1 /* $NetBSD: snapper.c,v 1.31 2008/12/16 22:35:24 christos Exp $ */ 2 /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */ 3 /* Id: i2s.c,v 1.12 2005/01/15 14:32:35 tsubai Exp */ 4 5 /*- 6 * Copyright (c) 2002, 2003 Tsubai Masanari. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * Datasheet is available from 33 * http://www.ti.com/sc/docs/products/analog/tas3004.html 34 * http://www.ti.com/sc/docs/products/analog/tas3001.html 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: snapper.c,v 1.31 2008/12/16 22:35:24 christos Exp $"); 39 40 #include <sys/param.h> 41 #include <sys/audioio.h> 42 #include <sys/device.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 46 #include <dev/auconv.h> 47 #include <dev/audio_if.h> 48 #include <dev/mulaw.h> 49 #include <dev/ofw/openfirm.h> 50 #include <macppc/dev/dbdma.h> 51 52 #include <uvm/uvm_extern.h> 53 #include <dev/i2c/i2cvar.h> 54 55 #include <machine/autoconf.h> 56 #include <machine/pio.h> 57 58 #include <macppc/dev/deqvar.h> 59 #include <macppc/dev/obiovar.h> 60 61 #ifdef SNAPPER_DEBUG 62 # define DPRINTF printf 63 #else 64 # define DPRINTF while (0) printf 65 #endif 66 67 #define SNAPPER_MAXPAGES 16 68 69 struct snapper_softc { 70 device_t sc_dev; 71 int sc_mode; // 0 for TAS3004 72 #define SNAPPER_IS_TAS3001 1 // codec is TAS3001 73 #define SNAPPER_SWVOL 2 // software codec 74 75 int sc_node; 76 77 struct audio_encoding_set *sc_encodings; 78 79 void (*sc_ointr)(void *); /* dma completion intr handler */ 80 void *sc_oarg; /* arg for sc_ointr() */ 81 int sc_opages; /* # of output pages */ 82 83 void (*sc_iintr)(void *); /* dma completion intr handler */ 84 void *sc_iarg; /* arg for sc_iintr() */ 85 int sc_ipages; /* # of input pages */ 86 87 u_int sc_record_source; /* recording source mask */ 88 u_int sc_output_mask; /* output source mask */ 89 90 bus_space_tag_t sc_tag; 91 bus_space_handle_t sc_bsh; 92 i2c_addr_t sc_deqaddr; 93 i2c_tag_t sc_i2c; 94 uint32_t sc_baseaddr; 95 96 int sc_rate; /* current sampling rate */ 97 int sc_bitspersample; 98 99 int sc_swvol; 100 101 u_int sc_vol_l; 102 u_int sc_vol_r; 103 u_int sc_treble; 104 u_int sc_bass; 105 u_int mixer[6]; /* s1_l, s2_l, an_l, s1_r, s2_r, an_r */ 106 107 bus_space_handle_t sc_odmah; 108 bus_space_handle_t sc_idmah; 109 dbdma_regmap_t *sc_odma; 110 dbdma_regmap_t *sc_idma; 111 unsigned char dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15]; 112 struct dbdma_command *sc_odmacmd; 113 struct dbdma_command *sc_idmacmd; 114 }; 115 116 static int snapper_match(device_t, struct cfdata *, void *); 117 static void snapper_attach(device_t, device_t, void *); 118 static void snapper_defer(device_t); 119 static int snapper_intr(void *); 120 static int snapper_query_encoding(void *, struct audio_encoding *); 121 static int snapper_set_params(void *, int, int, audio_params_t *, 122 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *); 123 static int snapper_round_blocksize(void *, int, int, const audio_params_t *); 124 static int snapper_halt_output(void *); 125 static int snapper_halt_input(void *); 126 static int snapper_getdev(void *, struct audio_device *); 127 static int snapper_set_port(void *, mixer_ctrl_t *); 128 static int snapper_get_port(void *, mixer_ctrl_t *); 129 static int snapper_query_devinfo(void *, mixer_devinfo_t *); 130 static size_t snapper_round_buffersize(void *, int, size_t); 131 static paddr_t snapper_mappage(void *, void *, off_t, int); 132 static int snapper_get_props(void *); 133 static int snapper_trigger_output(void *, void *, void *, int, void (*)(void *), 134 void *, const audio_params_t *); 135 static int snapper_trigger_input(void *, void *, void *, int, void (*)(void *), 136 void *, const audio_params_t *); 137 static void snapper_set_volume(struct snapper_softc *, u_int, u_int); 138 static int snapper_set_rate(struct snapper_softc *); 139 static void snapper_set_treble(struct snapper_softc *, u_int); 140 static void snapper_set_bass(struct snapper_softc *, u_int); 141 static void snapper_write_mixers(struct snapper_softc *); 142 143 static int tas3004_write(struct snapper_softc *, u_int, const void *); 144 static int gpio_read(char *); 145 static void gpio_write(char *, int); 146 static void snapper_mute_speaker(struct snapper_softc *, int); 147 static void snapper_mute_headphone(struct snapper_softc *, int); 148 static int snapper_cint(void *); 149 static int tas3004_init(struct snapper_softc *); 150 static void snapper_init(struct snapper_softc *, int); 151 static void snapper_volume_up(device_t); 152 static void snapper_volume_down(device_t); 153 154 struct snapper_codecvar { 155 stream_filter_t base; 156 157 #ifdef DIAGNOSTIC 158 # define SNAPPER_CODECVAR_MAGIC 0xC0DEC 159 uint32_t magic; 160 #endif // DIAGNOSTIC 161 162 int16_t rval; // for snapper_fixphase 163 }; 164 165 static stream_filter_t *snapper_filter_factory 166 (int (*)(stream_fetcher_t *, audio_stream_t *, int)); 167 static void snapper_filter_dtor(stream_filter_t *); 168 169 /* XXX We can't access the hw device softc from our audio 170 * filter -- lame... 171 */ 172 static u_int snapper_vol_l = 128, snapper_vol_r = 128; 173 174 /* XXX why doesn't auconv define this? */ 175 #define DEFINE_FILTER(name) \ 176 static int \ 177 name##_fetch_to(stream_fetcher_t *, audio_stream_t *, int); \ 178 stream_filter_t * name(struct audio_softc *, \ 179 const audio_params_t *, const audio_params_t *); \ 180 stream_filter_t * \ 181 name(struct audio_softc *sc, const audio_params_t *from, \ 182 const audio_params_t *to) \ 183 { \ 184 return snapper_filter_factory(name##_fetch_to); \ 185 } \ 186 static int \ 187 name##_fetch_to(stream_fetcher_t *self, audio_stream_t *dst, int max_used) 188 189 DEFINE_FILTER(snapper_volume) 190 { 191 stream_filter_t *this; 192 int16_t j; 193 int16_t *wp; 194 int m, err; 195 196 this = (stream_filter_t *)self; 197 max_used = (max_used + 1) & ~1; 198 if ((err = this->prev->fetch_to(this->prev, this->src, max_used))) 199 return err; 200 m = (dst->end - dst->start) & ~1; 201 m = min(m, max_used); 202 FILTER_LOOP_PROLOGUE(this->src, 2, dst, 2, m) { 203 j = (s[0] << 8 | s[1]); 204 wp = (int16_t *)d; 205 *wp = ((j * snapper_vol_l) / 255); 206 } FILTER_LOOP_EPILOGUE(this->src, dst); 207 208 return 0; 209 } 210 211 /* 212 * A hardware bug in the TAS3004 I2S transport 213 * produces phase differences between channels 214 * (left channel appears delayed by one sample). 215 * Fix the phase difference by delaying the right channel 216 * by one sample. 217 */ 218 DEFINE_FILTER(snapper_fixphase) 219 { 220 struct snapper_codecvar *cv = (struct snapper_codecvar *) self; 221 stream_filter_t *this = &cv->base; 222 int err, m; 223 const int16_t *rp; 224 int16_t *wp, rval = cv->rval; 225 226 #ifdef DIAGNOSTIC 227 if (cv->magic != SNAPPER_CODECVAR_MAGIC) 228 panic("snapper_fixphase"); 229 #endif 230 max_used = (max_used + 3) & ~2; 231 if ((err = this->prev->fetch_to(this->prev, this->src, max_used))) 232 return err; 233 234 /* work in stereo frames (4 bytes) */ 235 m = (dst->end - dst->start) & ~2; 236 m = min(m, max_used); 237 FILTER_LOOP_PROLOGUE(this->src, 4, dst, 4, m) { 238 rp = (const int16_t *) s; 239 wp = (int16_t *) d; 240 wp[0] = rp[0]; 241 wp[1] = rval; 242 rval = rp[1]; 243 } FILTER_LOOP_EPILOGUE(this->src, dst); 244 cv->rval = rval; 245 246 return 0; 247 } 248 249 static stream_filter_t * 250 snapper_filter_factory(int (*fetch_to)(stream_fetcher_t *, audio_stream_t *, int)) 251 { 252 struct snapper_codecvar *this; 253 254 this = malloc(sizeof(*this), M_DEVBUF, M_WAITOK | M_ZERO); 255 this->base.base.fetch_to = fetch_to; 256 this->base.dtor = snapper_filter_dtor; 257 this->base.set_fetcher = stream_filter_set_fetcher; 258 this->base.set_inputbuffer = stream_filter_set_inputbuffer; 259 260 #ifdef DIAGNOSTIC 261 this->magic = SNAPPER_CODECVAR_MAGIC; 262 #endif 263 return (stream_filter_t *) this; 264 } 265 266 static void 267 snapper_filter_dtor(stream_filter_t *this) 268 { 269 if (this != NULL) 270 free(this, M_DEVBUF); 271 } 272 273 CFATTACH_DECL_NEW(snapper, sizeof(struct snapper_softc), snapper_match, 274 snapper_attach, NULL, NULL); 275 276 const struct audio_hw_if snapper_hw_if = { 277 NULL, 278 NULL, 279 NULL, 280 snapper_query_encoding, 281 snapper_set_params, 282 snapper_round_blocksize, 283 NULL, 284 NULL, 285 NULL, 286 NULL, 287 NULL, 288 snapper_halt_output, 289 snapper_halt_input, 290 NULL, 291 snapper_getdev, 292 NULL, 293 snapper_set_port, 294 snapper_get_port, 295 snapper_query_devinfo, 296 NULL, 297 NULL, 298 snapper_round_buffersize, 299 snapper_mappage, 300 snapper_get_props, 301 snapper_trigger_output, 302 snapper_trigger_input, 303 NULL, 304 NULL 305 }; 306 307 struct audio_device snapper_device = { 308 "SNAPPER", 309 "", 310 "snapper" 311 }; 312 313 #define SNAPPER_BASSTAB_0DB 18 314 const uint8_t snapper_basstab[] = { 315 0x96, /* -18dB */ 316 0x94, /* -17dB */ 317 0x92, /* -16dB */ 318 0x90, /* -15dB */ 319 0x8e, /* -14dB */ 320 0x8c, /* -13dB */ 321 0x8a, /* -12dB */ 322 0x88, /* -11dB */ 323 0x86, /* -10dB */ 324 0x84, /* -9dB */ 325 0x82, /* -8dB */ 326 0x80, /* -7dB */ 327 0x7e, /* -6dB */ 328 0x7c, /* -5dB */ 329 0x7a, /* -4dB */ 330 0x78, /* -3dB */ 331 0x76, /* -2dB */ 332 0x74, /* -1dB */ 333 0x72, /* 0dB */ 334 0x6f, /* 1dB */ 335 0x6d, /* 2dB */ 336 0x6a, /* 3dB */ 337 0x67, /* 4dB */ 338 0x65, /* 5dB */ 339 0x62, /* 6dB */ 340 0x5f, /* 7dB */ 341 0x5b, /* 8dB */ 342 0x55, /* 9dB */ 343 0x4f, /* 10dB */ 344 0x49, /* 11dB */ 345 0x43, /* 12dB */ 346 0x3b, /* 13dB */ 347 0x33, /* 14dB */ 348 0x29, /* 15dB */ 349 0x1e, /* 16dB */ 350 0x11, /* 17dB */ 351 0x01, /* 18dB */ 352 }; 353 354 #define SNAPPER_MIXER_GAIN_0DB 36 355 const uint8_t snapper_mixer_gain[178][3] = { 356 { 0x7f, 0x17, 0xaf }, /* 18.0 dB */ 357 { 0x77, 0xfb, 0xaa }, /* 17.5 dB */ 358 { 0x71, 0x45, 0x75 }, /* 17.0 dB */ 359 { 0x6a, 0xef, 0x5d }, /* 16.5 dB */ 360 { 0x64, 0xf4, 0x03 }, /* 16.0 dB */ 361 { 0x5f, 0x4e, 0x52 }, /* 15.5 dB */ 362 { 0x59, 0xf9, 0x80 }, /* 15.0 dB */ 363 { 0x54, 0xf1, 0x06 }, /* 14.5 dB */ 364 { 0x50, 0x30, 0xa1 }, /* 14.0 dB */ 365 { 0x4b, 0xb4, 0x46 }, /* 13.5 dB */ 366 { 0x47, 0x78, 0x28 }, /* 13.0 dB */ 367 { 0x43, 0x78, 0xb0 }, /* 12.5 dB */ 368 { 0x3f, 0xb2, 0x78 }, /* 12.0 dB */ 369 { 0x3c, 0x22, 0x4c }, /* 11.5 dB */ 370 { 0x38, 0xc5, 0x28 }, /* 11.0 dB */ 371 { 0x35, 0x98, 0x2f }, /* 10.5 dB */ 372 { 0x32, 0x98, 0xb0 }, /* 10.0 dB */ 373 { 0x2f, 0xc4, 0x20 }, /* 9.5 dB */ 374 { 0x2d, 0x18, 0x18 }, /* 9.0 dB */ 375 { 0x2a, 0x92, 0x54 }, /* 8.5 dB */ 376 { 0x28, 0x30, 0xaf }, /* 8.0 dB */ 377 { 0x25, 0xf1, 0x25 }, /* 7.5 dB */ 378 { 0x23, 0xd1, 0xcd }, /* 7.0 dB */ 379 { 0x21, 0xd0, 0xd9 }, /* 6.5 dB */ 380 { 0x1f, 0xec, 0x98 }, /* 6.0 dB */ 381 { 0x1e, 0x23, 0x6d }, /* 5.5 dB */ 382 { 0x1c, 0x73, 0xd5 }, /* 5.0 dB */ 383 { 0x1a, 0xdc, 0x61 }, /* 4.5 dB */ 384 { 0x19, 0x5b, 0xb8 }, /* 4.0 dB */ 385 { 0x17, 0xf0, 0x94 }, /* 3.5 dB */ 386 { 0x16, 0x99, 0xc0 }, /* 3.0 dB */ 387 { 0x15, 0x56, 0x1a }, /* 2.5 dB */ 388 { 0x14, 0x24, 0x8e }, /* 2.0 dB */ 389 { 0x13, 0x04, 0x1a }, /* 1.5 dB */ 390 { 0x11, 0xf3, 0xc9 }, /* 1.0 dB */ 391 { 0x10, 0xf2, 0xb4 }, /* 0.5 dB */ 392 { 0x10, 0x00, 0x00 }, /* 0.0 dB */ 393 { 0x0f, 0x1a, 0xdf }, /* -0.5 dB */ 394 { 0x0e, 0x42, 0x90 }, /* -1.0 dB */ 395 { 0x0d, 0x76, 0x5a }, /* -1.5 dB */ 396 { 0x0c, 0xb5, 0x91 }, /* -2.0 dB */ 397 { 0x0b, 0xff, 0x91 }, /* -2.5 dB */ 398 { 0x0b, 0x53, 0xbe }, /* -3.0 dB */ 399 { 0x0a, 0xb1, 0x89 }, /* -3.5 dB */ 400 { 0x0a, 0x18, 0x66 }, /* -4.0 dB */ 401 { 0x09, 0x87, 0xd5 }, /* -4.5 dB */ 402 { 0x08, 0xff, 0x59 }, /* -5.0 dB */ 403 { 0x08, 0x7e, 0x80 }, /* -5.5 dB */ 404 { 0x08, 0x04, 0xdc }, /* -6.0 dB */ 405 { 0x07, 0x92, 0x07 }, /* -6.5 dB */ 406 { 0x07, 0x25, 0x9d }, /* -7.0 dB */ 407 { 0x06, 0xbf, 0x44 }, /* -7.5 dB */ 408 { 0x06, 0x5e, 0xa5 }, /* -8.0 dB */ 409 { 0x06, 0x03, 0x6e }, /* -8.5 dB */ 410 { 0x05, 0xad, 0x50 }, /* -9.0 dB */ 411 { 0x05, 0x5c, 0x04 }, /* -9.5 dB */ 412 { 0x05, 0x0f, 0x44 }, /* -10.0 dB */ 413 { 0x04, 0xc6, 0xd0 }, /* -10.5 dB */ 414 { 0x04, 0x82, 0x68 }, /* -11.0 dB */ 415 { 0x04, 0x41, 0xd5 }, /* -11.5 dB */ 416 { 0x04, 0x04, 0xde }, /* -12.0 dB */ 417 { 0x03, 0xcb, 0x50 }, /* -12.5 dB */ 418 { 0x03, 0x94, 0xfa }, /* -13.0 dB */ 419 { 0x03, 0x61, 0xaf }, /* -13.5 dB */ 420 { 0x03, 0x31, 0x42 }, /* -14.0 dB */ 421 { 0x03, 0x03, 0x8a }, /* -14.5 dB */ 422 { 0x02, 0xd8, 0x62 }, /* -15.0 dB */ 423 { 0x02, 0xaf, 0xa3 }, /* -15.5 dB */ 424 { 0x02, 0x89, 0x2c }, /* -16.0 dB */ 425 { 0x02, 0x64, 0xdb }, /* -16.5 dB */ 426 { 0x02, 0x42, 0x93 }, /* -17.0 dB */ 427 { 0x02, 0x22, 0x35 }, /* -17.5 dB */ 428 { 0x02, 0x03, 0xa7 }, /* -18.0 dB */ 429 { 0x01, 0xe6, 0xcf }, /* -18.5 dB */ 430 { 0x01, 0xcb, 0x94 }, /* -19.0 dB */ 431 { 0x01, 0xb1, 0xde }, /* -19.5 dB */ 432 { 0x01, 0x99, 0x99 }, /* -20.0 dB */ 433 { 0x01, 0x82, 0xaf }, /* -20.5 dB */ 434 { 0x01, 0x6d, 0x0e }, /* -21.0 dB */ 435 { 0x01, 0x58, 0xa2 }, /* -21.5 dB */ 436 { 0x01, 0x45, 0x5b }, /* -22.0 dB */ 437 { 0x01, 0x33, 0x28 }, /* -22.5 dB */ 438 { 0x01, 0x21, 0xf9 }, /* -23.0 dB */ 439 { 0x01, 0x11, 0xc0 }, /* -23.5 dB */ 440 { 0x01, 0x02, 0x70 }, /* -24.0 dB */ 441 { 0x00, 0xf3, 0xfb }, /* -24.5 dB */ 442 { 0x00, 0xe6, 0x55 }, /* -25.0 dB */ 443 { 0x00, 0xd9, 0x73 }, /* -25.5 dB */ 444 { 0x00, 0xcd, 0x49 }, /* -26.0 dB */ 445 { 0x00, 0xc1, 0xcd }, /* -26.5 dB */ 446 { 0x00, 0xb6, 0xf6 }, /* -27.0 dB */ 447 { 0x00, 0xac, 0xba }, /* -27.5 dB */ 448 { 0x00, 0xa3, 0x10 }, /* -28.0 dB */ 449 { 0x00, 0x99, 0xf1 }, /* -28.5 dB */ 450 { 0x00, 0x91, 0x54 }, /* -29.0 dB */ 451 { 0x00, 0x89, 0x33 }, /* -29.5 dB */ 452 { 0x00, 0x81, 0x86 }, /* -30.0 dB */ 453 { 0x00, 0x7a, 0x48 }, /* -30.5 dB */ 454 { 0x00, 0x73, 0x70 }, /* -31.0 dB */ 455 { 0x00, 0x6c, 0xfb }, /* -31.5 dB */ 456 { 0x00, 0x66, 0xe3 }, /* -32.0 dB */ 457 { 0x00, 0x61, 0x21 }, /* -32.5 dB */ 458 { 0x00, 0x5b, 0xb2 }, /* -33.0 dB */ 459 { 0x00, 0x56, 0x91 }, /* -33.5 dB */ 460 { 0x00, 0x51, 0xb9 }, /* -34.0 dB */ 461 { 0x00, 0x4d, 0x27 }, /* -34.5 dB */ 462 { 0x00, 0x48, 0xd6 }, /* -35.0 dB */ 463 { 0x00, 0x44, 0xc3 }, /* -35.5 dB */ 464 { 0x00, 0x40, 0xea }, /* -36.0 dB */ 465 { 0x00, 0x3d, 0x49 }, /* -36.5 dB */ 466 { 0x00, 0x39, 0xdb }, /* -37.0 dB */ 467 { 0x00, 0x36, 0x9e }, /* -37.5 dB */ 468 { 0x00, 0x33, 0x90 }, /* -38.0 dB */ 469 { 0x00, 0x30, 0xae }, /* -38.5 dB */ 470 { 0x00, 0x2d, 0xf5 }, /* -39.0 dB */ 471 { 0x00, 0x2b, 0x63 }, /* -39.5 dB */ 472 { 0x00, 0x28, 0xf5 }, /* -40.0 dB */ 473 { 0x00, 0x26, 0xab }, /* -40.5 dB */ 474 { 0x00, 0x24, 0x81 }, /* -41.0 dB */ 475 { 0x00, 0x22, 0x76 }, /* -41.5 dB */ 476 { 0x00, 0x20, 0x89 }, /* -42.0 dB */ 477 { 0x00, 0x1e, 0xb7 }, /* -42.5 dB */ 478 { 0x00, 0x1c, 0xff }, /* -43.0 dB */ 479 { 0x00, 0x1b, 0x60 }, /* -43.5 dB */ 480 { 0x00, 0x19, 0xd8 }, /* -44.0 dB */ 481 { 0x00, 0x18, 0x65 }, /* -44.5 dB */ 482 { 0x00, 0x17, 0x08 }, /* -45.0 dB */ 483 { 0x00, 0x15, 0xbe }, /* -45.5 dB */ 484 { 0x00, 0x14, 0x87 }, /* -46.0 dB */ 485 { 0x00, 0x13, 0x61 }, /* -46.5 dB */ 486 { 0x00, 0x12, 0x4b }, /* -47.0 dB */ 487 { 0x00, 0x11, 0x45 }, /* -47.5 dB */ 488 { 0x00, 0x10, 0x4e }, /* -48.0 dB */ 489 { 0x00, 0x0f, 0x64 }, /* -48.5 dB */ 490 { 0x00, 0x0e, 0x88 }, /* -49.0 dB */ 491 { 0x00, 0x0d, 0xb8 }, /* -49.5 dB */ 492 { 0x00, 0x0c, 0xf3 }, /* -50.0 dB */ 493 { 0x00, 0x0c, 0x3a }, /* -50.5 dB */ 494 { 0x00, 0x0b, 0x8b }, /* -51.0 dB */ 495 { 0x00, 0x0a, 0xe5 }, /* -51.5 dB */ 496 { 0x00, 0x0a, 0x49 }, /* -52.0 dB */ 497 { 0x00, 0x09, 0xb6 }, /* -52.5 dB */ 498 { 0x00, 0x09, 0x2b }, /* -53.0 dB */ 499 { 0x00, 0x08, 0xa8 }, /* -53.5 dB */ 500 { 0x00, 0x08, 0x2c }, /* -54.0 dB */ 501 { 0x00, 0x07, 0xb7 }, /* -54.5 dB */ 502 { 0x00, 0x07, 0x48 }, /* -55.0 dB */ 503 { 0x00, 0x06, 0xe0 }, /* -55.5 dB */ 504 { 0x00, 0x06, 0x7d }, /* -56.0 dB */ 505 { 0x00, 0x06, 0x20 }, /* -56.5 dB */ 506 { 0x00, 0x05, 0xc9 }, /* -57.0 dB */ 507 { 0x00, 0x05, 0x76 }, /* -57.5 dB */ 508 { 0x00, 0x05, 0x28 }, /* -58.0 dB */ 509 { 0x00, 0x04, 0xde }, /* -58.5 dB */ 510 { 0x00, 0x04, 0x98 }, /* -59.0 dB */ 511 { 0x00, 0x04, 0x56 }, /* -59.5 dB */ 512 { 0x00, 0x04, 0x18 }, /* -60.0 dB */ 513 { 0x00, 0x03, 0xdd }, /* -60.5 dB */ 514 { 0x00, 0x03, 0xa6 }, /* -61.0 dB */ 515 { 0x00, 0x03, 0x72 }, /* -61.5 dB */ 516 { 0x00, 0x03, 0x40 }, /* -62.0 dB */ 517 { 0x00, 0x03, 0x12 }, /* -62.5 dB */ 518 { 0x00, 0x02, 0xe6 }, /* -63.0 dB */ 519 { 0x00, 0x02, 0xbc }, /* -63.5 dB */ 520 { 0x00, 0x02, 0x95 }, /* -64.0 dB */ 521 { 0x00, 0x02, 0x70 }, /* -64.5 dB */ 522 { 0x00, 0x02, 0x4d }, /* -65.0 dB */ 523 { 0x00, 0x02, 0x2c }, /* -65.5 dB */ 524 { 0x00, 0x02, 0x0d }, /* -66.0 dB */ 525 { 0x00, 0x01, 0xf0 }, /* -66.5 dB */ 526 { 0x00, 0x01, 0xd4 }, /* -67.0 dB */ 527 { 0x00, 0x01, 0xba }, /* -67.5 dB */ 528 { 0x00, 0x01, 0xa1 }, /* -68.0 dB */ 529 { 0x00, 0x01, 0x8a }, /* -68.5 dB */ 530 { 0x00, 0x01, 0x74 }, /* -69.0 dB */ 531 { 0x00, 0x01, 0x5f }, /* -69.5 dB */ 532 { 0x00, 0x01, 0x4b }, /* -70.0 dB */ 533 { 0x00, 0x00, 0x00 } /* Mute */ 534 }; 535 536 #define SNAPPER_NFORMATS 2 537 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = { 538 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16, 539 2, AUFMT_STEREO, 3, {32000, 44100, 48000}}, 540 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 24, 24, 541 2, AUFMT_STEREO, 3, {32000, 44100, 48000}}, 542 }; 543 544 #define TUMBLER_NFORMATS 1 545 static const struct audio_format tumbler_formats[TUMBLER_NFORMATS] = { 546 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16, 547 2, AUFMT_STEREO, 4, {32000, 44100, 48000, 96000}}, 548 }; 549 550 static u_char *amp_mute; 551 static u_char *headphone_mute; 552 static u_char *audio_hw_reset; 553 static u_char *headphone_detect; 554 static int headphone_detect_active; 555 556 557 /* I2S registers */ 558 #define I2S_INT 0x00 559 #define I2S_FORMAT 0x10 560 #define I2S_FRAMECOUNT 0x40 561 #define I2S_FRAMEMATCH 0x50 562 #define I2S_WORDSIZE 0x60 563 564 /* I2S_INT register definitions */ 565 #define I2S_INT_CLKSTOPPEND 0x01000000 /* clock-stop interrupt pending */ 566 567 /* FCR(0x3c) bits */ 568 #define KEYLARGO_FCR1 0x3c 569 #define I2S0CLKEN 0x1000 570 #define I2S0EN 0x2000 571 #define I2S1CLKEN 0x080000 572 #define I2S1EN 0x100000 573 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN" 574 575 /* TAS3004/TAS3001 registers */ 576 #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */ 577 #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?) 578 2 bytes (reserved) on the TAS 3001 */ 579 #define DEQ_VOLUME 0x04 /* Volume (6bytes) */ 580 #define DEQ_TREBLE 0x05 /* Treble control (1byte) */ 581 #define DEQ_BASS 0x06 /* Bass control (1byte) */ 582 #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes; 3 on TAS3001) */ 583 #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes; 3 on TAS3001) */ 584 #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */ 585 #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */ 586 #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */ 587 #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */ 588 #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */ 589 #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */ 590 #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */ 591 #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */ 592 #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */ 593 #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */ 594 #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */ 595 #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */ 596 #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */ 597 #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */ 598 #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */ 599 #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */ 600 #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */ 601 #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */ 602 #define DEQ_ACR 0x40 /* [TAS3004] Analog control register (1byte) */ 603 #define DEQ_MCR2 0x43 /* [TAS3004] Main control register 2 (1byte) */ 604 #define DEQ_MCR1_FL 0x80 /* Fast load */ 605 #define DEQ_MCR1_SC 0x40 /* SCLK frequency */ 606 #define DEQ_MCR1_SC_32 0x00 /* 32fs */ 607 #define DEQ_MCR1_SC_64 0x40 /* 64fs */ 608 #define DEQ_MCR1_SM 0x30 /* Output serial port mode */ 609 #define DEQ_MCR1_SM_L 0x00 /* Left justified */ 610 #define DEQ_MCR1_SM_R 0x10 /* Right justified */ 611 #define DEQ_MCR1_SM_I2S 0x20 /* I2S */ 612 #define DEQ_MCR1_ISM 0x0c /* [TAS3001] Input serial port mode */ 613 #define DEQ_MCR1_ISM_L 0x00 /* Left justified */ 614 #define DEQ_MCR1_ISM_R 0x04 /* Right justified */ 615 #define DEQ_MCR1_ISM_I2S 0x08 /* I2S */ 616 #define DEQ_MCR1_W 0x03 /* Serial port word length */ 617 #define DEQ_MCR1_W_16 0x00 /* 16 bit */ 618 #define DEQ_MCR1_W_18 0x01 /* 18 bit */ 619 #define DEQ_MCR1_W_20 0x02 /* 20 bit */ 620 #define DEQ_MCR1_W_24 0x03 /* 20 bit */ 621 622 #define DEQ_MCR2_DL 0x80 /* Download */ 623 #define DEQ_MCR2_AP 0x02 /* All pass mode */ 624 625 #define DEQ_ACR_ADM 0x80 /* ADC output mode */ 626 #define DEQ_ACR_LRB 0x40 /* Select B input */ 627 #define DEQ_ACR_DM 0x0c /* De-emphasis control */ 628 #define DEQ_ACR_DM_OFF 0x00 /* off */ 629 #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */ 630 #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */ 631 #define DEQ_ACR_INP 0x02 /* Analog input select */ 632 #define DEQ_ACR_INP_A 0x00 /* A */ 633 #define DEQ_ACR_INP_B 0x02 /* B */ 634 #define DEQ_ACR_APD 0x01 /* Analog power down */ 635 636 struct tas3004_reg { 637 u_char MCR1[1]; 638 u_char DRC[6]; 639 u_char VOLUME[6]; 640 u_char TREBLE[1]; 641 u_char BASS[1]; 642 u_char MIXER_L[9]; 643 u_char MIXER_R[9]; 644 u_char LB0[15]; 645 u_char LB1[15]; 646 u_char LB2[15]; 647 u_char LB3[15]; 648 u_char LB4[15]; 649 u_char LB5[15]; 650 u_char LB6[15]; 651 u_char RB0[15]; 652 u_char RB1[15]; 653 u_char RB2[15]; 654 u_char RB3[15]; 655 u_char RB4[15]; 656 u_char RB5[15]; 657 u_char RB6[15]; 658 u_char LLB[15]; 659 u_char RLB[15]; 660 u_char LLB_GAIN[3]; 661 u_char RLB_GAIN[3]; 662 u_char ACR[1]; 663 u_char MCR2[1]; 664 }; 665 666 #define GPIO_OUTSEL 0xf0 /* Output select */ 667 /* 0x00 GPIO bit0 is output 668 0x10 media-bay power 669 0x20 reserved 670 0x30 MPIC */ 671 672 #define GPIO_ALTOE 0x08 /* Alternate output enable */ 673 /* 0x00 Use DDR 674 0x08 Use output select */ 675 676 #define GPIO_DDR 0x04 /* Data direction */ 677 #define GPIO_DDR_OUTPUT 0x04 /* Output */ 678 #define GPIO_DDR_INPUT 0x00 /* Input */ 679 680 #define GPIO_LEVEL 0x02 /* Pin level (RO) */ 681 682 #define GPIO_DATA 0x01 /* Data */ 683 684 static int 685 snapper_match(device_t parent, struct cfdata *match, void *aux) 686 { 687 struct confargs *ca; 688 int soundbus, soundchip, soundcodec; 689 char compat[32]; 690 691 ca = aux; 692 if (strcmp(ca->ca_name, "i2s") != 0) 693 return 0; 694 695 if ((soundbus = OF_child(ca->ca_node)) == 0 || 696 (soundchip = OF_child(soundbus)) == 0) 697 return 0; 698 699 bzero(compat, sizeof compat); 700 OF_getprop(soundchip, "compatible", compat, sizeof compat); 701 702 if (strcmp(compat, "snapper") == 0) 703 return 1; 704 705 if (strcmp(compat, "tumbler") == 0) 706 return 1; 707 708 if (strcmp(compat, "AOAKeylargo") == 0) 709 return 1; 710 711 if (strcmp(compat, "AOAK2") == 0) 712 return 1; 713 714 if (OF_getprop(soundchip, "platform-tas-codec-ref", 715 &soundcodec, sizeof soundcodec) == sizeof soundcodec) 716 return 1; 717 718 return 0; 719 } 720 721 static void 722 snapper_attach(device_t parent, device_t self, void *aux) 723 { 724 struct snapper_softc *sc; 725 struct confargs *ca; 726 int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type; 727 int soundbus, intr[6]; 728 char compat[32]; 729 730 sc = device_private(self); 731 sc->sc_dev = self; 732 733 ca = aux; 734 735 soundbus = OF_child(ca->ca_node); 736 bzero(compat, sizeof compat); 737 OF_getprop(OF_child(soundbus), "compatible", compat, sizeof