xref: /netbsd-src/sys/arch/macppc/dev/adb_direct.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: adb_direct.c,v 1.27 2003/10/27 22:48:20 dyoung Exp $	*/
2 
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4 
5 /*
6  * Copyright (C) 1996, 1997 John P. Wittkoski
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *  This product includes software developed by John P. Wittkoski.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * This code is rather messy, but I don't have time right now
37  * to clean it up as much as I would like.
38  * But it works, so I'm happy. :-) jpw
39  */
40 
41 /*
42  * TO DO:
43  *  - We could reduce the time spent in the adb_intr_* routines
44  *    by having them save the incoming and outgoing data directly
45  *    in the adbInbound and adbOutbound queues, as it would reduce
46  *    the number of times we need to copy the data around. It
47  *    would also make the code more readable and easier to follow.
48  *  - (Related to above) Use the header part of adbCommand to
49  *    reduce the number of copies we have to do of the data.
50  *  - (Related to above) Actually implement the adbOutbound queue.
51  *    This is fairly easy once you switch all the intr routines
52  *    over to using adbCommand structs directly.
53  *  - There is a bug in the state machine of adb_intr_cuda
54  *    code that causes hangs, especially on 030 machines, probably
55  *    because of some timing issues. Because I have been unable to
56  *    determine the exact cause of this bug, I used the timeout function
57  *    to check for and recover from this condition. If anyone finds
58  *    the actual cause of this bug, the calls to timeout and the
59  *    adb_cuda_tickle routine can be removed.
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.27 2003/10/27 22:48:20 dyoung Exp $");
64 
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68 #include <sys/callout.h>
69 #include <sys/device.h>
70 
71 #include <machine/param.h>
72 #include <machine/cpu.h>
73 #include <machine/adbsys.h>
74 
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78 
79 #define printf_intr printf
80 
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86 
87 /* some misc. leftovers */
88 #define vPB		0x0000
89 #define vPB3		0x08
90 #define vPB4		0x10
91 #define vPB5		0x20
92 #define vSR_INT		0x04
93 #define vSR_OUT		0x10
94 
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY	0x1	/* has not been initialized yet */
97 #define ADB_ACTION_IDLE		0x2	/* the bus is currently idle */
98 #define ADB_ACTION_OUT		0x3	/* sending out a command */
99 #define ADB_ACTION_IN		0x4	/* receiving data */
100 #define ADB_ACTION_POLLING	0x5	/* polling - II only */
101 
102 /*
103  * These describe the state of the ADB bus itself, although they
104  * don't necessarily correspond directly to ADB states.
105  * Note: these are not really used in the IIsi code.
106  */
107 #define ADB_BUS_UNKNOWN		0x1	/* we don't know yet - all models */
108 #define ADB_BUS_IDLE		0x2	/* bus is idle - all models */
109 #define ADB_BUS_CMD		0x3	/* starting a command - II models */
110 #define ADB_BUS_ODD		0x4	/* the "odd" state - II models */
111 #define ADB_BUS_EVEN		0x5	/* the "even" state - II models */
112 #define ADB_BUS_ACTIVE		0x6	/* active state - IIsi models */
113 #define ADB_BUS_ACK		0x7	/* currently ACKing - IIsi models */
114 
115 /*
116  * Shortcuts for setting or testing the VIA bit states.
117  * Not all shortcuts are used for every type of ADB hardware.
118  */
119 #define ADB_SET_STATE_IDLE_II()     via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_IDLE_IISI()   via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
121 #define ADB_SET_STATE_IDLE_CUDA()   via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
122 #define ADB_SET_STATE_CMD()         via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
123 #define ADB_SET_STATE_EVEN()        write_via_reg(VIA1, vBufB, \
124                               (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
125 #define ADB_SET_STATE_ODD()         write_via_reg(VIA1, vBufB, \
126                               (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
127 #define ADB_SET_STATE_ACTIVE() 	    via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_INACTIVE()    via_reg_and(VIA1, vBufB, ~vPB5)
129 #define ADB_SET_STATE_TIP()	    via_reg_and(VIA1, vBufB, ~vPB5)
130 #define ADB_CLR_STATE_TIP() 	    via_reg_or(VIA1, vBufB, vPB5)
131 #define ADB_SET_STATE_ACKON()	    via_reg_or(VIA1, vBufB, vPB4)
132 #define ADB_SET_STATE_ACKOFF()	    via_reg_and(VIA1, vBufB, ~vPB4)
133 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
134 #define ADB_SET_STATE_ACKON_CUDA()  via_reg_and(VIA1, vBufB, ~vPB4)
135 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
136 #define ADB_SET_SR_INPUT()	    via_reg_and(VIA1, vACR, ~vSR_OUT)
137 #define ADB_SET_SR_OUTPUT()	    via_reg_or(VIA1, vACR, vSR_OUT)
138 #define ADB_SR()		    read_via_reg(VIA1, vSR)
139 #define ADB_VIA_INTR_ENABLE()	    write_via_reg(VIA1, vIER, 0x84)
140 #define ADB_VIA_INTR_DISABLE()	    write_via_reg(VIA1, vIER, 0x04)
141 #define ADB_VIA_CLR_INTR()	    write_via_reg(VIA1, vIFR, 0x04)
142 #define ADB_INTR_IS_OFF		   (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
143 #define ADB_INTR_IS_ON		   (0 == (read_via_reg(VIA1, vBufB) & vPB3))
144 #define ADB_SR_INTR_IS_OFF	   (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
145 #define ADB_SR_INTR_IS_ON	   (vSR_INT == (read_via_reg(VIA1, \
146 						vIFR) & vSR_INT))
147 
148 /*
149  * This is the delay that is required (in uS) between certain
150  * ADB transactions. The actual timing delay for for each uS is
151  * calculated at boot time to account for differences in machine speed.
152  */
153 #define ADB_DELAY	150
154 
155 /*
156  * Maximum ADB message length; includes space for data, result, and
157  * device code - plus a little for safety.
158  */
159 #define ADB_MAX_MSG_LENGTH	16
160 #define ADB_MAX_HDR_LENGTH	8
161 
162 #define ADB_QUEUE		32
163 #define ADB_TICKLE_TICKS	4
164 
165 /*
166  * A structure for storing information about each ADB device.
167  */
168 struct ADBDevEntry {
169 	void	(*ServiceRtPtr) __P((void));
170 	void	*DataAreaAddr;
171 	int	devType;
172 	int	origAddr;
173 	int	currentAddr;
174 };
175 
176 /*
177  * Used to hold ADB commands that are waiting to be sent out.
178  */
179 struct adbCmdHoldEntry {
180 	u_char	outBuf[ADB_MAX_MSG_LENGTH];	/* our message */
181 	u_char	*saveBuf;	/* buffer to know where to save result */
182 	u_char	*compRout;	/* completion routine pointer */
183 	u_char	*data;		/* completion routine data pointer */
184 };
185 
186 /*
187  * Eventually used for two separate queues, the queue between
188  * the upper and lower halves, and the outgoing packet queue.
189  * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
190  */
191 struct adbCommand {
192 	u_char	header[ADB_MAX_HDR_LENGTH];	/* not used yet */
193 	u_char	data[ADB_MAX_MSG_LENGTH];	/* packet data only */
194 	u_char	*saveBuf;	/* where to save result */
195 	u_char	*compRout;	/* completion routine pointer */
196 	u_char	*compData;	/* completion routine data pointer */
197 	u_int	cmd;		/* the original command for this data */
198 	u_int	unsol;		/* 1 if packet was unsolicited */
199 	u_int	ack_only;	/* 1 for no special processing */
200 };
201 
202 /*
203  * A few variables that we need and their initial values.
