1 /* $NetBSD: adb_direct.c,v 1.20 2002/01/02 20:30:45 dbj Exp $ */ 2 3 /* From: adb_direct.c 2.02 4/18/97 jpw */ 4 5 /* 6 * Copyright (C) 1996, 1997 John P. Wittkoski 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by John P. Wittkoski. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is rather messy, but I don't have time right now 37 * to clean it up as much as I would like. 38 * But it works, so I'm happy. :-) jpw 39 */ 40 41 /* 42 * TO DO: 43 * - We could reduce the time spent in the adb_intr_* routines 44 * by having them save the incoming and outgoing data directly 45 * in the adbInbound and adbOutbound queues, as it would reduce 46 * the number of times we need to copy the data around. It 47 * would also make the code more readable and easier to follow. 48 * - (Related to above) Use the header part of adbCommand to 49 * reduce the number of copies we have to do of the data. 50 * - (Related to above) Actually implement the adbOutbound queue. 51 * This is fairly easy once you switch all the intr routines 52 * over to using adbCommand structs directly. 53 * - There is a bug in the state machine of adb_intr_cuda 54 * code that causes hangs, especially on 030 machines, probably 55 * because of some timing issues. Because I have been unable to 56 * determine the exact cause of this bug, I used the timeout function 57 * to check for and recover from this condition. If anyone finds 58 * the actual cause of this bug, the calls to timeout and the 59 * adb_cuda_tickle routine can be removed. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/cdefs.h> 64 #include <sys/systm.h> 65 #include <sys/callout.h> 66 #include <sys/device.h> 67 68 #include <machine/param.h> 69 #include <machine/cpu.h> 70 #include <machine/adbsys.h> 71 72 #include <macppc/dev/viareg.h> 73 #include <macppc/dev/adbvar.h> 74 #include <macppc/dev/pm_direct.h> 75 76 #define printf_intr printf 77 78 #ifdef DEBUG 79 #ifndef ADB_DEBUG 80 #define ADB_DEBUG 81 #endif 82 #endif 83 84 /* some misc. leftovers */ 85 #define vPB 0x0000 86 #define vPB3 0x08 87 #define vPB4 0x10 88 #define vPB5 0x20 89 #define vSR_INT 0x04 90 #define vSR_OUT 0x10 91 92 /* the type of ADB action that we are currently preforming */ 93 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */ 94 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */ 95 #define ADB_ACTION_OUT 0x3 /* sending out a command */ 96 #define ADB_ACTION_IN 0x4 /* receiving data */ 97 #define ADB_ACTION_POLLING 0x5 /* polling - II only */ 98 99 /* 100 * These describe the state of the ADB bus itself, although they 101 * don't necessarily correspond directly to ADB states. 102 * Note: these are not really used in the IIsi code. 103 */ 104 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */ 105 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */ 106 #define ADB_BUS_CMD 0x3 /* starting a command - II models */ 107 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */ 108 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */ 109 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */ 110 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */ 111 112 /* 113 * Shortcuts for setting or testing the VIA bit states. 114 * Not all shortcuts are used for every type of ADB hardware. 115 */ 116 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5)) 117 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5)) 118 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5)) 119 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5)) 120 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \ 121 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5) 122 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \ 123 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 ) 124 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5) 125 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5) 126 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5) 127 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5) 128 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4) 129 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4) 130 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4) 131 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4) 132 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4) 133 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT) 134 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT) 135 #define ADB_SR() read_via_reg(VIA1, vSR) 136 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84) 137 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04) 138 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04) 139 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3)) 140 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3)) 141 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT)) 142 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \ 143 vIFR) & vSR_INT)) 144 145 /* 146 * This is the delay that is required (in uS) between certain 147 * ADB transactions. The actual timing delay for for each uS is 148 * calculated at boot time to account for differences in machine speed. 