compat); 738 739 if (strcmp(compat, "tumbler") == 0) 740 sc->sc_mode = SNAPPER_IS_TAS3001; 741 742 if (sc->sc_mode == SNAPPER_IS_TAS3001) { 743 if (auconv_create_encodings(tumbler_formats, TUMBLER_NFORMATS, 744 &sc->sc_encodings) != 0) { 745 aprint_normal("can't create encodings\n"); 746 return; 747 } 748 } else { 749 if (auconv_create_encodings(snapper_formats, SNAPPER_NFORMATS, 750 &sc->sc_encodings) != 0) { 751 aprint_normal("can't create encodings\n"); 752 return; 753 } 754 } 755 756 sc->sc_odmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) * 757 sizeof(struct dbdma_command)); 758 sc->sc_idmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) * 759 sizeof(struct dbdma_command)); 760 761 sc->sc_baseaddr = ca->ca_baseaddr; 762 ca->ca_reg[0] += ca->ca_baseaddr; 763 ca->ca_reg[2] += ca->ca_baseaddr; 764 ca->ca_reg[4] += ca->ca_baseaddr; 765 766 sc->sc_node = ca->ca_node; 767 sc->sc_tag = ca->ca_tag; 768 bus_space_map(sc->sc_tag, ca->ca_reg[0], ca->ca_reg[1], 0, &sc->sc_bsh); 769 bus_space_map(sc->sc_tag, ca->ca_reg[2], ca->ca_reg[3], 770 BUS_SPACE_MAP_LINEAR, &sc->sc_odmah); 771 bus_space_map(sc->sc_tag, ca->ca_reg[4], ca->ca_reg[5], 772 BUS_SPACE_MAP_LINEAR, &sc->sc_idmah); 773 sc->sc_odma = bus_space_vaddr(sc->sc_tag, sc->sc_odmah); 774 sc->sc_idma = bus_space_vaddr(sc->sc_tag, sc->sc_idmah); 775 776 OF_getprop(soundbus, "interrupts", intr, sizeof intr); 777 cirq = intr[0]; 778 oirq = intr[2]; 779 iirq = intr[4]; 780 cirq_type = intr[1] ? IST_LEVEL : IST_EDGE; 781 oirq_type = intr[3] ? IST_LEVEL : IST_EDGE; 782 iirq_type = intr[5] ? IST_LEVEL : IST_EDGE; 783 784 /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */ 785 intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc); 786 intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc); 787 788 aprint_normal(": irq %d,%d,%d\n", cirq, oirq, iirq); 789 790 /* PMF event handler */ 791 pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN, 792 snapper_volume_down, TRUE); 793 pmf_event_register(self, PMFE_AUDIO_VOLUME_UP, 794 snapper_volume_up, TRUE); 795 config_defer(self, snapper_defer); 796 } 797 798 static void 799 snapper_defer(device_t dev) 800 { 801 struct snapper_softc *sc; 802 device_t dv; 803 struct deq_softc *deq; 804 805 sc = device_private(dev); 806 TAILQ_FOREACH(dv, &alldevs, dv_list) { 807 if (device_is_a(dv, "deq")) { 808 deq = device_private(dv); 809 sc->sc_i2c = deq->sc_i2c; 810 sc->sc_deqaddr = deq->sc_address; 811 } 812 } 813 814 /* If we don't find a codec, it's not the end of the world; 815 * we can control the volume in software in this case. 816 */ 817 if (sc->sc_i2c == NULL) 818 sc->sc_mode = SNAPPER_SWVOL; 819 820 switch (sc->sc_mode) { 821 case SNAPPER_SWVOL: 822 aprint_verbose("%s: software codec\n", device_xname(dev)); 823 break; 824 case SNAPPER_IS_TAS3001: 825 aprint_verbose("%s: codec: TAS3001\n", device_xname(dev)); 826 break; 827 case 0: 828 aprint_verbose("%s: codec: TAS3004\n", device_xname(dev)); 829 break; 830 } 831 832 audio_attach_mi(&snapper_hw_if, sc, sc->sc_dev); 833 834 /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */ 835 snapper_init(sc, sc->sc_node); 836 } 837 838 static int 839 snapper_intr(void *v) 840 { 841 struct snapper_softc *sc; 842 struct dbdma_command *cmd; 843 int count; 844 int status; 845 846 sc = v; 847 cmd = sc->sc_odmacmd; 848 count = sc->sc_opages; 849 /* Fill used buffer(s). */ 850 while (count-- > 0) { 851 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) { 852 status = in16rb(&cmd->d_status); 853 cmd->d_status = 0; 854 if (status) /* status == 0x8400 */ 855 if (sc->sc_ointr) 856 (*sc->sc_ointr)(sc->sc_oarg); 857 } 858 cmd++; 859 } 860 861 cmd = sc->sc_idmacmd; 862 count = sc->sc_ipages; 863 while (count-- > 0) { 864 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) { 865 status = in16rb(&cmd->d_status); 866 cmd->d_status = 0; 867 if (status) /* status == 0x8400 */ 868 if (sc->sc_iintr) 869 (*sc->sc_iintr)(sc->sc_iarg); 870 } 871 cmd++; 872 } 873 874 875 return 1; 876 } 877 878 879 static int 880 snapper_query_encoding(void *h, struct audio_encoding *ae) 881 { 882 883 struct snapper_softc *sc = h; 884 885 return auconv_query_encoding(sc->sc_encodings, ae); 886 } 887 888 static int 889 snapper_set_params(void *h, int setmode, int usemode, 890 audio_params_t *play, audio_params_t *rec, 891 stream_filter_list_t *pfil, stream_filter_list_t *rfil) 892 { 893 struct snapper_softc *sc; 894 audio_params_t *p; 895 stream_filter_list_t *fil = NULL; /* XXX gcc */ 896 int mode; 897 898 sc = h; 899 p = NULL; 900 901 /* 902 * This device only has one clock, so make the sample rates match. 903 */ 904 if (play->sample_rate != rec->sample_rate && 905 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 906 if (setmode == AUMODE_PLAY) { 907 rec->sample_rate = play->sample_rate; 908 setmode |= AUMODE_RECORD; 909 } else if (setmode == AUMODE_RECORD) { 910 play->sample_rate = rec->sample_rate; 911 setmode |= AUMODE_PLAY; 912 } else 913 return EINVAL; 914 } 915 916 for (mode = AUMODE_RECORD; mode != -1; 917 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 918 if ((setmode & mode) == 0) 919 continue; 920 921 p = mode == AUMODE_PLAY ? play : rec; 922 fil = mode == AUMODE_PLAY ? pfil : rfil; 923 if (sc->sc_mode == SNAPPER_IS_TAS3001) { 924 if (auconv_set_converter(tumbler_formats, 925 TUMBLER_NFORMATS, mode, p, true, fil) < 0) { 926 DPRINTF("snapper_set_params: " 927 "auconv_set_converter failed\n"); 928 return EINVAL; 929 } 930 } else { /* TAS 3004 */ 931 if (auconv_set_converter(snapper_formats, 932 SNAPPER_NFORMATS, mode, p, true, fil) < 0) { 933 DPRINTF("snapper_set_params: " 934 "auconv_set_converter failed\n"); 935 return EINVAL; 936 } 937 } 938 939 if (fil->req_size > 0) 940 p = &fil->filters[0].param; 941 if (p->precision == 16) { 942 if (sc->sc_mode == SNAPPER_SWVOL) 943 fil->prepend(fil, snapper_volume, p); 944 else if (sc->sc_mode == 0 && p->channels == 2) { 945 /* 946 * Fix phase problems on TAS3004. 947 * This filter must go last on the chain, 948 * so prepend it, not append it. 949 */ 950 fil->prepend(fil, snapper_fixphase, p); 951 } 952 } 953 } 954 955 /* Set the speed. p points HW encoding. */ 956 if (p) { 957 sc->sc_rate = p->sample_rate; 958 sc->sc_bitspersample = p->precision; 959 } 960 return 0; 961 } 962 963 static int 964 snapper_round_blocksize(void *h, int size, int mode, 965 const audio_params_t *param) 966 { 967 968 if (size < NBPG) 969 size = NBPG; 970 return size & ~PGOFSET; 971 } 972 973 static int 974 snapper_halt_output(void *h) 975 { 976 struct snapper_softc *sc; 977 978 sc = h; 979 dbdma_stop(sc->sc_odma); 980 dbdma_reset(sc->sc_odma); 981 sc->sc_ointr = NULL; 982 return 0; 983 } 984 985 static int 986 snapper_halt_input(void *h) 987 { 988 struct snapper_softc *sc; 989 990 sc = h; 991 dbdma_stop(sc->sc_idma); 992 dbdma_reset(sc->sc_idma); 993 sc->sc_iintr = NULL; 994 return 0; 995 } 996 997 static int 998 snapper_getdev(void *h, struct audio_device *retp) 999 { 1000 1001 *retp = snapper_device; 1002 return 0; 1003 } 1004 1005 enum { 1006 SNAPPER_MONITOR_CLASS, 1007 SNAPPER_OUTPUT_CLASS, 1008 SNAPPER_RECORD_CLASS, 1009 SNAPPER_OUTPUT_SELECT, 1010 SNAPPER_VOL_OUTPUT, 1011 SNAPPER_DIGI1, 1012 SNAPPER_DIGI2, 1013 SNAPPER_VOL_INPUT, 1014 SNAPPER_TREBLE, 1015 SNAPPER_BASS, 1016 /* From this point, unsupported by the TAS 3001 */ 1017 SNAPPER_ANALOG, 1018 SNAPPER_INPUT_SELECT, 1019 SNAPPER_ENUM_LAST 1020 }; 1021 1022 static int 1023 snapper_set_port(void *h, mixer_ctrl_t *mc) 1024 { 1025 struct snapper_softc *sc; 1026 int l, r; 1027 u_char data; 1028 1029 DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type); 1030 sc = h; 1031 l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1032 r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1033 1034 switch (mc->dev) { 1035 case SNAPPER_OUTPUT_SELECT: 1036 /* No change necessary? */ 1037 if (mc->un.mask == sc->sc_output_mask) 1038 return 0; 1039 1040 snapper_mute_speaker(sc, 1); 1041 