204  */
205 int	adbHardware = ADB_HW_UNKNOWN;
206 int	adbActionState = ADB_ACTION_NOTREADY;
207 int	adbBusState = ADB_BUS_UNKNOWN;
208 int	adbWaiting = 0;		/* waiting for return data from the device */
209 int	adbWriteDelay = 0;	/* working on (or waiting to do) a write */
210 int	adbOutQueueHasData = 0;	/* something in the queue waiting to go out */
211 int	adbNextEnd = 0;		/* the next incoming bute is the last (II) */
212 int	adbSoftPower = 0;	/* machine supports soft power */
213 
214 int	adbWaitingCmd = 0;	/* ADB command we are waiting for */
215 u_char	*adbBuffer = (long)0;	/* pointer to user data area */
216 void	*adbCompRout = (long)0;	/* pointer to the completion routine */
217 void	*adbCompData = (long)0;	/* pointer to the completion routine data */
218 long	adbFakeInts = 0;	/* keeps track of fake ADB interrupts for
219 				 * timeouts (II) */
220 int	adbStarting = 1;	/* doing ADBReInit so do polling differently */
221 int	adbSendTalk = 0;	/* the intr routine is sending the talk, not
222 				 * the user (II) */
223 int	adbPolling = 0;		/* we are polling for service request */
224 int	adbPollCmd = 0;		/* the last poll command we sent */
225 
226 u_char	adbInputBuffer[ADB_MAX_MSG_LENGTH];	/* data input buffer */
227 u_char	adbOutputBuffer[ADB_MAX_MSG_LENGTH];	/* data output buffer */
228 struct	adbCmdHoldEntry adbOutQueue;		/* our 1 entry output queue */
229 
230 int	adbSentChars = 0;	/* how many characters we have sent */
231 int	adbLastDevice = 0;	/* last ADB dev we heard from (II ONLY) */
232 int	adbLastDevIndex = 0;	/* last ADB dev loc in dev table (II ONLY) */
233 int	adbLastCommand = 0;	/* the last ADB command we sent (II) */
234 
235 struct	ADBDevEntry ADBDevTable[16];	/* our ADB device table */
236 int	ADBNumDevices;		/* num. of ADB devices found with ADBReInit */
237 
238 struct	adbCommand adbInbound[ADB_QUEUE];	/* incoming queue */
239 int	adbInCount = 0;			/* how many packets in in queue */
240 int	adbInHead = 0;			/* head of in queue */
241 int	adbInTail = 0;			/* tail of in queue */
242 struct	adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
243 int	adbOutCount = 0;		/* how many packets in out queue */
244 int	adbOutHead = 0;			/* head of out queue */
245 int	adbOutTail = 0;			/* tail of out queue */
246 
247 int	tickle_count = 0;		/* how many tickles seen for this packet? */
248 int	tickle_serial = 0;		/* the last packet tickled */
249 int	adb_cuda_serial = 0;		/* the current packet */
250 
251 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
252 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
253 
254 volatile u_char *Via1Base;
255 extern int adb_polling;			/* Are we polling? */
256 
257 void	pm_setup_adb __P((void));
258 void	pm_check_adb_devices __P((int));
259 void	pm_intr __P((void));
260 int	pm_adb_op __P((u_char *, void *, void *, int));
261 void	pm_init_adb_device __P((void));
262 
263 /*
264  * The following are private routines.
265  */
266 #ifdef ADB_DEBUG
267 void	print_single __P((u_char *));
268 #endif
269 void	adb_intr __P((void));
270 void	adb_intr_II __P((void));
271 void	adb_intr_IIsi __P((void));
272 void	adb_intr_cuda __P((void));
273 void	adb_soft_intr __P((void));
274 int	send_adb_II __P((u_char *, u_char *, void *, void *, int));
275 int	send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
276 int	send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
277 void	adb_intr_cuda_test __P((void));
278 void	adb_cuda_tickle __P((void));
279 void	adb_pass_up __P((struct adbCommand *));
280 void	adb_op_comprout __P((caddr_t, caddr_t, int));
281 void	adb_reinit __P((void));
282 int	count_adbs __P((void));
283 int	get_ind_adb_info __P((ADBDataBlock *, int));
284 int	get_adb_info __P((ADBDataBlock *, int));
285 int	set_adb_info __P((ADBSetInfoBlock *, int));
286 void	adb_setup_hw_type __P((void));
287 int	adb_op __P((Ptr, Ptr, Ptr, short));
288 int	adb_op_sync __P((Ptr, Ptr, Ptr, short));
289 void	adb_read_II __P((u_char *));
290 void	adb_hw_setup __P((void));
291 void	adb_hw_setup_IIsi __P((u_char *));
292 int	adb_cmd_result __P((u_char *));
293 int	adb_cmd_extra __P((u_char *));
294 int	adb_guess_next_device __P((void));
295 int	adb_prog_switch_enable __P((void));
296 int	adb_prog_switch_disable __P((void));
297 /* we should create this and it will be the public version */
298 int	send_adb __P((u_char *, void *, void *));
299 
300 int	setsoftadb __P((void));
301 
302 #ifdef ADB_DEBUG
303 /*
304  * print_single
305  * Diagnostic display routine. Displays the hex values of the
306  * specified elements of the u_char. The length of the "string"
307  * is in [0].
308  */
309 void
310 print_single(str)
311 	u_char *str;
312 {
313 	int x;
314 
315 	if (str == 0) {
316 		printf_intr("no data - null pointer\n");
317 		return;
318 	}
319 	if (*str == 0) {
320 		printf_intr("nothing returned\n");
321 		return;
322 	}
323 	if (*str > 20) {
324 		printf_intr("ADB: ACK > 20 no way!\n");
325 		*str = 20;
326 	}
327 	printf_intr("(length=0x%x):", *str);
328 	for (x = 1; x <= *str; x++)
329 		printf_intr("  0x%02x", str[x]);
330 	printf_intr("\n");
331 }
332 #endif
333 
334 void
335 adb_cuda_tickle(void)
336 {
337 	volatile int s;
338 
339 	if (adbActionState == ADB_ACTION_IN) {
340 		if (tickle_serial == adb_cuda_serial) {
341 			if (++tickle_count > 0) {
342 				s = splhigh();
343 				adbActionState = ADB_ACTION_IDLE;
344 				adbInputBuffer[0] = 0;
345 				ADB_SET_STATE_IDLE_CUDA();
346 				splx(s);
347 			}
348 		} else {
349 			tickle_serial = adb_cuda_serial;
350 			tickle_count = 0;
351 		}
352 	} else {
353 		tickle_serial = adb_cuda_serial;
354 		tickle_count = 0;
355 	}
356 
357 	callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
358 	    (void *)adb_cuda_tickle, NULL);
359 }
360 
361 /*
362  * called when when an adb interrupt happens
363  *
364  * Cuda version of adb_intr
365  * TO DO: do we want to add some calls to intr_dispatch() here to
366  * grab serial interrupts?
367  */
368 void
369 adb_intr_cuda(void)
370 {
371 	volatile int i, ending;
372 	volatile unsigned int s;
373 	struct adbCommand packet;
374 
375 	s = splhigh();		/* can't be too careful - might be called */
376 	/* from a routine, NOT an interrupt */
377 
378 	ADB_VIA_CLR_INTR();	/* clear interrupt */
379 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
380 
381 switch_start:
382 	switch (adbActionState) {
383 	case ADB_ACTION_IDLE:
384 		/*
385 		 * This is an unexpected packet, so grab the first (dummy)
386 		 * byte, set up the proper vars, and tell the chip we are
387 		 * starting to receive the packet by setting the TIP bit.
388 		 */
389 		adbInputBuffer[1] = ADB_SR();
390 		adb_cuda_serial++;
391 		if (ADB_INTR_IS_OFF)	/* must have been a fake start */
392 			break;
393 
394 		ADB_SET_SR_INPUT();
395 		ADB_SET_STATE_TIP();
396 
397 		adbInputBuffer[0] = 1;
398 		adbActionState = ADB_ACTION_IN;
399 #ifdef ADB_DEBUG
400 		if (adb_debug)
401 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
402 #endif
403 		break;
404 
405 	case ADB_ACTION_IN:
406 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
407 		/* intr off means this is the last byte (end of frame) */
408 		if (ADB_INTR_IS_OFF)
409 			ending = 1;
410 		else
411 			ending = 0;
412 
413 		if (1 == ending) {	/* end of message? */
414 #ifdef ADB_DEBUG
415 			if (adb_debug) {
416 				printf_intr("in end 0x%02x ",
417 				    adbInputBuffer[adbInputBuffer[0]]);
418 				print_single(adbInputBuffer);
419 			}
420 #endif
421 
422 			/*
423 			 * Are we waiting AND does this packet match what we
424 			 * are waiting for AND is it coming from either the
425 			 * ADB or RTC/PRAM sub-device? This section _should_
426 			 * recognize all ADB and RTC/PRAM type commands, but
427 			 * there may be more... NOTE: commands are always at
428 			 * [4], even for RTC/PRAM commands.
429 			 */
430 			/* set up data for adb_pass_up */
431 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
432 
433 			if ((adbWaiting == 1) &&
434 			    (adbInputBuffer[4] == adbWaitingCmd) &&
435 			    ((adbInputBuffer[2] == 0x00) ||
436 			    (adbInputBuffer[2] == 0x01))) {
437 				packet.saveBuf = adbBuffer;
438 				packet.compRout = adbCompRout;
439 				packet.compData = adbCompData;
440 				packet.unsol = 0;
441 				packet.ack_only = 0;
442 				adb_pass_up(&packet);
443 
444 				adbWaitingCmd = 0;	/* reset "waiting" vars */
445 				adbWaiting = 0;
446 				adbBuffer = (long)0;
447 				adbCompRout = (long)0;
448 				adbCompData = (long)0;
449 			} else {
450 				packet.unsol = 1;
451 				packet.ack_only = 0;
452 				adb_pass_up(&packet);
453 			}
454 
455 
456 			/* reset vars and signal the end of this frame */
457 			adbActionState = ADB_ACTION_IDLE;
458 			adbInputBuffer[0] = 0;
459 			ADB_SET_STATE_IDLE_CUDA();
460 			/*ADB_SET_SR_INPUT();*/
461 
462 			/*
463 			 * If there is something waiting to be sent out,
464 			 * the set everything up and send the first byte.
465 			 */
466 			if (adbWriteDelay == 1) {
467 				delay(ADB_DELAY);	/* required */
468 				adbSentChars = 0;
469 				adbActionState = ADB_ACTION_OUT;
470 				/*
471 				 * If the interrupt is on, we were too slow
472 				 * and the chip has already started to send
473 				 * something to us, so back out of the write
474 				 * and start a read cycle.