149 */ 150 #define ADB_DELAY 150 151 152 /* 153 * Maximum ADB message length; includes space for data, result, and 154 * device code - plus a little for safety. 155 */ 156 #define ADB_MAX_MSG_LENGTH 16 157 #define ADB_MAX_HDR_LENGTH 8 158 159 #define ADB_QUEUE 32 160 #define ADB_TICKLE_TICKS 4 161 162 /* 163 * A structure for storing information about each ADB device. 164 */ 165 struct ADBDevEntry { 166 void (*ServiceRtPtr) __P((void)); 167 void *DataAreaAddr; 168 int devType; 169 int origAddr; 170 int currentAddr; 171 }; 172 173 /* 174 * Used to hold ADB commands that are waiting to be sent out. 175 */ 176 struct adbCmdHoldEntry { 177 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */ 178 u_char *saveBuf; /* buffer to know where to save result */ 179 u_char *compRout; /* completion routine pointer */ 180 u_char *data; /* completion routine data pointer */ 181 }; 182 183 /* 184 * Eventually used for two separate queues, the queue between 185 * the upper and lower halves, and the outgoing packet queue. 186 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually 187 */ 188 struct adbCommand { 189 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */ 190 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */ 191 u_char *saveBuf; /* where to save result */ 192 u_char *compRout; /* completion routine pointer */ 193 u_char *compData; /* completion routine data pointer */ 194 u_int cmd; /* the original command for this data */ 195 u_int unsol; /* 1 if packet was unsolicited */ 196 u_int ack_only; /* 1 for no special processing */ 197 }; 198 199 /* 200 * A few variables that we need and their initial values. 201 */ 202 int adbHardware = ADB_HW_UNKNOWN; 203 int adbActionState = ADB_ACTION_NOTREADY; 204 int adbBusState = ADB_BUS_UNKNOWN; 205 int adbWaiting = 0; /* waiting for return data from the device */ 206 int adbWriteDelay = 0; /* working on (or waiting to do) a write */ 207 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */ 208 int adbNextEnd = 0; /* the next incoming bute is the last (II) */ 209 int adbSoftPower = 0; /* machine supports soft power */ 210 211 int adbWaitingCmd = 0; /* ADB command we are waiting for */ 212 u_char *adbBuffer = (long)0; /* pointer to user data area */ 213 void *adbCompRout = (long)0; /* pointer to the completion routine */ 214 void *adbCompData = (long)0; /* pointer to the completion routine data */ 215 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for 216 * timeouts (II) */ 217 int adbStarting = 1; /* doing ADBReInit so do polling differently */ 218 int adbSendTalk = 0; /* the intr routine is sending the talk, not 219 * the user (II) */ 220 int adbPolling = 0; /* we are polling for service request */ 221 int adbPollCmd = 0; /* the last poll command we sent */ 222 223 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */ 224 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */ 225 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */ 226 227 int adbSentChars = 0; /* how many characters we have sent */ 228 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */ 229 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */ 230 int adbLastCommand = 0; /* the last ADB command we sent (II) */ 231 232 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */ 233 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */ 234 235 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */ 236 int adbInCount = 0; /* how many packets in in queue */ 237 int adbInHead = 0; /* head of in queue */ 238 int adbInTail = 0; /* tail of in queue */ 239 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */ 240 int adbOutCount = 0; /* how many packets in out queue */ 241 int adbOutHead = 0; /* head of out queue */ 242 int adbOutTail = 0; /* tail of out queue */ 243 244 int tickle_count = 0; /* how many tickles seen for this packet? */ 245 int tickle_serial = 0; /* the last packet tickled */ 246 int adb_cuda_serial = 0; /* the current packet */ 247 248 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER; 249 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER; 250 251 volatile u_char *Via1Base; 252 extern int adb_polling; /* Are we polling? */ 253 254 void pm_setup_adb __P((void)); 255 void pm_check_adb_devices __P((int)); 256 void pm_intr __P((void)); 257 int pm_adb_op __P((u_char *, void *, void *, int)); 258 void pm_init_adb_device __P((void)); 259 260 /* 261 * The following are private routines. 