snapper_mute_headphone(sc, 1); 1042 if (mc->un.mask & 1 << 0) 1043 snapper_mute_speaker(sc, 0); 1044 if (mc->un.mask & 1 << 1) 1045 snapper_mute_headphone(sc, 0); 1046 1047 sc->sc_output_mask = mc->un.mask; 1048 return 0; 1049 1050 case SNAPPER_VOL_OUTPUT: 1051 snapper_set_volume(sc, l, r); 1052 return 0; 1053 1054 case SNAPPER_INPUT_SELECT: 1055 if (sc->sc_mode != 0) 1056 return ENXIO; 1057 1058 /* no change necessary? */ 1059 if (mc->un.mask == sc->sc_record_source) 1060 return 0; 1061 switch (mc->un.mask) { 1062 case 1 << 0: /* microphone */ 1063 /* Select right channel of B input */ 1064 data = DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B; 1065 tas3004_write(sc, DEQ_ACR, &data); 1066 break; 1067 case 1 << 1: /* line in */ 1068 /* Select both channels of A input */ 1069 data = 0; 1070 tas3004_write(sc, DEQ_ACR, &data); 1071 break; 1072 default: /* invalid argument */ 1073 return EINVAL; 1074 } 1075 sc->sc_record_source = mc->un.mask; 1076 return 0; 1077 1078 case SNAPPER_VOL_INPUT: 1079 /* XXX TO BE DONE */ 1080 return 0; 1081 1082 case SNAPPER_BASS: 1083 if (sc->sc_mode == SNAPPER_SWVOL) 1084 return ENXIO; 1085 snapper_set_bass(sc, l); 1086 return 0; 1087 case SNAPPER_TREBLE: 1088 if (sc->sc_mode == SNAPPER_SWVOL) 1089 return ENXIO; 1090 snapper_set_treble(sc, l); 1091 return 0; 1092 case SNAPPER_DIGI1: 1093 if (sc->sc_mode == SNAPPER_SWVOL) 1094 return ENXIO; 1095 1096 sc->mixer[0] = l; 1097 sc->mixer[3] = r; 1098 snapper_write_mixers(sc); 1099 return 0; 1100 case SNAPPER_DIGI2: 1101 if (sc->sc_mode == SNAPPER_SWVOL) 1102 return ENXIO; 1103 1104 if (sc->sc_mode == SNAPPER_IS_TAS3001) 1105 sc->mixer[3] = l; 1106 else { 1107 sc->mixer[1] = l; 1108 sc->mixer[4] = r; 1109 } 1110 snapper_write_mixers(sc); 1111 return 0; 1112 case SNAPPER_ANALOG: 1113 if (sc->sc_mode != 0) 1114 return ENXIO; 1115 1116 sc->mixer[2] = l; 1117 sc->mixer[5] = r; 1118 snapper_write_mixers(sc); 1119 return 0; 1120 } 1121 return ENXIO; 1122 } 1123 1124 static int 1125 snapper_get_port(void *h, mixer_ctrl_t *mc) 1126 { 1127 struct snapper_softc *sc; 1128 1129 DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type); 1130 sc = h; 1131 switch (mc->dev) { 1132 case SNAPPER_OUTPUT_SELECT: 1133 mc->un.mask = sc->sc_output_mask; 1134 return 0; 1135 1136 case SNAPPER_VOL_OUTPUT: 1137 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l; 1138 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r; 1139 return 0; 1140 1141 case SNAPPER_INPUT_SELECT: 1142 if (sc->sc_mode != 0) 1143 return ENXIO; 1144 1145 mc->un.mask = sc->sc_record_source; 1146 return 0; 1147 1148 case SNAPPER_VOL_INPUT: 1149 /* XXX TO BE DONE */ 1150 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0; 1151 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0; 1152 return 0; 1153 1154 case SNAPPER_TREBLE: 1155 if (sc->sc_mode == SNAPPER_SWVOL) 1156 return ENXIO; 1157 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_treble; 1158 return 0; 1159 case SNAPPER_BASS: 1160 if (sc->sc_mode == SNAPPER_SWVOL) 1161 return ENXIO; 1162 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_bass; 1163 return 0; 1164 1165 case SNAPPER_DIGI1: 1166 if (sc->sc_mode == SNAPPER_SWVOL) 1167 return ENXIO; 1168 1169 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[0]; 1170 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[3]; 1171 return 0; 1172 case SNAPPER_DIGI2: 1173 if (sc->sc_mode == SNAPPER_SWVOL) 1174 return ENXIO; 1175 1176 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[1]; 1177 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[4]; 1178 return 0; 1179 case SNAPPER_ANALOG: 1180 if (sc->sc_mode != 0) 1181 return ENXIO; 1182 1183 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[2]; 1184 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[5]; 1185 return 0; 1186 default: 1187 return ENXIO; 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int 1194 snapper_query_devinfo(void *h, mixer_devinfo_t *dip) 1195 { 1196 struct snapper_softc *sc = h; 1197 1198 switch (dip->index) { 1199 1200 case SNAPPER_OUTPUT_SELECT: 1201 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1202 strcpy(dip->label.name, AudioNoutput); 1203 dip->type = AUDIO_MIXER_SET; 1204 dip->prev = dip->next = AUDIO_MIXER_LAST; 1205 dip->un.s.num_mem = 2; 1206 strcpy(dip->un.s.member[0].label.name, AudioNspeaker); 1207 dip->un.s.member[0].mask = 1 << 0; 1208 strcpy(dip->un.s.member[1].label.name, AudioNheadphone); 1209 dip->un.s.member[1].mask = 1 << 1; 1210 return 0; 1211 1212 case SNAPPER_VOL_OUTPUT: 1213 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1214 strcpy(dip->label.name, AudioNmaster); 1215 dip->type = AUDIO_MIXER_VALUE; 1216 dip->prev = dip->next = AUDIO_MIXER_LAST; 1217 dip->un.v.num_channels = 2; 1218 strcpy(dip->un.v.units.name, AudioNvolume); 1219 return 0; 1220 1221 case SNAPPER_INPUT_SELECT: 1222 if (sc->sc_mode != 0) 1223 return ENXIO; 1224 1225 dip->mixer_class = SNAPPER_RECORD_CLASS; 1226 strcpy(dip->label.name, AudioNsource); 1227 dip->type = AUDIO_MIXER_SET; 1228 dip->prev = dip->next = AUDIO_MIXER_LAST; 1229 dip->un.s.num_mem = 2; 1230 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); 1231 dip->un.s.member[0].mask = 1 << 0; 1232 strcpy(dip->un.s.member[1].label.name, AudioNline); 1233 dip->un.s.member[1].mask = 1 << 1; 1234 return 0; 1235 1236 case SNAPPER_VOL_INPUT: 1237 dip->mixer_class = SNAPPER_RECORD_CLASS; 1238 strcpy(dip->label.name, AudioNrecord); 1239 dip->type = AUDIO_MIXER_VALUE; 1240 dip->prev = dip->next = AUDIO_MIXER_LAST; 1241 dip->un.v.num_channels = 2; 1242 strcpy(dip->un.v.units.name, AudioNvolume); 1243 return 0; 1244 1245 case SNAPPER_MONITOR_CLASS: 1246 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1247 strcpy(dip->label.name, AudioCmonitor); 1248 dip->type = AUDIO_MIXER_CLASS; 1249 dip->next = dip->prev = AUDIO_MIXER_LAST; 1250 return 0; 1251 1252 case SNAPPER_OUTPUT_CLASS: 1253 dip->mixer_class = SNAPPER_OUTPUT_CLASS; 1254 strcpy(dip->label.name, AudioCoutputs); 1255 dip->type = AUDIO_MIXER_CLASS; 1256 dip->next = dip->prev = AUDIO_MIXER_LAST; 1257 return 0; 1258 1259 case SNAPPER_RECORD_CLASS: 1260 dip->mixer_class = SNAPPER_RECORD_CLASS; 1261 strcpy(dip->label.name, AudioCrecord); 1262 dip->type = AUDIO_MIXER_CLASS; 1263 dip->next = dip->prev = AUDIO_MIXER_LAST; 1264 return 0; 1265 1266 case SNAPPER_TREBLE: 1267 if (sc->sc_mode == SNAPPER_SWVOL) 1268 return ENXIO; 1269 1270 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1271 strcpy(dip->label.name, AudioNtreble); 1272 dip->type = AUDIO_MIXER_VALUE; 1273 dip->prev = dip->next = AUDIO_MIXER_LAST; 1274 dip->un.v.num_channels = 1; 1275 return 0; 1276 1277 case SNAPPER_BASS: 1278 if (sc->sc_mode == SNAPPER_SWVOL) 1279 return ENXIO; 1280 1281 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1282 strcpy(dip->label.name, AudioNbass); 1283 dip->type = AUDIO_MIXER_VALUE; 1284 dip->prev = dip->next = AUDIO_MIXER_LAST; 1285 dip->un.v.num_channels = 1; 1286 return 0; 1287 1288 case SNAPPER_DIGI1: 1289 if (sc->sc_mode == SNAPPER_SWVOL) 1290 return ENXIO; 1291 1292 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1293 strcpy(dip->label.name, AudioNdac); 1294 dip->type = AUDIO_MIXER_VALUE; 1295 dip->prev = dip->next = AUDIO_MIXER_LAST; 1296 dip->un.v.num_channels = 1297 sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2; 1298 return 0; 1299 case SNAPPER_DIGI2: 1300 if (sc->sc_mode == SNAPPER_SWVOL) 1301 return ENXIO; 1302 1303 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1304 strcpy(dip->label.name, AudioNline); 1305 dip->type = AUDIO_MIXER_VALUE; 1306 dip->prev = dip->next = AUDIO_MIXER_LAST; 1307 dip->un.v.num_channels = 1308 sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2; 1309 return 0; 1310 case SNAPPER_ANALOG: 1311 if (sc->sc_mode != 0) 1312 return ENXIO; 1313 1314 dip->mixer_class = SNAPPER_MONITOR_CLASS; 1315 strcpy(dip->label.name, AudioNmicrophone); 1316 dip->type = AUDIO_MIXER_VALUE; 1317 dip->prev = dip->next = AUDIO_MIXER_LAST; 1318 dip->un.v.num_channels = 2; 1319 return 0; 1320 } 1321 1322 return ENXIO; 1323 } 1324 1325 static size_t 1326 snapper_round_buffersize(void *h, int dir, size_t size) 1327 { 1328 1329 if (size > 65536) 1330 size = 65536; 1331 return size; 1332 } 1333 1334 static paddr_t 1335 snapper_mappage(void *h, void *mem, off_t off, int prot) 1336 { 1337 1338 if (off < 0) 1339 return -1; 1340 return -1; /* XXX */ 1341 } 1342 1343 static int 1344 snapper_get_props(void *h) 1345 { 1346 return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */; 1347 } 1348 1349 static int 1350 snapper_trigger_output(void *h, void *start, void *end, int bsize, 1351 void (*intr)(void *), void *arg, 1352 const audio_params_t *param) 1353 { 1354 struct snapper_softc *sc; 1355 struct dbdma_command *cmd; 1356 vaddr_t va; 1357 int i, len, intmode; 1358 int res; 1359 1360 DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize); 1361 sc = h; 1362 1363 if ((res = snapper_set_rate(sc)) != 0) 1364 return res; 1365 1366 cmd = sc->sc_odmacmd; 1367 sc->sc_ointr = intr; 1368 sc->sc_oarg = arg; 1369 sc->sc_opages = ((char *)end - (char *)start) / NBPG; 1370 1371 #ifdef DIAGNOSTIC 1372 if (sc->sc_opages > SNAPPER_MAXPAGES) 1373 panic("snapper_trigger_output"); 1374 #endif 1375 1376 va = (vaddr_t)start; 1377 len = 0; 1378 for (i = sc->sc_opages; i > 0; i--) { 1379 len += NBPG; 1380 if (len < bsize) 1381 intmode = 0; 1382 else { 1383 len = 0; 1384 intmode = DBDMA_INT_ALWAYS; 1385 } 1386 1387 DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va), 1388 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); 1389 cmd++; 1390 va += NBPG; 1391 } 1392 1393 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0, 1394 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER, 1395 DBDMA_BRANCH_ALWAYS); 1396 1397 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd)); 1398 1399 dbdma_start(sc->sc_odma, sc->sc_odmacmd); 1400 1401 return 0; 1402 } 1403 1404 static int 1405 snapper_trigger_input(void *h, void *start, void *end, int bsize, 1406 void (*intr)(void *), void *arg, 1407 const audio_params_t *param) 1408 { 1409 struct snapper_softc *sc; 1410 struct dbdma_command *cmd; 1411 vaddr_t va; 1412 int i, len, intmode; 1413 int res; 1414 1415 DPRINTF("trigger_input %p %p 0x%x\n", start, end, bsize); 1416 sc = h; 1417 1418 if ((res = snapper_set_rate(sc)) != 0) 1419 return res; 1420 1421 cmd = sc->sc_idmacmd; 1422 sc->sc_iintr = intr; 1423 sc->sc_iarg = arg; 1424 sc->sc_ipages = ((char *)end - (char *)start) / NBPG; 1425 1426 #ifdef DIAGNOSTIC 1427 if (sc->sc_ipages > SNAPPER_MAXPAGES) 1428 panic("snapper_trigger_input"); 1429 #endif 1430 1431 va = (vaddr_t)start; 1432 len = 0; 1433 for (i = sc->sc_ipages; i > 0; i--) { 1434 len += NBPG; 1435 if (len < bsize) 1436 intmode = 0; 1437 else { 1438 len = 0; 1439 intmode = DBDMA_INT_ALWAYS; 1440 } 1441 1442 DBDMA_BUILD(cmd, DBDMA_CMD_IN_MORE, 0, NBPG, vtophys(va), 1443 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); 1444 cmd++; 1445 va += NBPG; 1446 } 1447 1448 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0, 1449 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER, 1450 DBDMA_BRANCH_ALWAYS); 1451 1452 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_idmacmd)); 1453 1454 dbdma_start(sc->sc_idma, sc->sc_idmacmd); 1455 1456 return 0; 1457 } 1458 1459 static void 1460 snapper_set_volume(struct snapper_softc *sc, u_int left, u_int right) 1461 { 1462 u_char regs[6]; 1463 int l, r; 1464 1465 left = min(255, left); 1466 right = min(255, right); 1467 1468 if (sc->sc_mode == SNAPPER_SWVOL) { 1469 snapper_vol_l = left; 1470 snapper_vol_r = right; 1471 } else { 1472 /* 1473 * for some insane reason the gain table for master volume and the 1474 * mixer channels is almost identical - just shifted by 4 bits 1475 * so we use the mixer_gain table and bit-twiddle it... 1476 */ 1477 l = 177 - (left * 178 / 256); 1478 regs[0] = (snapper_mixer_gain[l][0] >> 4); 1479 regs[1] = ((snapper_mixer_gain[l][0] & 0x0f) << 4) | 1480 (snapper_mixer_gain[l][1] >> 4); 1481 regs[2] = ((snapper_mixer_gain[l][1] & 0x0f) << 4) | 1482 (snapper_mixer_gain[l][2] >> 4); 1483 1484 r = 177 - (right * 178 / 256); 1485 regs[3] = (snapper_mixer_gain[r][0] >> 4); 1486 regs[4] = ((snapper_mixer_gain[r][0] & 0x0f) << 4) | 1487 (snapper_mixer_gain[r][1] >> 4); 1488 regs[5] = ((snapper_mixer_gain[r][1] & 0x0f) << 4) | 1489 (snapper_mixer_gain[r][2] >> 4); 1490 1491 tas3004_write(sc, DEQ_VOLUME, regs); 1492 1493 DPRINTF("%d %02x %02x %02x : %d %02x %02x %02x\n", l, regs[0], 1494 regs[1], regs[2], r, regs[3], regs[4], regs[5]); 1495 } 1496 1497 sc->sc_vol_l = left; 1498 sc->sc_vol_r = right; 1499 } 1500 1501 static void 1502 snapper_set_basstreble(struct snapper_softc *sc, u_int val, u_int mode) 1503 { 1504 int i = val & 0xFF; 1505 uint8_t reg; 1506 1507 /* 1508 * Make 128 match the 0 dB point 1509 */ 1510 i = (i - (128 - (SNAPPER_BASSTAB_0DB << 2))) >> 2; 1511 if (i < 0) 1512 i = 0; 1513 else if (i >= sizeof(snapper_basstab)) 1514 i = sizeof(snapper_basstab) - 1; 1515 reg = snapper_basstab[i]; 1516 1517 if (sc->sc_mode == SNAPPER_IS_TAS3001 && 1518 mode == DEQ_BASS) { 1519 /* 1520 * XXX -- The TAS3001 bass table is different 1521 * than the other tables. 1522 */ 1523 reg = (reg >> 1) + 5; // map 0x72 -> 0x3E (0 dB) 1524 } 1525 1526 tas3004_write(sc, mode, ®); 1527 } 1528 1529 static void 1530 snapper_set_treble(struct snapper_softc *sc, u_int val) 1531 { 1532 if (sc->sc_treble != (u_char)val) { 1533 sc->sc_treble = val; 1534 snapper_set_basstreble(sc, val, DEQ_TREBLE); 1535 } 1536 } 1537 1538 static void 1539 snapper_set_bass(struct snapper_softc *sc, u_int val) 1540 { 1541 if (sc->sc_bass != (u_char)val) { 1542 sc->sc_bass = val; 1543 snapper_set_basstreble(sc, val, DEQ_BASS); 1544 } 1545 } 1546 1547 1548 /* 1549 * In the mixer gain setting, make 128 correspond to 1550 * the 0dB value from the table. 1551 * Note that the table values are complemented. 1552 */ 1553 #define SNAPPER_MIXER_GAIN_SIZE (sizeof(snapper_mixer_gain) / \ 1554 sizeof(snapper_mixer_gain[0])) 1555 #define NORMALIZE(i) ((~(i) & 0xff) - ((~128 & 0xff) - SNAPPER_MIXER_GAIN_0DB)) 1556 #define ADJUST(v, i) do { \ 1557 (v) = NORMALIZE(i);\ 1558 if ((v) < 0) \ 1559 (v) = 0; \ 1560 else if ((v) >= SNAPPER_MIXER_GAIN_SIZE) \ 1561 (v) = SNAPPER_MIXER_GAIN_SIZE - 1; \ 1562 \ 1563 } while (0) 1564 static void 1565 snapper_write_mixers(struct snapper_softc *sc) 1566 { 1567 uint8_t regs[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; 1568 int i; 1569 1570 /* Left channel of SDIN1 */ 1571 ADJUST(i, sc->mixer[0]); 1572 regs[0] = snapper_mixer_gain[i][0]; 1573 regs[1] = snapper_mixer_gain[i][1]; 1574 regs[2] = snapper_mixer_gain[i][2]; 1575 1576 /* Left channel of SDIN2 */ 1577 ADJUST(i, sc->mixer[1]); 1578 regs[3] = snapper_mixer_gain[i][0]; 1579 regs[4] = snapper_mixer_gain[i][1]; 1580 regs[5] = snapper_mixer_gain[i][2]; 1581 1582 /* Left channel of analog input */ 1583 ADJUST(i, sc->mixer[2]); 1584 regs[6] = snapper_mixer_gain[i][0]; 1585 regs[7] = snapper_mixer_gain[i][1]; 1586 regs[8] = snapper_mixer_gain[i][2]; 1587 1588 tas3004_write(sc, DEQ_MIXER_L, regs); 1589 1590 /* Right channel of SDIN1 */ 1591 ADJUST(i, sc->mixer[3]); 1592 regs[0] = snapper_mixer_gain[i][0]; 1593 regs[1] = snapper_mixer_gain[i][1]; 1594 regs[2] = snapper_mixer_gain[i][2]; 1595 1596 /* Right channel of SDIN2 */ 1597 ADJUST(i, sc->mixer[4]); 1598 regs[3] = snapper_mixer_gain[i][0]; 1599 regs[4] = snapper_mixer_gain[i][1]; 1600 regs[5] = snapper_mixer_gain[i][2]; 1601 1602 /* Right channel of analog input */ 1603 ADJUST(i, sc->mixer[5]); 1604 regs[6] = snapper_mixer_gain[i][0]; 1605 regs[7] = snapper_mixer_gain[i][1]; 1606 regs[8] = snapper_mixer_gain[i][2]; 1607 1608 tas3004_write(sc, DEQ_MIXER_R, regs); 1609 } 1610 1611 #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */ 1612 #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */ 1613 #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */ 1614 #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */ 1615 #define MCLK_DIV1 0x14000000 /* MCLK = SRC */ 1616 #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */ 1617 #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */ 1618 #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */ 1619 #define SCLK_DIV1 0x00800000 1620 #define SCLK_DIV3 0x00900000 1621 #define SCLK_MASTER 0x00080000 /* Master mode */ 1622 #define SCLK_SLAVE 0x00000000 /* Slave mode */ 1623 #define SERIAL_FORMAT 0x00070000 1624 #define SERIAL_SONY 0x00000000 1625 #define SERIAL_64x 0x00010000 1626 #define SERIAL_32x 0x00020000 1627 #define SERIAL_DAV 0x00040000 1628 #define SERIAL_SILICON 0x00050000 1629 1630 /* 1631 * rate = fs = LRCLK 1632 * SCLK = 64*LRCLK (I2S) 1633 * MCLK = 256fs (typ. -- changeable) 1634 * 1635 * MCLK = clksrc / mdiv 1636 * SCLK = MCLK / sdiv 1637 * rate = SCLK / 64 ( = LRCLK = fs) 1638 */ 1639 1640 int 1641 snapper_set_rate(struct snapper_softc *sc) 1642 { 1643 u_int reg = 0, x; 1644 u_int rate = sc->sc_rate; 1645 uint32_t wordsize, ows; 1646 int MCLK; 1647 int clksrc, mdiv, sdiv; 1648 int mclk_fs; 1649 int timo; 1650 uint8_t mcr1; 1651 1652 switch (rate) { 1653 case 44100: 1654 clksrc = 45158400; /* 45MHz */ 1655 reg = CLKSRC_45MHz; 1656 mclk_fs = 256; 1657 break; 1658 1659 case 32000: 1660 case 48000: 1661 case 96000: 1662 clksrc = 49152000; /* 49MHz */ 1663 reg = CLKSRC_49MHz; 1664 mclk_fs = 256; 1665 break; 1666 1667 default: 1668 DPRINTF("snapper_set_rate: invalid rate %u\n", rate); 1669 return EINVAL; 1670 } 1671 1672 MCLK = rate * mclk_fs; 1673 mdiv = clksrc / MCLK; /* 4 */ 1674 sdiv = mclk_fs / 64; /* 4 */ 1675 1676 switch (mdiv) { 1677 case 1: 1678 reg |= MCLK_DIV1; 1679 break; 1680 case 3: 1681 reg |= MCLK_DIV3; 1682 break; 1683 case 5: 1684 reg |= MCLK_DIV5; 1685 break; 1686 default: 1687 reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000; 1688 break; 1689 } 1690 1691 switch (sdiv) { 1692 case 1: 1693 reg |= SCLK_DIV1; 1694 break; 1695 case 3: 1696 reg |= SCLK_DIV3; 1697 break; 1698 default: 1699 reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000; 1700 break; 1701 } 1702 1703 reg |= SCLK_MASTER; /* XXX master mode */ 1704 1705 reg |= SERIAL_64x; 1706 1707 /* stereo input and output */ 1708 1709 DPRINTF("precision: %d\n", sc->sc_bitspersample); 1710 switch(sc->sc_bitspersample) { 1711 case 16: 1712 wordsize = 0x02000200; 1713 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16; 1714 break; 1715 case 24: 1716 wordsize = 0x03000300; 1717 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_24; 1718 break; 1719 default: 1720 printf("%s: unsupported sample size %d\n", 1721 device_xname(sc->sc_dev), sc->sc_bitspersample); 1722 return EINVAL; 1723 } 1724 1725 if (sc->sc_mode == SNAPPER_IS_TAS3001) 1726 mcr1 |= DEQ_MCR1_ISM_I2S; 1727 1728 ows = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE); 1729 1730 DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n", 1731 ows, wordsize); 1732 if (ows != wordsize) { 1733 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE, 1734 wordsize); 1735 if (sc->sc_mode != SNAPPER_SWVOL) 1736 tas3004_write(sc, DEQ_MCR1, &mcr1); 1737 } 1738 1739 x = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT); 1740 if (x == reg) 1741 return 0; /* No change; do nothing. */ 1742 1743 DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n", 1744 bus_space_read_4(sc->sc_tag, sc->sc_bsh, + I2S_FORMAT), reg); 1745 1746 /* Clear CLKSTOPPEND. */ 1747 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_INT, I2S_INT_CLKSTOPPEND); 1748 1749 x = obio_read_4(KEYLARGO_FCR1); /* FCR */ 1750 x &= ~I2S0CLKEN; /* XXX I2S0 */ 1751 obio_write_4(KEYLARGO_FCR1, x); 1752 1753 /* Wait until clock is stopped. */ 1754 for (timo = 1000; timo > 0; timo--) { 1755 if (bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_INT) & 1756 I2S_INT_CLKSTOPPEND) 1757 goto done; 1758 delay(1); 1759 } 1760 DPRINTF("snapper_set_rate: timeout\n"); 1761 done: 1762 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT, reg); 1763 1764 x = obio_read_4(KEYLARGO_FCR1); 1765 x |= I2S0CLKEN; 1766 obio_write_4(KEYLARGO_FCR1, x); 1767 1768 return 0; 1769 } 1770 1771 const struct tas3004_reg tas3004_initdata = { 1772 { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16 }, /* MCR1 */ 1773 { 1, 0, 0, 0, 0, 0 }, /* DRC */ 1774 { 0, 0, 0, 0, 0, 0 }, /* VOLUME */ 1775 { 0x72 }, /* TREBLE */ 1776 { 0x72 }, /* BASS */ 1777 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */ 1778 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */ 1779 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1780 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1781 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1782 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1783 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1784 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1785 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1786 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1787 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1788 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1789 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1790 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1791 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1792 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1793 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1794 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ 1795 { 0, 0, 0 }, /* LLB_GAIN */ 1796 { 0, 0, 0 }, /* RLB_GAIN */ 1797 { DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B }, /* ACR - right channel of input B is the microphone */ 1798 { 2 } /* MCR2 - AllPass mode since we don't use the equalizer anyway */ 1799 }; 1800 1801 const char tas3004_regsize[] = { 1802 0, /* 0x00 */ 1803 sizeof tas3004_initdata.MCR1, /* 0x01 */ 1804 sizeof tas3004_initdata.DRC, /* 0x02 */ 1805 0, /* 0x03 */ 1806 sizeof tas3004_initdata.VOLUME, /* 0x04 */ 1807 sizeof tas3004_initdata.TREBLE, /* 0x05 */ 1808 sizeof tas3004_initdata.BASS, /* 0x06 */ 1809 sizeof tas3004_initdata.MIXER_L, /* 0x07 */ 1810 sizeof tas3004_initdata.MIXER_R, /* 0x08 */ 1811 0, /* 0x09 */ 1812 sizeof tas3004_initdata.LB0, /* 0x0a */ 1813 sizeof tas3004_initdata.LB1, /* 0x0b */ 1814 sizeof tas3004_initdata.LB2, /* 0x0c */ 1815 sizeof tas3004_initdata.LB3, /* 0x0d */ 1816 sizeof tas3004_initdata.LB4, /* 0x0e */ 1817 sizeof tas3004_initdata.LB5, /* 0x0f */ 1818 sizeof tas3004_initdata.LB6, /* 0x10 */ 1819 0, /* 0x11 */ 1820 0, /* 0x12 */ 1821 sizeof tas3004_initdata.RB0, /* 0x13 */ 1822 sizeof tas3004_initdata.RB1, /* 0x14 */ 1823 sizeof tas3004_initdata.RB2, /* 0x15 */ 1824 sizeof tas3004_initdata.RB3, /* 0x16 */ 1825 sizeof tas3004_initdata.RB4, /* 0x17 */ 1826 sizeof tas3004_initdata.RB5, /* 0x18 */ 1827 sizeof tas3004_initdata.RB6, /* 0x19 */ 1828 0,0,0,0, 0,0, 1829 0, /* 0x20 */ 1830 sizeof tas3004_initdata.LLB, /* 0x21 */ 1831 sizeof tas3004_initdata.RLB, /* 0x22 */ 1832 sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */ 1833 sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */ 1834 0,0,0,0, 0,0,0,0, 0,0,0, 1835 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1836 sizeof tas3004_initdata.ACR, /* 0x40 */ 1837 0, /* 0x41 */ 1838 0, /* 0x42 */ 1839 sizeof tas3004_initdata.MCR2 /* 0x43 */ 1840 }; 1841 1842 static int 1843 tas3004_write(struct snapper_softc *sc, u_int reg, const void *data) 1844 { 1845 int size; 1846 static char regblock[sizeof(struct tas3004_reg)+1]; 1847 1848 if (sc->sc_i2c == NULL) 1849 return 0; 1850 1851 KASSERT(reg < sizeof tas3004_regsize); 1852 size = tas3004_regsize[reg]; 1853 KASSERT(size > 0); 1854 1855 DPRINTF("reg: %x, %d %d\n", reg, size, ((const char*)data)[0]); 1856 1857 regblock[0] = reg; 1858 memcpy(®block[1], data, size); 1859 if (sc->sc_mode == SNAPPER_IS_TAS3001) { 1860 if (reg == DEQ_MIXER_L || reg == DEQ_MIXER_R) 1861 size = 3; 1862 else if (reg == DEQ_DRC || reg == DEQ_ACR || 1863 reg == DEQ_MCR2) { 1864 /* these registers are not available on TAS3001 */ 1865 return 0; 1866 } 1867 } 1868 iic_acquire_bus(sc->sc_i2c, 0); 1869 iic_exec(sc->sc_i2c, I2C_OP_WRITE, sc->sc_deqaddr, regblock, size + 1, 1870 NULL, 0, 0); 1871 iic_release_bus(sc->sc_i2c, 0); 1872 1873 return 0; 1874 } 1875 1876 static int 1877 gpio_read(char *addr) 1878 { 1879 1880 if (*addr & GPIO_DATA) 1881 return 1; 1882 return 0; 1883 } 1884 1885 static void 1886 gpio_write(char *addr, int val) 1887 { 1888 u_int data; 1889 1890 data = GPIO_DDR_OUTPUT; 1891 if (val) 1892 data |= GPIO_DATA; 1893 *addr = data; 1894 __asm volatile ("eieio"); 1895 } 1896 1897 #define headphone_active 0 /* XXX OF */ 1898 #define amp_active 0 /* XXX OF */ 1899 1900 static void 1901 snapper_mute_speaker(struct snapper_softc *sc, int mute) 1902 { 1903 u_int x; 1904 1905 DPRINTF("ampmute %d --> ", gpio_read(amp_mute)); 1906 1907 if (mute) 1908 x = amp_active; /* mute */ 1909 else 1910 x = !amp_active; /* unmute */ 1911 if (x != gpio_read(amp_mute)) 1912 gpio_write(amp_mute, x); 1913 1914 DPRINTF("%d\n", gpio_read(amp_mute)); 1915 } 1916 1917 static void 1918 snapper_mute_headphone(struct snapper_softc *sc, int mute) 1919 { 1920 u_int x; 1921 1922 DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute)); 1923 1924 if (mute) 1925 x = headphone_active; /* mute */ 1926 else 1927 x = !headphone_active; /* unmute */ 1928 if (x != gpio_read(headphone_mute)) 1929 gpio_write(headphone_mute, x); 1930 1931 DPRINTF("%d\n", gpio_read(headphone_mute)); 1932 } 1933 1934 static int 1935 snapper_cint(void *v) 1936 { 1937 struct snapper_softc *sc; 1938 u_int sense; 1939 1940 sc = v; 1941 sense = *headphone_detect; 1942 DPRINTF("headphone detect = 0x%x\n", sense); 1943 1944 if (((sense & 0x02) >> 1) == headphone_detect_active) { 1945 DPRINTF("headphone is inserted\n"); 1946 snapper_mute_speaker(sc, 1); 1947 snapper_mute_headphone(sc, 0); 1948 sc->sc_output_mask = 1 << 1; 1949 } else { 1950 DPRINTF("headphone is NOT inserted\n"); 1951 snapper_mute_speaker(sc, 0); 1952 snapper_mute_headphone(sc, 1); 1953 sc->sc_output_mask = 1 << 0; 1954 } 1955 1956 return 1; 1957 } 1958 1959 #define reset_active 0 /* XXX OF */ 1960 1961 #define DEQ_WRITE(sc, reg, addr) \ 1962 if (tas3004_write(sc, reg, addr)) goto err 1963 1964 static int 1965 tas3004_init(struct snapper_softc *sc) 1966 { 1967 1968 /* No reset port. Nothing to do. */ 1969 if (audio_hw_reset == NULL) 1970 goto noreset; 1971 1972 /* Reset TAS3004. */ 1973 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */ 1974 delay(100000); /* XXX Really needed? */ 1975 1976 gpio_write(audio_hw_reset, reset_active); /* Assert RESET */ 1977 delay(1); 1978 1979 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */ 1980 delay(10000); 1981 1982 noreset: 1983 DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0); 1984 DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1); 1985 DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2); 1986 DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3); 1987 DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4); 1988 DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5); 1989 DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6); 1990 DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0); 1991 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1); 1992 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1); 1993 DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2); 1994 DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3); 1995 DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4); 1996 DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5); 1997 DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1); 1998 DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2); 1999 DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC); 2000 DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME); 2001 DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE); 2002 DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS); 2003 DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L); 2004 DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R); 2005 DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB); 2006 DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB); 2007 DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN); 2008 DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN); 2009 DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR); 2010 2011 return 0; 2012 err: 2013 printf("tas3004_init: error\n"); 2014 return -1; 2015 } 2016 2017 static void 2018 snapper_init(struct snapper_softc *sc, int node) 2019 { 2020 int gpio; 2021 int headphone_detect_intr, headphone_detect_intrtype; 2022 #ifdef SNAPPER_DEBUG 2023 char fcr[32]; 2024 2025 snprintb(fcr, sizeof(fcr), FCR3C_BITMASK, obio_read_4(KEYLARGO_FCR1)); 2026 printf("FCR(0x3c) 0x%s\n", fcr); 2027 #endif 2028 headphone_detect_intr = -1; 2029 2030 gpio = of_getnode_byname(OF_parent(node), "gpio"); 2031 DPRINTF(" /gpio 0x%x\n", gpio); 2032 gpio = OF_child(gpio); 2033 while (gpio) { 2034 char name[64], audio_gpio[64]; 2035 int intr[2]; 2036 char *addr; 2037 2038 bzero(name, sizeof name); 2039 bzero(audio_gpio, sizeof audio_gpio); 2040 addr = 0; 2041 OF_getprop(gpio, "name", name, sizeof name); 2042 OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio); 2043 OF_getprop(gpio, "AAPL,address", &addr, sizeof addr); 2044 DPRINTF(" 0x%x %s %s\n", gpio, name, audio_gpio); 2045 2046 /* gpio5 */ 2047 if (strcmp(audio_gpio, "headphone-mute") == 0) 2048 headphone_mute = addr; 2049 /* gpio6 */ 2050 if (strcmp(audio_gpio, "amp-mute") == 0) 2051 amp_mute = addr; 2052 /* extint-gpio15 */ 2053 if (strcmp(audio_gpio, "headphone-detect") == 0) { 2054 headphone_detect = addr; 2055 OF_getprop(gpio, "audio-gpio-active-state", 2056 &headphone_detect_active, 4); 2057 OF_getprop(gpio, "interrupts", intr, 8); 2058 headphone_detect_intr = intr[0]; 2059 headphone_detect_intrtype = intr[1]; 2060 } 2061 /* gpio11 (keywest-11) */ 2062 if (strcmp(audio_gpio, "audio-hw-reset") == 0) 2063 audio_hw_reset = addr; 2064 gpio = OF_peer(gpio); 2065 } 2066 DPRINTF(" headphone-mute %p\n", headphone_mute); 2067 DPRINTF(" amp-mute %p\n", amp_mute); 2068 DPRINTF(" headphone-detect %p\n", headphone_detect); 2069 DPRINTF(" headphone-detect active %x\n", headphone_detect_active); 2070 DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr); 2071 DPRINTF(" audio-hw-reset %p\n", audio_hw_reset); 2072 2073 if (headphone_detect_intr != -1) 2074 intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO, 2075 snapper_cint, sc); 2076 2077 sc->sc_rate = 44100; /* default rate */ 2078 sc->sc_bitspersample = 16; 2079 2080 /* Enable headphone interrupt? */ 2081 *headphone_detect |= 0x80; 2082 __asm volatile ("eieio"); 2083 2084 /* i2c_set_port(port); */ 2085 2086 if (tas3004_init(sc)) 2087 return; 2088 2089 /* Update headphone status. */ 2090 snapper_cint(sc); 2091 2092 snapper_set_volume(sc, 128, 128); 2093 snapper_set_bass(sc, 128); 2094 snapper_set_treble(sc, 128); 2095 2096 /* Record source defaults to microphone. This reflects the 2097 * default value for the ACR (see tas3004_initdata). 2098 */ 2099 sc->sc_record_source = 1 << 0; 2100 2101 /* We mute the analog input for now */ 2102 sc->mixer[0] = 128; 2103 sc->mixer[1] = 128; 2104 sc->mixer[2] = 0; 2105 sc->mixer[3] = 128; 2106 sc->mixer[4] = 128; 2107 sc->mixer[5] = 0; 2108 snapper_write_mixers(sc); 2109 } 2110 2111 static void 2112 snapper_volume_up(device_t dev) 2113 { 2114 struct snapper_softc *sc = device_private(dev); 2115 2116 snapper_set_volume(sc, min(0xff, sc->sc_vol_l + 8), 2117 min(0xff, sc->sc_vol_r + 8)); 2118 } 2119 2120 static void 2121 snapper_volume_down(device_t dev) 2122 { 2123 struct snapper_softc *sc = device_private(dev); 2124 2125 snapper_set_volume(sc, max(0, sc->sc_vol_l - 8), 2126 max(0, sc->sc_vol_r - 8)); 2127 } 2128