475 				 */
476 				if (ADB_INTR_IS_ON) {
477 					ADB_SET_SR_INPUT();
478 					ADB_SET_STATE_IDLE_CUDA();
479 					adbSentChars = 0;
480 					adbActionState = ADB_ACTION_IDLE;
481 					adbInputBuffer[0] = 0;
482 					break;
483 				}
484 				/*
485 				 * If we got here, it's ok to start sending
486 				 * so load the first byte and tell the chip
487 				 * we want to send.
488 				 */
489 				ADB_SET_STATE_TIP();
490 				ADB_SET_SR_OUTPUT();
491 				write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
492 			}
493 		} else {
494 			ADB_TOGGLE_STATE_ACK_CUDA();
495 #ifdef ADB_DEBUG
496 			if (adb_debug)
497 				printf_intr("in 0x%02x ",
498 				    adbInputBuffer[adbInputBuffer[0]]);
499 #endif
500 		}
501 		break;
502 
503 	case ADB_ACTION_OUT:
504 		i = ADB_SR();	/* reset SR-intr in IFR */
505 #ifdef ADB_DEBUG
506 		if (adb_debug)
507 			printf_intr("intr out 0x%02x ", i);
508 #endif
509 
510 		adbSentChars++;
511 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
512 #ifdef ADB_DEBUG
513 			if (adb_debug)
514 				printf_intr("intr was on ");
515 #endif
516 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
517 			ADB_SET_STATE_IDLE_CUDA();
518 			adbSentChars = 0;	/* must start all over */
519 			adbActionState = ADB_ACTION_IDLE;	/* new state */
520 			adbInputBuffer[0] = 0;
521 			adbWriteDelay = 1;	/* must retry when done with
522 						 * read */
523 			delay(ADB_DELAY);
524 			goto switch_start;	/* process next state right
525 						 * now */
526 			break;
527 		}
528 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
529 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
530 									 * back? */
531 				adbWaiting = 1;	/* signal waiting for return */
532 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
533 			} else {	/* no talk, so done */
534 				/* set up stuff for adb_pass_up */
535 				memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
536 				packet.saveBuf = adbBuffer;
537 				packet.compRout = adbCompRout;
538 				packet.compData = adbCompData;
539 				packet.cmd = adbWaitingCmd;
540 				packet.unsol = 0;
541 				packet.ack_only = 1;
542 				adb_pass_up(&packet);
543 
544 				/* reset "waiting" vars, just in case */
545 				adbWaitingCmd = 0;
546 				adbBuffer = (long)0;
547 				adbCompRout = (long)0;
548 				adbCompData = (long)0;
549 			}
550 
551 			adbWriteDelay = 0;	/* done writing */
552 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
553 			ADB_SET_SR_INPUT();
554 			ADB_SET_STATE_IDLE_CUDA();
555 #ifdef ADB_DEBUG
556 			if (adb_debug)
557 				printf_intr("write done ");
558 #endif
559 		} else {
560 			write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* send next byte */
561 			ADB_TOGGLE_STATE_ACK_CUDA();	/* signal byte ready to
562 							 * shift */
563 #ifdef ADB_DEBUG
564 			if (adb_debug)
565 				printf_intr("toggle ");
566 #endif
567 		}
568 		break;
569 
570 	case ADB_ACTION_NOTREADY:
571 #ifdef ADB_DEBUG
572 		if (adb_debug)
573 			printf_intr("adb: not yet initialized\n");
574 #endif
575 		break;
576 
577 	default:
578 #ifdef ADB_DEBUG
579 		if (adb_debug)
580 			printf_intr("intr: unknown ADB state\n");
581 #endif
582 		break;
583 	}
584 
585 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
586 
587 	splx(s);		/* restore */
588 
589 	return;
590 }				/* end adb_intr_cuda */
591 
592 
593 int
594 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
595 	command)
596 {
597 	int s, len;
598 
599 #ifdef ADB_DEBUG
600 	if (adb_debug)
601 		printf_intr("SEND\n");
602 #endif
603 
604 	if (adbActionState == ADB_ACTION_NOTREADY)
605 		return 1;
606 
607 	/* Don't interrupt while we are messing with the ADB */
608 	s = splhigh();
609 
610 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
611 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupt? */
612 	} else
613 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
614 			adbWriteDelay = 1;	/* if no, then we'll "queue"
615 						 * it up */
616 		else {
617 			splx(s);
618 			return 1;	/* really busy! */
619 		}
620 
621 #ifdef ADB_DEBUG
622 	if (adb_debug)
623 		printf_intr("QUEUE\n");
624 #endif
625 	if ((long)in == (long)0) {	/* need to convert? */
626 		/*
627 		 * Don't need to use adb_cmd_extra here because this section
628 		 * will be called ONLY when it is an ADB command (no RTC or
629 		 * PRAM)
630 		 */
631 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
632 						 * doing a listen! */
633 			len = buffer[0];	/* length of additional data */
634 		else
635 			len = 0;/* no additional data */
636 
637 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
638 						 * data */
639 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
640 		adbOutputBuffer[2] = (u_char)command;	/* load command */
641 
642 		/* copy additional output data, if any */
643 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
644 	} else
645 		/* if data ready, just copy over */
646 		memcpy(adbOutputBuffer, in, in[0] + 2);
647 
648 	adbSentChars = 0;	/* nothing sent yet */
649 	adbBuffer = buffer;	/* save buffer to know where to save result */
650 	adbCompRout = compRout;	/* save completion routine pointer */
651 	adbCompData = data;	/* save completion routine data pointer */
652 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
653 
654 	if (adbWriteDelay != 1) {	/* start command now? */
655 #ifdef ADB_DEBUG
656 		if (adb_debug)
657 			printf_intr("out start NOW");
658 #endif
659 		delay(ADB_DELAY);
660 		adbActionState = ADB_ACTION_OUT;	/* set next state */
661 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
662 		write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* load byte for output */
663 		ADB_SET_STATE_ACKOFF_CUDA();
664 		ADB_SET_STATE_TIP();	/* tell ADB that we want to send */
665 	}
666 	adbWriteDelay = 1;	/* something in the write "queue" */
667 
668 	splx(s);
669 
670 	if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
671 		/* poll until byte done */
672 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
673 		    || (adbWaiting == 1))
674 			if (ADB_SR_INTR_IS_ON) {	/* wait for "interrupt" */
675 				adb_intr_cuda();	/* process it */
676 				adb_soft_intr();
677 			}
678 
679 	return 0;
680 }				/* send_adb_cuda */
681 
682 
683 void
684 adb_intr_II(void)
685 {
686 	panic("adb_intr_II");
687 }
688 
689 
690 /*
691  * send_adb version for II series machines
692  */
693 int
694 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
695 {
696 	panic("send_adb_II");
697 }
698 
699 
700 /*
701  * This routine is called from the II series interrupt routine
702  * to determine what the "next" device is that should be polled.
703  */
704 int
705 adb_guess_next_device(void)
706 {
707 	int last, i, dummy;
708 
709 	if (adbStarting) {
710 		/*
711 		 * Start polling EVERY device, since we can't be sure there is
712 		 * anything in the device table yet
713 		 */
714 		if (adbLastDevice < 1 || adbLastDevice > 15)
715 			adbLastDevice = 1;
716 		if (++adbLastDevice > 15)	/* point to next one */
717 			adbLastDevice = 1;
718 	} else {
719 		/* find the next device using the device table */
720 		if (adbLastDevice < 1 || adbLastDevice > 15)	/* let's be parinoid */
721 			adbLastDevice = 2;
722 		last = 1;	/* default index location */
723 
724 		for (i = 1; i < 16; i++)	/* find index entry */
725 			if (ADBDevTable[i].currentAddr == adbLastDevice) {	/* look for device */
726 				last = i;	/* found it */
727 				break;
728 			}
729 		dummy = last;	/* index to start at */
730 		for (;;) {	/* find next device in index */
731 			if (++dummy > 15)	/* wrap around if needed */
732 				dummy = 1;
733 			if (dummy == last) {	/* didn't find any other
734 						 * device! This can happen if
735 						 * there are no devices on the
736 						 * bus */
737 				dummy = 1;
738 				break;
739 			}
740 			/* found the next device */
741 			if (ADBDevTable[dummy].devType != 0)
742 				break;
743 		}
744 		adbLastDevice = ADBDevTable[dummy].currentAddr;
745 	}
746 	return adbLastDevice;
747 }
748 
749 
750 /*
751  * Called when when an adb interrupt happens.
752  * This routine simply transfers control over to the appropriate
753  * code for the machine we are running on.
754  */
755 void
756 adb_intr(void)
757 {
758 	switch (adbHardware) {
759 	case ADB_HW_II:
760 		adb_intr_II();
761 		break;
762 
763 	case ADB_HW_IISI:
764 		adb_intr_IIsi();
765 		break;
766 
767 	case ADB_HW_PB:
768 		pm_intr();
769 		break;
770 
771 	case ADB_HW_CUDA:
772 		adb_intr_cuda();
773 		break;
774 
775 	case ADB_HW_UNKNOWN:
776 		break;
777 	}
778 }
779 
780 
781 /*
782  * called when when an adb interrupt happens
783  *
784  * IIsi version of adb_intr
785  *
786  */
787 void
788 adb_intr_IIsi(void)
789 {
790 	panic("adb_intr_IIsi");
791 }
792 
793 
794 /*****************************************************************************
795  * if the device is currently busy, and there is no data waiting to go out, then
796  * the data is "queued" in the outgoing buffer. If we are already waiting, then
797  * we return.