262 */ 263 #ifdef ADB_DEBUG 264 void print_single __P((u_char *)); 265 #endif 266 void adb_intr __P((void)); 267 void adb_intr_II __P((void)); 268 void adb_intr_IIsi __P((void)); 269 void adb_intr_cuda __P((void)); 270 void adb_soft_intr __P((void)); 271 int send_adb_II __P((u_char *, u_char *, void *, void *, int)); 272 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int)); 273 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int)); 274 void adb_intr_cuda_test __P((void)); 275 void adb_cuda_tickle __P((void)); 276 void adb_pass_up __P((struct adbCommand *)); 277 void adb_op_comprout __P((caddr_t, caddr_t, int)); 278 void adb_reinit __P((void)); 279 int count_adbs __P((void)); 280 int get_ind_adb_info __P((ADBDataBlock *, int)); 281 int get_adb_info __P((ADBDataBlock *, int)); 282 int set_adb_info __P((ADBSetInfoBlock *, int)); 283 void adb_setup_hw_type __P((void)); 284 int adb_op __P((Ptr, Ptr, Ptr, short)); 285 int adb_op_sync __P((Ptr, Ptr, Ptr, short)); 286 void adb_read_II __P((u_char *)); 287 void adb_hw_setup __P((void)); 288 void adb_hw_setup_IIsi __P((u_char *)); 289 int adb_cmd_result __P((u_char *)); 290 int adb_cmd_extra __P((u_char *)); 291 int adb_guess_next_device __P((void)); 292 int adb_prog_switch_enable __P((void)); 293 int adb_prog_switch_disable __P((void)); 294 /* we should create this and it will be the public version */ 295 int send_adb __P((u_char *, void *, void *)); 296 297 int setsoftadb __P((void)); 298 299 #ifdef ADB_DEBUG 300 /* 301 * print_single 302 * Diagnostic display routine. Displays the hex values of the 303 * specified elements of the u_char. The length of the "string" 304 * is in [0]. 305 */ 306 void 307 print_single(str) 308 u_char *str; 309 { 310 int x; 311 312 if (str == 0) { 313 printf_intr("no data - null pointer\n"); 314 return; 315 } 316 if (*str == 0) { 317 printf_intr("nothing returned\n"); 318 return; 319 } 320 if (*str > 20) { 321 printf_intr("ADB: ACK > 20 no way!\n"); 322 *str = 20; 323 } 324 printf_intr("(length=0x%x):", *str); 325 for (x = 1; x <= *str; x++) 326 printf_intr(" 0x%02x", str[x]); 327 printf_intr("\n"); 328 } 329 #endif 330 331 void 332 adb_cuda_tickle(void) 333 { 334 volatile int s; 335 336 if (adbActionState == ADB_ACTION_IN) { 337 if (tickle_serial == adb_cuda_serial) { 338 if (++tickle_count > 0) { 339 s = splhigh(); 340 adbActionState = ADB_ACTION_IDLE; 341 adbInputBuffer[0] = 0; 342 ADB_SET_STATE_IDLE_CUDA(); 343 splx(s); 344 } 345 } else { 346 tickle_serial = adb_cuda_serial; 347 tickle_count = 0; 348 } 349 } else { 350 tickle_serial = adb_cuda_serial; 351 tickle_count = 0; 352 } 353 354 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 355 (void *)adb_cuda_tickle, NULL); 356 } 357 358 /* 359 * called when when an adb interrupt happens 360 * 361 * Cuda version of adb_intr 362 * TO DO: do we want to add some calls to intr_dispatch() here to 363 * grab serial interrupts? 364 */ 365 void 366 adb_intr_cuda(void) 367 { 368 volatile int i, ending; 369 volatile unsigned int s; 370 struct adbCommand packet; 371 372 s = splhigh(); /* can't be too careful - might be called */ 373 /* from a routine, NOT an interrupt */ 374 375 ADB_VIA_CLR_INTR(); /* clear interrupt */ 376 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 377 378 switch_start: 379 switch (adbActionState) { 380 case ADB_ACTION_IDLE: 381 /* 382 * This is an unexpected packet, so grab the first (dummy) 383 * byte, set up the proper vars, and tell the chip we are 384 * starting to receive the packet by setting the TIP bit. 385 */ 386 adbInputBuffer[1] = ADB_SR(); 387 adb_cuda_serial++; 388 if (ADB_INTR_IS_OFF) /* must have been a fake start */ 389 break; 390 391 ADB_SET_SR_INPUT(); 392 ADB_SET_STATE_TIP(); 393 394 adbInputBuffer[0] = 1; 395 adbActionState = ADB_ACTION_IN; 396 #ifdef ADB_DEBUG 397 if (adb_debug) 398 printf_intr("idle 0x%02x ", adbInputBuffer[1]); 399 #endif 400 break; 401 402 case ADB_ACTION_IN: 403 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); 404 /* intr off means this is the last byte (end of frame) */ 405 if (ADB_INTR_IS_OFF) 406 ending = 1; 407 else 408 ending = 0; 409 410 if (1 == ending) { /* end of message? */ 411 #ifdef ADB_DEBUG 412 if (adb_debug) { 413 printf_intr("in end 0x%02x ", 414 adbInputBuffer[adbInputBuffer[0]]); 415 print_single(adbInputBuffer); 416 } 417 #endif 418 419 /* 420 * Are we waiting AND does this packet match what we 421 * are waiting for AND is it coming from either the 422 * ADB or RTC/PRAM sub-device? This section _should_ 423 * recognize all ADB and RTC/PRAM type commands, but 424 * there may be more... NOTE: commands are always at 425 * [4], even for RTC/PRAM commands. 