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
775 		    MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
776 	}
777 	sc->sc_txfree = AUMAC_NTXDESC;
778 	sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
779 	    MACDMA_TX_ADDR(0)));
780 	sc->sc_txdirty = sc->sc_txnext;
781 
782 	/* Set up the receive ring. */
783 	for (i = 0; i < AUMAC_NRXDESC; i++)
784 			AUMAC_INIT_RXDESC(sc, i);
785 	sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
786 	    MACDMA_RX_ADDR(0)));
787 
788 	/*
789 	 * Power up the MAC.
790 	 */
791 	aumac_powerup(sc);
792 
793 	sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
794 #if _BYTE_ORDER == _BIG_ENDIAN
795 	sc->sc_control |= CONTROL_EM;
796 #endif
797 
798 	/* Set the media. */
799 	if ((error = ether_mediachange(ifp)) != 0)
800 		goto out;
801 
802 	/*
803 	 * Set the receive filter.  This will actually start the transmit
804 	 * and receive processes.
805 	 */
806 	aumac_set_filter(sc);
807 
808 	/* Start the one second clock. */
809 	callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
810 
811 	/* ...all done! */
812 	ifp->if_flags |= IFF_RUNNING;
813 	ifp->if_flags &= ~IFF_OACTIVE;
814 
815 	au_intr_enable(sc->sc_irq);
816 out:
817 	if (error)
818 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
819 	return error;
820 }
821 
822 /*
823  * aumac_stop:		[ifnet interface function]
824  *
825  *	Stop transmission on the interface.
826  */
827 static void
828 aumac_stop(struct ifnet *ifp, int disable)
829 {
830 	struct aumac_softc *sc = ifp->if_softc;
831 
832 	/* Stop the one-second clock. */
833 	callout_stop(&sc->sc_tick_ch);
834 
835 	/* Down the MII. */
836 	mii_down(&sc->sc_mii);
837 
838 	/* Stop the transmit and receive processes. */
839 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);
840 
841 	/* Power down/reset the MAC. */
842 	aumac_powerdown(sc);
843 
844 	au_intr_disable(sc->sc_irq);
845 
846 	/* Mark the interface as down and cancel the watchdog timer. */
847 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
848 	ifp->if_timer = 0;
849 }
850 
851 /*
852  * aumac_powerdown:
853  *
854  *	Power down the MAC.
855  */
856 static void
857 aumac_powerdown(struct aumac_softc *sc)
858 {
859 
860 	/* Disable the MAC clocks, and place the device in reset. */
861 	// bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);
862 
863 	// delay(10000);
864 }
865 
866 /*
867  * aumac_powerup:
868  *
869  *	Bring the device out of reset.
870  */
871 static void
872 aumac_powerup(struct aumac_softc *sc)
873 {
874 
875 	/* Enable clocks to the MAC. */
876 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP | MACEN_CE);
877 
878 	/* Enable MAC, coherent transactions, pass only valid frames. */
879 	bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
880 	    MACEN_E2 | MACEN_E1 | MACEN_E0 | MACEN_CE);
881 
882 	delay(20000);
883 }
884 
885 /*
886  * aumac_set_filter:
887  *
888  *	Set up the receive filter.
889  */
890 static void
891 aumac_set_filter(struct aumac_softc *sc)
892 {
893 	struct ethercom *ec = &sc->sc_ethercom;
894 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
895 	struct ether_multi *enm;
896 	struct ether_multistep step;
897 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
898 	uint32_t mchash[2], crc;
899 
900 	sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);
901 
902 	/* Stop the receiver. */
903 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
904 	    sc->sc_control & ~CONTROL_RE);
905 
906 	if (ifp->if_flags & IFF_PROMISC) {
907 		sc->sc_control |= CONTROL_PR;
908 		goto allmulti;
909 	}
910 
911 	/* Set the station address. */
912 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
913 	    enaddr[4] | (enaddr[5] << 8));
914 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
915 	    enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
916 	    (enaddr[3] << 24));
917 
918 	sc->sc_control |= CONTROL_HP;
919 
920 	mchash[0] = mchash[1] = 0;
921 
922 	/*
923 	 * Set up the multicast address filter by passing all multicast
924 	 * addresses through a CRC generator, and then using the high
925 	 * order 6 bits as an index into the 64-bit multicast hash table.