798  * in: if (in == 0) then the command string is built from command and buffer
799  *     if (in != 0) then in is used as the command string
800  * buffer: additional data to be sent (used only if in == 0)
801  *         this is also where return data is stored
802  * compRout: the completion routine that is called when then return value
803  *	     is received (if a return value is expected)
804  * data: a data pointer that can be used by the completion routine
805  * command: an ADB command to be sent (used only if in == 0)
806  *
807  */
808 int
809 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
810 	command)
811 {
812 	panic("send_adb_IIsi");
813 }
814 
815 
816 /*
817  * adb_pass_up is called by the interrupt-time routines.
818  * It takes the raw packet data that was received from the
819  * device and puts it into the queue that the upper half
820  * processes. It then signals for a soft ADB interrupt which
821  * will eventually call the upper half routine (adb_soft_intr).
822  *
823  * If in->unsol is 0, then this is either the notification
824  * that the packet was sent (on a LISTEN, for example), or the
825  * response from the device (on a TALK). The completion routine
826  * is called only if the user specified one.
827  *
828  * If in->unsol is 1, then this packet was unsolicited and
829  * so we look up the device in the ADB device table to determine
830  * what it's default service routine is.
831  *
832  * If in->ack_only is 1, then we really only need to call
833  * the completion routine, so don't do any other stuff.
834  *
835  * Note that in->data contains the packet header AND data,
836  * while adbInbound[]->data contains ONLY data.
837  *
838  * Note: Called only at interrupt time. Assumes this.
839  */
840 void
841 adb_pass_up(struct adbCommand *in)
842 {
843 	int start = 0, len = 0, cmd = 0;
844 	ADBDataBlock block;
845 
846 	/* temp for testing */
847 	/*u_char *buffer = 0;*/
848 	/*u_char *compdata = 0;*/
849 	/*u_char *comprout = 0;*/
850 
851 	if (adbInCount >= ADB_QUEUE) {
852 #ifdef ADB_DEBUG
853 		if (adb_debug)
854 			printf_intr("adb: ring buffer overflow\n");
855 #endif
856 		return;
857 	}
858 
859 	if (in->ack_only) {
860 		len = in->data[0];
861 		cmd = in->cmd;
862 		start = 0;
863 	} else {
864 		switch (adbHardware) {
865 		case ADB_HW_II:
866 			cmd = in->data[1];
867 			if (in->data[0] < 2)
868 				len = 0;
869 			else
870 				len = in->data[0]-1;
871 			start = 1;
872 			break;
873 
874 		case ADB_HW_IISI:
875 		case ADB_HW_CUDA:
876 			/* If it's unsolicited, accept only ADB data for now */
877 			if (in->unsol)
878 				if (0 != in->data[2])
879 					return;
880 			cmd = in->data[4];
881 			if (in->data[0] < 5)
882 				len = 0;
883 			else
884 				len = in->data[0]-4;
885 			start = 4;
886 			break;
887 
888 		case ADB_HW_PB:
889 			cmd = in->data[1];
890 			if (in->data[0] < 2)
891 				len = 0;
892 			else
893 				len = in->data[0]-1;
894 			start = 1;
895 			break;
896 
897 		case ADB_HW_UNKNOWN:
898 			return;
899 		}
900 
901 		/* Make sure there is a valid device entry for this device */
902 		if (in->unsol) {
903 			/* ignore unsolicited data during adbreinit */
904 			if (adbStarting)
905 				return;
906 			/* get device's comp. routine and data area */
907 			if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
908 				return;
909 		}
910 	}
911 
912 	/*
913  	 * If this is an unsolicited packet, we need to fill in
914  	 * some info so adb_soft_intr can process this packet
915  	 * properly. If it's not unsolicited, then use what
916  	 * the caller sent us.
917  	 */
918 	if (in->unsol) {
919 		adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
920 		adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
921 		adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
922 	} else {
923 		adbInbound[adbInTail].compRout = (void *)in->compRout;
924 		adbInbound[adbInTail].compData = (void *)in->compData;
925 		adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
926 	}
927 
928 #ifdef ADB_DEBUG
929 	if (adb_debug && in->data[1] == 2)
930 		printf_intr("adb: caught error\n");
931 #endif
932 
933 	/* copy the packet data over */
934 	/*
935 	 * TO DO: If the *_intr routines fed their incoming data
936 	 * directly into an adbCommand struct, which is passed to
937 	 * this routine, then we could eliminate this copy.
938 	 */
939 	memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
940 	adbInbound[adbInTail].data[0] = len;
941 	adbInbound[adbInTail].cmd = cmd;
942 
943 	adbInCount++;
944 	if (++adbInTail >= ADB_QUEUE)
945 		adbInTail = 0;
946 
947 	/*
948 	 * If the debugger is running, call upper half manually.
949 	 * Otherwise, trigger a soft interrupt to handle the rest later.
950 	 */
951 	if (adb_polling)
952 		adb_soft_intr();
953 	else
954 		setsoftadb();
955 
956 	return;
957 }
958 
959 
960 /*
961  * Called to process the packets after they have been
962  * placed in the incoming queue.
963  *
964  */
965 void
966 adb_soft_intr(void)
967 {
968 	int s;
969 	int cmd = 0;
970 	u_char *buffer = 0;
971 	u_char *comprout = 0;
972 	u_char *compdata = 0;
973 
974 #if 0
975 	s = splhigh();
976 	printf_intr("sr: %x\n", (s & 0x0700));
977 	splx(s);
978 #endif
979 
980 /*delay(2*ADB_DELAY);*/
981 
982 	while (adbInCount) {
983 #ifdef ADB_DEBUG
984 		if (adb_debug & 0x80)
985 			printf_intr("%x %x %x ",
986 			    adbInCount, adbInHead, adbInTail);
987 #endif
988 		/* get the data we need from the queue */
989 		buffer = adbInbound[adbInHead].saveBuf;
990 		comprout = adbInbound[adbInHead].compRout;
991 		compdata = adbInbound[adbInHead].compData;
992 		cmd = adbInbound[adbInHead].cmd;
993 
994 		/* copy over data to data area if it's valid */
995 		/*
996 		 * Note that for unsol packets we don't want to copy the
997 		 * data anywhere, so buffer was already set to 0.
998 		 * For ack_only buffer was set to 0, so don't copy.
999 		 */
1000 		if (buffer)
1001 			memcpy(buffer, adbInbound[adbInHead].data,
1002 			    adbInbound[adbInHead].data[0] + 1);
1003 
1004 #ifdef ADB_DEBUG
1005 			if (adb_debug & 0x80) {
1006 				printf_intr("%p %p %p %x ",
1007 				    buffer, comprout, compdata, (short)cmd);
1008 				printf_intr("buf: ");
1009 				print_single(adbInbound[adbInHead].data);
1010 			}
1011 #endif
1012 		/* Remove the packet from the queue before calling
1013 		 * the completion routine, so that the completion
1014 		 * routine can reentrantly process the queue.  For
1015 		 * example, this happens when polling is turned on
1016 		 * by entering the debuger by keystroke.
1017 		 */
1018 		s = splhigh();
1019 		adbInCount--;
1020 		if (++adbInHead >= ADB_QUEUE)
1021 			adbInHead = 0;
1022 		splx(s);
1023 
1024 		/* call default completion routine if it's valid */
1025 		if (comprout) {
1026 			void (*f)(caddr_t, caddr_t, int) =
1027 			    (void (*)(caddr_t, caddr_t, int))comprout;
1028 
1029 			(*f)(buffer, compdata, cmd);
1030 		}
1031 	}
1032 	return;
1033 }
1034 
1035 
1036 /*
1037  * This is my version of the ADBOp routine. It mainly just calls the
1038  * hardware-specific routine.
1039  *
1040  *   data 	: pointer to data area to be used by compRout
1041  *   compRout	: completion routine
1042  *   buffer	: for LISTEN: points to data to send - MAX 8 data bytes,
1043  *		  byte 0 = # of bytes
1044  *		: for TALK: points to place to save return data
1045  *   command	: the adb command to send
1046  *   result	: 0 = success
1047  *		: -1 = could not complete
1048  */
1049 int
1050 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1051 {
1052 	int result;
1053 
1054 	switch (adbHardware) {
1055 	case ADB_HW_II:
1056 		result = send_adb_II((u_char *)0, (u_char *)buffer,
1057 		    (void *)compRout, (void *)data, (int)command);
1058 		if (result == 0)
1059 			return 0;
1060 		else
1061 			return -1;
1062 		break;
1063 
1064 	case ADB_HW_IISI:
1065 		result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1066 		    (void *)compRout, (void *)data, (int)command);
1067 		/*
1068 		 * I wish I knew why this delay is needed. It usually needs to
1069 		 * be here when several commands are sent in close succession,
1070 		 * especially early in device probes when doing collision
1071 		 * detection. It must be some race condition. Sigh. - jpw
1072 		 */
1073 		delay(100);
1074 		if (result == 0)
1075 			return 0;
1076 		else
1077 			return -1;
1078 		break;
1079 
1080 	case ADB_HW_PB:
1081 		result = pm_adb_op((u_char *)buffer, (void *)compRout,
1082 		    (void *)data, (int)command);
1083 
1084 		if (result == 0)
1085 			return 0;
1086 		else
1087 			return -1;
1088 		break;
1089 
1090 	case ADB_HW_CUDA:
1091 		result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1092 		    (void *)compRout, (void *)data, (int)command);
1093 		if (result == 0)
1094 			return 0;
1095 		else
1096 			return -1;
1097 		break;
1098 
1099 	case ADB_HW_UNKNOWN:
1100 	default:
1101 		return -1;
1102 	}
1103 }
1104 
1105 
1106 /*
1107  * adb_hw_setup
1108  * This routine sets up the possible machine specific hardware
1109  * config (mainly VIA settings) for the various models.
1110  */
1111 void
1112 adb_hw_setup(void)
1113 {
1114 	volatile int i;
1115 	u_char send_string[ADB_MAX_MSG_LENGTH];
1116 
1117 	switch (adbHardware) {
1118 	case ADB_HW_II:
1119 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
1120 						 * outputs */
1121 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
1122 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
1123 							 * to IN (II, IIsi) */
1124 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1125 							 * hardware (II, IIsi) */
1126 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1127 						 * code only */
1128 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1129 						 * are on (II, IIsi) */
1130 		ADB_SET_STATE_IDLE_II();	/* set ADB bus state to idle */
1131 
1132 		ADB_VIA_CLR_INTR();	/* clear interrupt */
1133 		break;
1134 
1135 	case ADB_HW_IISI:
1136 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
1137 						 * outputs */
1138 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
1139 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
1140 							 * to IN (II, IIsi) */
1141 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1142 							 * hardware (II, IIsi) */
1143 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1144 						 * code only */
1145 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1146 						 * are on (II, IIsi) */
1147 		ADB_SET_STATE_IDLE_IISI();	/* set ADB bus state to idle */
1148 
1149 		/* get those pesky clock ticks we missed while booting */
1150 		for (i = 0; i < 30; i++) {
1151 			delay(ADB_DELAY);
1152 			adb_hw_setup_IIsi(send_string);
1153 #ifdef ADB_DEBUG
1154 			if (adb_debug) {
1155 				printf_intr("adb: cleanup: ");
1156 				print_single(send_string);
1157 			}
1158 #endif
1159 			delay(ADB_DELAY);
1160 			if (ADB_INTR_IS_OFF)
1161 				break;
1162 		}
1163 		break;
1164 
1165 	case ADB_HW_PB:
1166 		/*
1167 		 * XXX - really PM_VIA_CLR_INTR - should we put it in
1168 		 * pm_direct.h?
1169 		 */
1170 		write_via_reg(VIA1, vIFR, 0x90);	/* clear interrupt */
1171 		break;
1172 
1173 	case ADB_HW_CUDA:
1174 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
1175 						 * outputs */
1176 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
1177 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
1178 							 * to IN */
1179 		write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1180 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1181 							 * hardware */
1182 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1183 						 * code only */
1184 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1185 						 * are on */
1186 		ADB_SET_STATE_IDLE_CUDA();	/* set ADB bus state to idle */
1187 
1188 		/* sort of a device reset */
1189 		i = ADB_SR();	/* clear interrupt */
1190 		ADB_VIA_INTR_DISABLE();	/* no interrupts while clearing */
1191 		ADB_SET_STATE_IDLE_CUDA();	/* reset state to idle */
1192 		delay(ADB_DELAY);
1193 		ADB_SET_STATE_TIP();	/* signal start of frame */
1194 		delay(ADB_DELAY);
1195 		ADB_TOGGLE_STATE_ACK_CUDA();
1196 		delay(ADB_DELAY);
1197 		ADB_CLR_STATE_TIP();
1198 		delay(ADB_DELAY);
1199 		ADB_SET_STATE_IDLE_CUDA();	/* back to idle state */
1200 		i = ADB_SR();	/* clear interrupt */
1201 		ADB_VIA_INTR_ENABLE();	/* ints ok now */
1202 		break;
1203 
1204 	case ADB_HW_UNKNOWN:
1205 	default:
1206 		write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1207 						 * DO: turn PB ints off? */
1208 		return;
1209 		break;
1210 	}
1211 }
1212 
1213 
1214 /*
1215  * adb_hw_setup_IIsi
1216  * This is sort of a "read" routine that forces the adb hardware through a read cycle
1217  * if there is something waiting. This helps "clean up" any commands that may have gotten
1218  * stuck or stopped during the boot process.
1219  *
1220  */
1221 void
1222 adb_hw_setup_IIsi(u_char * buffer)
1223 {
1224 	panic("adb_hw_setup_IIsi");
1225 }
1226 
1227 
1228 /*
1229  * adb_reinit sets up the adb stuff
1230  *
1231  */
1232 void
1233 adb_reinit(void)
1234 {
1235 	u_char send_string[ADB_MAX_MSG_LENGTH];
1236 	ADBDataBlock data;	/* temp. holder for getting device info */
1237 	volatile int i, x;
1238 	int s = 0;		/* XXX: gcc */
1239 	int command;
1240 	int result;
1241 	int saveptr;		/* point to next free relocation address */
1242 	int device;
1243 	int nonewtimes;		/* times thru loop w/o any new devices */
1244 
1245 	/* Make sure we are not interrupted while building the table. */
1246 	if (adbHardware != ADB_HW_PB)	/* ints must be on for PB? */
1247 		s = splhigh();
1248 
1249 	ADBNumDevices = 0;	/* no devices yet */
1250 
1251 	/* Let intr routines know we are running reinit */
1252 	adbStarting = 1;
1253 
1254 	/*
1255 	 * Initialize the ADB table.  For now, we'll always use the same table
1256 	 * that is defined at the beginning of this file - no mallocs.
1257 	 */
1258 	for (i = 0; i < 16; i++)
1259 		ADBDevTable[i].devType = 0;
1260 
1261 	adb_setup_hw_type();	/* setup hardware type */
1262 
1263 	adb_hw_setup();		/* init the VIA bits and hard reset ADB */
1264 
1265 	delay(1000);
1266 
1267 	/* send an ADB reset first */
1268 	result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1269 	delay(200000);
1270 
1271 #ifdef ADB_DEBUG
1272 	if (result && adb_debug) {
1273 		printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1274 	}
1275 #endif
1276 
1277 	/*
1278 	 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1279 	 * which device addresses are in use and which are free. For each
1280 	 * address that is in use, move the device at that address to a higher
1281 	 * free address. Continue doing this at that address until no device
1282 	 * responds at that address. Then move the last device that was moved
1283 	 * back to the original address. Do this for the remaining addresses
1284 	 * that we determined were in use.
1285 	 *
1286 	 * When finished, do this entire process over again with the updated
1287 	 * list of in use addresses. Do this until no new devices have been
1288 	 * found in 20 passes though the in use address list. (This probably
1289 	 * seems long and complicated, but it's the best way to detect multiple
1290 	 * devices at the same address - sometimes it takes a couple of tries
1291 	 * before the collision is detected.)