926 	 * The high order bits select the word, while the rest of the bits
927 	 * select the bit within the word.
928 	 */
929 	ETHER_LOCK(ec);
930 	ETHER_FIRST_MULTI(step, ec, enm);
931 	while (enm != NULL) {
932 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
933 			/*
934 			 * We must listen to a range of multicast addresses.
935 			 * For now, just accept all multicasts, rather than
936 			 * trying to set only those filter bits needed to match
937 			 * the range.  (At this time, the only use of address
938 			 * ranges is for IP multicast routing, for which the
939 			 * range is large enough to require all bits set.)
940 			 */
941 			ETHER_UNLOCK(ec);
942 			goto allmulti;
943 		}
944 
945 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
946 
947 		/* Just want the 6 most significant bits. */
948 		crc >>= 26;
949 
950 		/* Set the corresponding bit in the filter. */
951 		mchash[crc >> 5] |= 1U << (crc & 0x1f);
952 
953 		ETHER_NEXT_MULTI(step, enm);
954 	}
955 	ETHER_UNLOCK(ec);
956 
957 	ifp->if_flags &= ~IFF_ALLMULTI;
958 
959 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
960 	    mchash[1]);
961 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
962 	    mchash[0]);
963 
964 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
965 	    sc->sc_control);
966 	return;
967 
968  allmulti:
969 	sc->sc_control |= CONTROL_PM;
970 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
971 	    sc->sc_control);
972 }
973 
974 /*
975  * aumac_mii_wait:
976  *
977  *	Wait for the MII interface to not be busy.
978  */
979 static int
980 aumac_mii_wait(struct aumac_softc *sc, const char *msg)
981 {
982 	int i;
983 
984 	for (i = 0; i < 10000; i++) {
985 		if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
986 		     MAC_MIICTRL) & MIICTRL_MB) == 0)
987 			return 0;
988 		delay(10);
989 	}
990 
991 	printf("%s: MII failed to %s\n", device_xname(sc->sc_dev), msg);
992 	return ETIMEDOUT;
993 }
994 
995 /*
996  * aumac_mii_readreg:	[mii interface function]
997  *
998  *	Read a PHY register on the MII.
999  */
1000 static int
1001 aumac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1002 {
1003 	struct aumac_softc *sc = device_private(self);
1004 	int rv;
1005 
1006 	if ((rv = aumac_mii_wait(sc, "become ready")) != 0)
1007 		return rv;
1008 
1009 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1010 	    MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));
1011 
1012 	if ((rv = aumac_mii_wait(sc, "complete")) != 0)
1013 		return rv;
1014 
1015 	*val = bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA)
1016 	    & MIIDATA_MASK;
1017 	return 0;
1018 }
1019 
1020 /*
1021  * aumac_mii_writereg:	[mii interface function]
1022  *
1023  *	Write a PHY register on the MII.
1024  */
1025 static int
1026 aumac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1027 {
1028 	struct aumac_softc *sc = device_private(self);
1029 	int rv;
1030 
1031 	if ((rv = aumac_mii_wait(sc, "become ready")) != 0)
1032 		return rv;
1033 
1034 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
1035 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
1036 	    MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);
1037 
1038 	return aumac_mii_wait(sc, "complete");
1039 }
1040 
1041 /*
1042  * aumac_mii_statchg:	[mii interface function]
1043  *
1044  *	Callback from MII layer when media changes.
1045  */
1046 static void
1047 aumac_mii_statchg(struct ifnet *ifp)
1048 {
1049 	struct aumac_softc *sc = ifp->if_softc;
1050 
1051 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1052 		sc->sc_control |= CONTROL_F;
1053 	else
1054 		sc->sc_control &= ~CONTROL_F;
1055 
1056 	bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
1057 	    sc->sc_control);
1058 }
1059