1292 	 */
1293 
1294 	/* initial scan through the devices */
1295 	for (i = 1; i < 16; i++) {
1296 		send_string[0] = 0;
1297 		command = ADBTALK(i, 3);
1298 		result = adb_op_sync((Ptr)send_string, (Ptr)0,
1299 		    (Ptr)0, (short)command);
1300 
1301 #ifdef ADB_DEBUG
1302 		if (result && adb_debug) {
1303 			printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1304 					i,result,send_string[0]);
1305 		}
1306 #endif
1307 
1308 		if (send_string[0] != 0) {
1309 			/* check for valid device handler */
1310 			switch (send_string[2]) {
1311 			case 0:
1312 			case 0xfd:
1313 			case 0xfe:
1314 			case 0xff:
1315 				continue;	/* invalid, skip */
1316 			}
1317 
1318 			/* found a device */
1319 			++ADBNumDevices;
1320 			KASSERT(ADBNumDevices < 16);
1321 			ADBDevTable[ADBNumDevices].devType =
1322 				(int)send_string[2];
1323 			ADBDevTable[ADBNumDevices].origAddr = i;
1324 			ADBDevTable[ADBNumDevices].currentAddr = i;
1325 			ADBDevTable[ADBNumDevices].DataAreaAddr =
1326 			    (long)0;
1327 			ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1328 			pm_check_adb_devices(i);	/* tell pm driver device
1329 							 * is here */
1330 		}
1331 	}
1332 
1333 	/* find highest unused address */
1334 	for (saveptr = 15; saveptr > 0; saveptr--)
1335 		if (-1 == get_adb_info(&data, saveptr))
1336 			break;
1337 
1338 #ifdef ADB_DEBUG
1339 	if (adb_debug & 0x80) {
1340 		printf_intr("first free is: 0x%02x\n", saveptr);
1341 		printf_intr("devices: %i\n", ADBNumDevices);
1342 	}
1343 #endif
1344 
1345 	nonewtimes = 0;		/* no loops w/o new devices */
1346 	while (saveptr > 0 && nonewtimes++ < 11) {
1347 		for (i = 1; i <= ADBNumDevices; i++) {
1348 			device = ADBDevTable[i].currentAddr;
1349 #ifdef ADB_DEBUG
1350 			if (adb_debug & 0x80)
1351 				printf_intr("moving device 0x%02x to 0x%02x "
1352 				    "(index 0x%02x)  ", device, saveptr, i);
1353 #endif
1354 
1355 			/* send TALK R3 to address */
1356 			command = ADBTALK(device, 3);
1357 			adb_op_sync((Ptr)send_string, (Ptr)0,
1358 			    (Ptr)0, (short)command);
1359 
1360 			/* move device to higher address */
1361 			command = ADBLISTEN(device, 3);
1362 			send_string[0] = 2;
1363 			send_string[1] = (u_char)(saveptr | 0x60);
1364 			send_string[2] = 0xfe;
1365 			adb_op_sync((Ptr)send_string, (Ptr)0,
1366 			    (Ptr)0, (short)command);
1367 			delay(500);
1368 
1369 			/* send TALK R3 - anything at new address? */
1370 			command = ADBTALK(saveptr, 3);
1371 			adb_op_sync((Ptr)send_string, (Ptr)0,
1372 			    (Ptr)0, (short)command);
1373 			delay(500);
1374 
1375 			if (send_string[0] == 0) {
1376 #ifdef ADB_DEBUG
1377 				if (adb_debug & 0x80)
1378 					printf_intr("failed, continuing\n");
1379 #endif
1380 				continue;
1381 			}
1382 
1383 			/* send TALK R3 - anything at old address? */
1384 			command = ADBTALK(device, 3);
1385 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
1386 			    (Ptr)0, (short)command);
1387 			if (send_string[0] != 0) {
1388 				/* check for valid device handler */
1389 				switch (send_string[2]) {
1390 				case 0:
1391 				case 0xfd:
1392 				case 0xfe:
1393 				case 0xff:
1394 					continue;	/* invalid, skip */
1395 				}
1396 
1397 				/* new device found */
1398 				/* update data for previously moved device */
1399 				ADBDevTable[i].currentAddr = saveptr;
1400 #ifdef ADB_DEBUG
1401 				if (adb_debug & 0x80)
1402 					printf_intr("old device at index %i\n",i);
1403 #endif
1404 				/* add new device in table */
1405 #ifdef ADB_DEBUG
1406 				if (adb_debug & 0x80)
1407 					printf_intr("new device found\n");
1408 #endif
1409 				if (saveptr > ADBNumDevices) {
1410 					++ADBNumDevices;
1411 					KASSERT(ADBNumDevices < 16);
1412 				}
1413 				ADBDevTable[ADBNumDevices].devType =
1414 					(int)send_string[2];
1415 				ADBDevTable[ADBNumDevices].origAddr = device;
1416 				ADBDevTable[ADBNumDevices].currentAddr = device;
1417 				/* These will be set correctly in adbsys.c */
1418 				/* Until then, unsol. data will be ignored. */
1419 				ADBDevTable[ADBNumDevices].DataAreaAddr =
1420 				    (long)0;
1421 				ADBDevTable[ADBNumDevices].ServiceRtPtr =
1422 				    (void *)0;
1423 				/* find next unused address */
1424 				for (x = saveptr; x > 0; x--) {
1425 					if (-1 == get_adb_info(&data, x)) {
1426 						saveptr = x;
1427 						break;
1428 					}
1429 				}
1430 				if (x == 0)
1431 					saveptr = 0;
1432 #ifdef ADB_DEBUG
1433 				if (adb_debug & 0x80)
1434 					printf_intr("new free is 0x%02x\n",
1435 					    saveptr);
1436 #endif
1437 				nonewtimes = 0;
1438 				/* tell pm driver device is here */
1439 				pm_check_adb_devices(device);
1440 			} else {
1441 #ifdef ADB_DEBUG
1442 				if (adb_debug & 0x80)
1443 					printf_intr("moving back...\n");
1444 #endif
1445 				/* move old device back */
1446 				command = ADBLISTEN(saveptr, 3);
1447 				send_string[0] = 2;
1448 				send_string[1] = (u_char)(device | 0x60);
1449 				send_string[2] = 0xfe;
1450 				adb_op_sync((Ptr)send_string, (Ptr)0,
1451 				    (Ptr)0, (short)command);
1452 				delay(1000);
1453 			}
1454 		}
1455 	}
1456 
1457 #ifdef ADB_DEBUG
1458 	if (adb_debug) {
1459 		for (i = 1; i <= ADBNumDevices; i++) {
1460 			x = get_ind_adb_info(&data, i);
1461 			if (x != -1)
1462 				printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1463 				    i, x, data.devType);
1464 		}
1465 	}
1466 #endif
1467 
1468 #ifndef MRG_ADB
1469 	/* enable the programmer's switch, if we have one */
1470 	adb_prog_switch_enable();
1471 #endif
1472 
1473 #ifdef ADB_DEBUG
1474 	if (adb_debug) {
1475 		if (0 == ADBNumDevices)	/* tell user if no devices found */
1476 			printf_intr("adb: no devices found\n");
1477 	}
1478 #endif
1479 
1480 	adbStarting = 0;	/* not starting anymore */
1481 #ifdef ADB_DEBUG
1482 	if (adb_debug)
1483 		printf_intr("adb: ADBReInit complete\n");
1484 #endif
1485 
1486 	if (adbHardware == ADB_HW_CUDA)
1487 		callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1488 		    (void *)adb_cuda_tickle, NULL);
1489 
1490 	if (adbHardware != ADB_HW_PB)	/* ints must be on for PB? */
1491 		splx(s);
1492 }
1493 
1494 /*
1495  * adb_cmd_result
1496  *
1497  * This routine lets the caller know whether the specified adb command string
1498  * should expect a returned result, such as a TALK command.
1499  *
1500  * returns: 0 if a result should be expected
1501  *          1 if a result should NOT be expected
1502  */
1503 int
1504 adb_cmd_result(u_char *in)
1505 {
1506 	switch (adbHardware) {
1507 	case ADB_HW_II:
1508 		/* was it an ADB talk command? */
1509 		if ((in[1] & 0x0c) == 0x0c)
1510 			return 0;
1511 		return 1;
1512 
1513 	case ADB_HW_IISI:
1514 	case ADB_HW_CUDA:
1515 		/* was it an ADB talk command? */
1516 		if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1517 			return 0;
1518 		/* was it an RTC/PRAM read date/time? */
1519 		if ((in[1] == 0x01) && (in[2] == 0x03))
1520 			return 0;
1521 		return 1;
1522 
1523 	case ADB_HW_PB:
1524 		return 1;
1525 
1526 	case ADB_HW_UNKNOWN:
1527 	default:
1528 		return 1;
1529 	}
1530 }
1531 
1532 
1533 /*
1534  * adb_cmd_extra
1535  *
1536  * This routine lets the caller know whether the specified adb command string
1537  * may have extra data appended to the end of it, such as a LISTEN command.
1538  *
1539  * returns: 0 if extra data is allowed
1540  *          1 if extra data is NOT allowed
1541  */
1542 int
1543 adb_cmd_extra(u_char *in)
1544 {
1545 	switch (adbHardware) {
1546 		case ADB_HW_II:
1547 		if ((in[1] & 0x0c) == 0x08)	/* was it a listen command? */
1548 			return 0;
1549 		return 1;
1550 
1551 	case ADB_HW_IISI:
1552 	case ADB_HW_CUDA:
1553 		/*
1554 		 * TO DO: support needs to be added to recognize RTC and PRAM
1555 		 * commands
1556 		 */
1557 		if ((in[2] & 0x0c) == 0x08)	/* was it a listen command? */
1558 			return 0;
1559 		/* add others later */
1560 		return 1;
1561 
1562 	case ADB_HW_PB:
1563 		return 1;
1564 
1565 	case ADB_HW_UNKNOWN:
1566 	default:
1567 		return 1;
1568 	}
1569 }
1570 
1571 /*
1572  * adb_op_sync
1573  *
1574  * This routine does exactly what the adb_op routine does, except that after
1575  * the adb_op is called, it waits until the return value is present before
1576  * returning.
1577  *
1578  * NOTE: The user specified compRout is ignored, since this routine specifies
1579  * it's own to adb_op, which is why you really called this in the first place
1580  * anyway.
1581  */
1582 int
1583 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1584 {
1585 	int tmout;
1586 	int result;
1587 	volatile int flag = 0;
1588 
1589 	result = adb_op(buffer, (void *)adb_op_comprout,
1590 	    (void *)&flag, command);	/* send command */
1591 	if (result == 0) {		/* send ok? */
1592 		/*
1593 		 * Total time to wait is calculated as follows:
1594 		 *  - Tlt (stop to start time): 260 usec
1595 		 *  - start bit: 100 usec
1596 		 *  - up to 8 data bytes: 64 * 100 usec = 6400 usec
1597 		 *  - stop bit (with SRQ): 140 usec
1598 		 * Total: 6900 usec
1599 		 *
1600 		 * This is the total time allowed by the specification.  Any
1601 		 * device that doesn't conform to this will fail to operate
1602 		 * properly on some Apple systems.  In spite of this we
1603 		 * double the time to wait; some Cuda-based apparently
1604 		 * queues some commands and allows the main CPU to continue
1605 		 * processing (radical concept, eh?).  To be safe, allow
1606 		 * time for two complete ADB transactions to occur.
1607 		 */
1608 		for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1609 			delay(10);
1610 		if (!flag && tmout > 0)
1611 			delay(tmout);
1612 
1613 		if (!flag)
1614 			result = -2;
1615 	}
1616 
1617 	return result;
1618 }
1619 
1620 /*
1621  * adb_op_comprout
1622  *
1623  * This function is used by the adb_op_sync routine so it knows when the
1624  * function is done.
1625  */
1626 void
1627 adb_op_comprout(buffer, compdata, cmd)
1628 	caddr_t buffer, compdata;
1629 	int cmd;
1630 {
1631 	short *p = (short *)compdata;
1632 
1633 	*p = 1;
1634 }
1635 
1636 void
1637 adb_setup_hw_type(void)
1638 {
1639 	switch (adbHardware) {
1640 	case ADB_HW_CUDA:
1641 		adbSoftPower = 1;
1642 		return;
1643 
1644 	case ADB_HW_PB:
1645 		adbSoftPower = 1;
1646 		pm_setup_adb();
1647 		return;
1648 
1649 	default:
1650 		panic("unknown adb hardware");
1651 	}
1652 #if 0
1653 	response = 0; /*mac68k_machine.machineid;*/
1654 
1655 	/*
1656 	 * Determine what type of ADB hardware we are running on.
1657 	 */
1658 	switch (response) {
1659 	case MACH_MACC610:		/* Centris 610 */
1660 	case MACH_MACC650:		/* Centris 650 */
1661 	case MACH_MACII:		/* II */
1662 	case MACH_MACIICI:		/* IIci */
1663 	case MACH_MACIICX:		/* IIcx */
1664 	case MACH_MACIIX:		/* IIx */
1665 	case MACH_MACQ610:		/* Quadra 610 */
1666 	case MACH_MACQ650:		/* Quadra 650 */
1667 	case MACH_MACQ700:		/* Quadra 700 */
1668 	case MACH_MACQ800:		/* Quadra 800 */
1669 	case MACH_MACSE30:		/* SE/30 */
1670 		adbHardware = ADB_HW_II;
1671 #ifdef ADB_DEBUG
1672 		if (adb_debug)
1673 			printf_intr("adb: using II series hardware support\n");
1674 #endif
1675 		break;
1676 
1677 	case MACH_MACCLASSICII:		/* Classic II */
1678 	case MACH_MACLCII:		/* LC II, Performa 400/405/430 */
1679 	case MACH_MACLCIII:		/* LC III, Performa 450 */
1680 	case MACH_MACIISI:		/* IIsi */
1681 	case MACH_MACIIVI:		/* IIvi */
1682 	case MACH_MACIIVX:		/* IIvx */
1683 	case MACH_MACP460:		/* Performa 460/465/467 */
1684 	case MACH_MACP600:		/* Performa 600 */
1685 		adbHardware = ADB_HW_IISI;
1686 #ifdef ADB_DEBUG
1687 		if (adb_debug)
1688 			printf_intr("adb: using IIsi series hardware support\n");
1689 #endif
1690 		break;
1691 
1692 	case MACH_MACPB140:		/* PowerBook 140 */
1693 	case MACH_MACPB145:		/* PowerBook 145 */
1694 	case MACH_MACPB150:		/* PowerBook 150 */
1695 	case MACH_MACPB160:		/* PowerBook 160 */
1696 	case MACH_MACPB165:		/* PowerBook 165 */
1697 	case MACH_MACPB165C:		/* PowerBook 165c */
1698 	case MACH_MACPB170:		/* PowerBook 170 */
1699 	case MACH_MACPB180:		/* PowerBook 180 */
1700 	case MACH_MACPB180C:		/* PowerBook 180c */
1701 		adbHardware = ADB_HW_PB;
1702 		pm_setup_adb();
1703 #ifdef ADB_DEBUG
1704 		if (adb_debug)
1705 			printf_intr("adb: using PowerBook 100-series hardware support\n");
1706 #endif
1707 		break;
1708 
1709 	case MACH_MACPB210:		/* PowerBook Duo 210 */
1710 	case MACH_MACPB230:		/* PowerBook Duo 230 */
1711 	case MACH_MACPB250:		/* PowerBook Duo 250 */
1712 	case MACH_MACPB270:		/* PowerBook Duo 270 */
1713 	case MACH_MACPB280:		/* PowerBook Duo 280 */
1714 	case MACH_MACPB280C:		/* PowerBook Duo 280c */
1715 	case MACH_MACPB500:		/* PowerBook 500 series */
1716 		adbHardware = ADB_HW_PB;
1717 		pm_setup_adb();
1718 #ifdef ADB_DEBUG
1719 		if (adb_debug)
1720 			printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1721 #endif
1722 		break;
1723 
1724 	case MACH_MACC660AV:		/* Centris 660AV */
1725 	case MACH_MACCCLASSIC:		/* Color Classic */
1726 	case MACH_MACCCLASSICII:	/* Color Classic II */
1727 	case MACH_MACLC475:		/* LC 475, Performa 475/476 */
1728 	case MACH_MACLC475_33:		/* Clock-chipped 47x */
1729 	case MACH_MACLC520:		/* LC 520 */
1730 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
1731 	case MACH_MACP550:		/* LC 550, Performa 550 */
1732 	case MACH_MACP580:		/* Performa 580/588 */
1733 	case MACH_MACQ605:		/* Quadra 605 */
1734 	case MACH_MACQ605_33:		/* Clock-chipped Quadra 605 */
1735 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
1736 	case MACH_MACQ840AV:		/* Quadra 840AV */
1737 		adbHardware = ADB_HW_CUDA;
1738 #ifdef ADB_DEBUG
1739 		if (adb_debug)
1740 			printf_intr("adb: using Cuda series hardware support\n");
1741 #endif
1742 		break;
1743 	default:
1744 		adbHardware = ADB_HW_UNKNOWN;
1745 #ifdef ADB_DEBUG
1746 		if (adb_debug) {
1747 			printf_intr("adb: hardware type unknown for this machine\n");
1748 			printf_intr("adb: ADB support is disabled\n");
1749 		}
1750 #endif
1751 		break;
1752 	}
1753 
1754 	/*
1755 	 * Determine whether this machine has ADB based soft power.
1756 	 */
1757 	switch (response) {
1758 	case MACH_MACCCLASSIC:		/* Color Classic */
1759 	case MACH_MACCCLASSICII:	/* Color Classic II */
1760 	case MACH_MACIISI:		/* IIsi */
1761 	case MACH_MACIIVI:		/* IIvi */
1762 	case MACH_MACIIVX:		/* IIvx */
1763 	case MACH_MACLC520:		/* LC 520 */
1764 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
1765 	case MACH_MACP550:		/* LC 550, Performa 550 */
1766 	case MACH_MACP600:		/* Performa 600 */
1767 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
1768 	case MACH_MACQ840AV:		/* Quadra 840AV */
1769 		adbSoftPower = 1;
1770 		break;
1771 	}
1772 #endif
1773 }
1774 
1775 int
1776 count_adbs(void)
1777 {
1778 	int i;
1779 	int found;
1780 
1781 	found = 0;
1782 
1783 	for (i = 1; i < 16; i++)
1784 		if (0 != ADBDevTable[i].devType)
1785 			found++;
1786 
1787 	return found;
1788 }
1789 
1790 int
1791 get_ind_adb_info(ADBDataBlock * info, int index)
1792 {
1793 	if ((index < 1) || (index > 15))	/* check range 1-15 */
1794 		return (-1);
1795 
1796 #ifdef ADB_DEBUG
1797 	if (adb_debug & 0x80)
1798 		printf_intr("index 0x%x devType is: 0x%x\n", index,
1799 		    ADBDevTable[index].devType);
1800 #endif
1801 	if (0 == ADBDevTable[index].devType)	/* make sure it's a valid entry */
1802 		return (-1);
1803 
1804 	info->devType = ADBDevTable[index].devType;
1805 	info->origADBAddr = ADBDevTable[index].origAddr;
1806 	info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1807 	info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1808 
1809 	return (ADBDevTable[index].currentAddr);
1810 }
1811 
1812 int
1813 get_adb_info(ADBDataBlock * info, int adbAddr)
1814 {
1815 	int i;
1816 
1817 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
1818 		return (-1);
1819 
1820 	for (i = 1; i < 15; i++)
1821 		if (ADBDevTable[i].currentAddr == adbAddr) {
1822 			info->devType = ADBDevTable[i].devType;
1823 			info->origADBAddr = ADBDevTable[i].origAddr;
1824 			info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1825 			info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1826 			return 0;	/* found */
1827 		}
1828 
1829 	return (-1);		/* not found */
1830 }
1831 
1832 int
1833 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1834 {
1835 	int i;
1836 
1837 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
1838 		return (-1);
1839 
1840 	for (i = 1; i < 15; i++)
1841 		if (ADBDevTable[i].currentAddr == adbAddr) {
1842 			ADBDevTable[i].ServiceRtPtr =
1843 			    (void *)(info->siServiceRtPtr);
1844 			ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1845 			return 0;	/* found */
1846 		}
1847 
1848 	return (-1);		/* not found */
1849 
1850 }
1851 
1852 #ifndef MRG_ADB
1853 
1854 /* caller should really use machine-independant version: getPramTime */
1855 /* this version does pseudo-adb access only */
1856 int
1857 adb_read_date_time(unsigned long *time)
1858 {
1859 	u_char output[ADB_MAX_MSG_LENGTH];
1860 	int result;
1861 	volatile int flag = 0;
1862 
1863 	switch (adbHardware) {
1864 	case ADB_HW_II:
1865 		return -1;
1866 
1867 	case ADB_HW_IISI:
1868 		output[0] = 0x02;	/* 2 byte message */
1869 		output[1] = 0x01;	/* to pram/rtc device */
1870 		output[2] = 0x03;	/* read date/time */
1871 		result = send_adb_IIsi((u_char *)output, (u_char *)output,
1872 		    (void *)adb_op_comprout, (int *)&flag, (int)0);
1873 		if (result != 0)	/* exit if not sent */
1874 			return -1;
1875 
1876 		while (0 == flag)	/* wait for result */
1877 			;
1878 
1879 		*time = (long)(*(long *)(output + 1));
1880 		return 0;
1881 
1882 	case ADB_HW_PB:
1883 		pm_read_date_time(time);
1884 		return 0;
1885 
1886 	case ADB_HW_CUDA:
1887 		output[0] = 0x02;	/* 2 byte message */
1888 		output[1] = 0x01;	/* to pram/rtc device */
1889 		output[2] = 0x03;	/* read date/time */
1890 		result = send_adb_cuda((u_char *)output, (u_char *)output,
1891 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
1892 		if (result != 0)	/* exit if not sent */
1893 			return -1;
1894 
1895 		while (0 == flag)	/* wait for result */
1896 			;
1897 
1898 		memcpy(time, output + 1, 4);
1899 		return 0;
1900 
1901 	case ADB_HW_UNKNOWN:
1902 	default:
1903 		return -1;
1904 	}
1905 }
1906 
1907 /* caller should really use machine-independant version: setPramTime */
1908 /* this version does pseudo-adb access only */
1909 int
1910 adb_set_date_time(unsigned long time)
1911 {
1912 	u_char output[ADB_MAX_MSG_LENGTH];
1913 	int result;
1914 	volatile int flag = 0;
1915 
1916 	switch (adbHardware) {
1917 
1918 	case ADB_HW_CUDA:
1919 		output[0] = 0x06;	/* 6 byte message */
1920 		output[1] = 0x01;	/* to pram/rtc device */
1921 		output[2] = 0x09;	/* set date/time */
1922 		output[3] = (u_char)(time >> 24);
1923 		output[4] = (u_char)(time >> 16);
1924 		output[5] = (u_char)(time >> 8);
1925 		output[6] = (u_char)(time);
1926 		result = send_adb_cuda((u_char *)output, (u_char *)0,
1927 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
1928 		if (result != 0)	/* exit if not sent */
1929 			return -1;
1930 
1931 		while (0 == flag)	/* wait for send to finish */
1932 			;
1933 
1934 		return 0;
1935 
1936 	case ADB_HW_PB:
1937 		pm_set_date_time(time);
1938 		return 0;
1939 
1940 	case ADB_HW_II:
1941 	case ADB_HW_IISI:
1942 	case ADB_HW_UNKNOWN:
1943 	default:
1944 		return -1;
1945 	}
1946 }
1947 
1948 
1949 int
1950 adb_poweroff(void)
1951 {
1952 	u_char output[ADB_MAX_MSG_LENGTH];
1953 	int result;
1954 
1955 	if (!adbSoftPower)
1956 		return -1;
1957 
1958 	adb_polling = 1;
1959 
1960 	switch (adbHardware) {
1961 	case ADB_HW_IISI:
1962 		output[0] = 0x02;	/* 2 byte message */
1963 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
1964 		output[2] = 0x0a;	/* set date/time */
1965 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
1966 		    (void *)0, (void *)0, (int)0);
1967 		if (result != 0)	/* exit if not sent */
1968 			return -1;
1969 
1970 		for (;;);		/* wait for power off */
1971 
1972 		return 0;
1973 
1974 	case ADB_HW_PB:
1975 		pm_adb_poweroff();
1976 
1977 		for (;;);		/* wait for power off */
1978 
1979 		return 0;
1980 
1981 	case ADB_HW_CUDA:
1982 		output[0] = 0x02;	/* 2 byte message */
1983 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
1984 		output[2] = 0x0a;	/* set date/time */
1985 		result = send_adb_cuda((u_char *)output, (u_char *)0,
1986 		    (void *)0, (void *)0, (int)0);
1987 		if (result != 0)	/* exit if not sent */
1988 			return -1;
1989 
1990 		for (;;);		/* wait for power off */
1991 
1992 		return 0;
1993 
1994 	case ADB_HW_II:			/* II models don't do ADB soft power */
1995 	case ADB_HW_UNKNOWN:
1996 	default:
1997 		return -1;
1998 	}
1999 }
2000 
2001 int
2002 adb_prog_switch_enable(void)
2003 {
2004 	u_char output[ADB_MAX_MSG_LENGTH];
2005 	int result;
2006 	volatile int flag = 0;
2007 
2008 	switch (adbHardware) {
2009 	case ADB_HW_IISI:
2010 		output[0] = 0x03;	/* 3 byte message */
2011 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2012 		output[2] = 0x1c;	/* prog. switch control */
2013 		output[3] = 0x01;	/* enable */
2014 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2015 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
2016 		if (result != 0)	/* exit if not sent */
2017 			return -1;
2018 
2019 		while (0 == flag)	/* wait for send to finish */
2020 			;
2021 
2022 		return 0;
2023 
2024 	case ADB_HW_PB:
2025 		return -1;
2026 
2027 	case ADB_HW_II:		/* II models don't do prog. switch */
2028 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch TO DO: verify this */
2029 	case ADB_HW_UNKNOWN:
2030 	default:
2031 		return -1;
2032 	}
2033 }
2034 
2035 int
2036 adb_prog_switch_disable(void)
2037 {
2038 	u_char output[ADB_MAX_MSG_LENGTH];
2039 	int result;
2040 	volatile int flag = 0;
2041 
2042 	switch (adbHardware) {
2043 	case ADB_HW_IISI:
2044 		output[0] = 0x03;	/* 3 byte message */
2045 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2046 		output[2] = 0x1c;	/* prog. switch control */
2047 		output[3] = 0x01;	/* disable */
2048 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2049 			(void *)adb_op_comprout, (void *)&flag, (int)0);
2050 		if (result != 0)	/* exit if not sent */
2051 			return -1;
2052 
2053 		while (0 == flag)	/* wait for send to finish */
2054 			;
2055 
2056 		return 0;
2057 
2058 	case ADB_HW_PB:
2059 		return -1;
2060 
2061 	case ADB_HW_II:		/* II models don't do prog. switch */
2062 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch */
2063 	case ADB_HW_UNKNOWN:
2064 	default:
2065 		return -1;
2066 	}
2067 }
2068 
2069 int
2070 CountADBs(void)
2071 {
2072 	return (count_adbs());
2073 }
2074 
2075 void
2076 ADBReInit(void)
2077 {
2078 	adb_reinit();
2079 }
2080 
2081 int
2082 GetIndADB(ADBDataBlock * info, int index)
2083 {
2084 	return (get_ind_adb_info(info, index));
2085 }
2086 
2087 int
2088 GetADBInfo(ADBDataBlock * info, int adbAddr)
2089 {
2090 	return (get_adb_info(info, adbAddr));
2091 }
2092 
2093 int
2094 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2095 {
2096 	return (set_adb_info(info, adbAddr));
2097 }
2098 
2099 int
2100 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2101 {
2102 	return (adb_op(buffer, compRout, data, commandNum));
2103 }
2104 
2105 #endif
2106 
2107 int
2108 setsoftadb()
2109 {
2110 	callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2111 	return 0;
2112 }
2113 
2114 void
2115 adb_cuda_autopoll()
2116 {
2117 	volatile int flag = 0;
2118 	int result;
2119 	u_char output[16];
2120 
2121 	output[0] = 0x03;	/* 3-byte message */
2122 	output[1] = 0x01;	/* to pram/rtc device */
2123 	output[2] = 0x01;	/* cuda autopoll */
2124 	output[3] = 0x01;
2125 	result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
2126 			       0);
2127 	if (result != 0)	/* exit if not sent */
2128 		return;
2129 
2130 	while (flag == 0);	/* wait for result */
2131 }
2132 
2133 void
2134 adb_restart(void)
2135 {
2136 	int result;
2137 	u_char output[16];
2138 
2139 	adb_polling = 1;
2140 
2141 	switch (adbHardware) {
2142 	case ADB_HW_CUDA:
2143 		output[0] = 0x02;	/* 2 byte message */
2144 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2145 		output[2] = 0x11;	/* restart */
2146 		result = send_adb_cuda(output, NULL, NULL, NULL, 0);
2147 		if (result != 0)	/* exit if not sent */
2148 			return;
2149 		while (1);		/* not return */
2150 
2151 	case ADB_HW_PB:
2152 		pm_adb_restart();
2153 		while (1);		/* not return */
2154 	}
2155 }
2156