426 */ 427 /* set up data for adb_pass_up */ 428 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 429 430 if ((adbWaiting == 1) && 431 (adbInputBuffer[4] == adbWaitingCmd) && 432 ((adbInputBuffer[2] == 0x00) || 433 (adbInputBuffer[2] == 0x01))) { 434 packet.saveBuf = adbBuffer; 435 packet.compRout = adbCompRout; 436 packet.compData = adbCompData; 437 packet.unsol = 0; 438 packet.ack_only = 0; 439 adb_pass_up(&packet); 440 441 adbWaitingCmd = 0; /* reset "waiting" vars */ 442 adbWaiting = 0; 443 adbBuffer = (long)0; 444 adbCompRout = (long)0; 445 adbCompData = (long)0; 446 } else { 447 packet.unsol = 1; 448 packet.ack_only = 0; 449 adb_pass_up(&packet); 450 } 451 452 453 /* reset vars and signal the end of this frame */ 454 adbActionState = ADB_ACTION_IDLE; 455 adbInputBuffer[0] = 0; 456 ADB_SET_STATE_IDLE_CUDA(); 457 /*ADB_SET_SR_INPUT();*/ 458 459 /* 460 * If there is something waiting to be sent out, 461 * the set everything up and send the first byte. 462 */ 463 if (adbWriteDelay == 1) { 464 delay(ADB_DELAY); /* required */ 465 adbSentChars = 0; 466 adbActionState = ADB_ACTION_OUT; 467 /* 468 * If the interrupt is on, we were too slow 469 * and the chip has already started to send 470 * something to us, so back out of the write 471 * and start a read cycle. 472 */ 473 if (ADB_INTR_IS_ON) { 474 ADB_SET_SR_INPUT(); 475 ADB_SET_STATE_IDLE_CUDA(); 476 adbSentChars = 0; 477 adbActionState = ADB_ACTION_IDLE; 478 adbInputBuffer[0] = 0; 479 break; 480 } 481 /* 482 * If we got here, it's ok to start sending 483 * so load the first byte and tell the chip 484 * we want to send. 485 */ 486 ADB_SET_STATE_TIP(); 487 ADB_SET_SR_OUTPUT(); 488 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); 489 } 490 } else { 491 ADB_TOGGLE_STATE_ACK_CUDA(); 492 #ifdef ADB_DEBUG 493 if (adb_debug) 494 printf_intr("in 0x%02x ", 495 adbInputBuffer[adbInputBuffer[0]]); 496 #endif 497 } 498 break; 499 500 case ADB_ACTION_OUT: 501 i = ADB_SR(); /* reset SR-intr in IFR */ 502 #ifdef ADB_DEBUG 503 if (adb_debug) 504 printf_intr("intr out 0x%02x ", i); 505 #endif 506 507 adbSentChars++; 508 if (ADB_INTR_IS_ON) { /* ADB intr low during write */ 509 #ifdef ADB_DEBUG 510 if (adb_debug) 511 printf_intr("intr was on "); 512 #endif 513 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 514 ADB_SET_STATE_IDLE_CUDA(); 515 adbSentChars = 0; /* must start all over */ 516 adbActionState = ADB_ACTION_IDLE; /* new state */ 517 adbInputBuffer[0] = 0; 518 adbWriteDelay = 1; /* must retry when done with 519 * read */ 520 delay(ADB_DELAY); 521 goto switch_start; /* process next state right 522 * now */ 523 break; 524 } 525 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 526 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data 527 * back? */ 528 adbWaiting = 1; /* signal waiting for return */ 529 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ 530 } else { /* no talk, so done */ 531 /* set up stuff for adb_pass_up */ 532 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 533 packet.saveBuf = adbBuffer; 534 packet.compRout = adbCompRout; 535 packet.compData = adbCompData; 536 packet.cmd = adbWaitingCmd; 537 packet.unsol = 0; 538 packet.ack_only = 1; 539 adb_pass_up(&packet); 540 541 /* reset "waiting" vars, just in case */ 542 adbWaitingCmd = 0; 543 adbBuffer = (long)0; 544 adbCompRout = (long)0; 545 adbCompData = (long)0; 546 } 547 548 adbWriteDelay = 0; /* done writing */ 549 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ 550 ADB_SET_SR_INPUT(); 551 ADB_SET_STATE_IDLE_CUDA(); 552 #ifdef ADB_DEBUG 553 if (adb_debug) 554 printf_intr("write done "); 555 #endif 556 } else { 557 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */ 558 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to 559 * shift */ 560 #ifdef ADB_DEBUG 561 if (adb_debug) 562 printf_intr("toggle "); 563 #endif 564 } 565 break; 566 567 case ADB_ACTION_NOTREADY: 568 #ifdef ADB_DEBUG 569 if (adb_debug) 570 printf_intr("adb: not yet initialized\n"); 571 #endif 572 break; 573 574 default: 575 #ifdef ADB_DEBUG 576 if (adb_debug) 577 printf_intr("intr: unknown ADB state\n"); 578 #endif 579 break; 580 } 581 582 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 583 584 splx(s); /* restore */ 585 586 return; 587 } /* end adb_intr_cuda */ 588 589 590 int 591 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int 592 command) 593 { 594 int s, len; 595 596 #ifdef ADB_DEBUG 597 if (adb_debug) 598 printf_intr("SEND\n"); 599 #endif 600 601 if (adbActionState == ADB_ACTION_NOTREADY) 602 return 1; 603 604 /* Don't interrupt while we are messing with the ADB */ 605 s = splhigh(); 606 607 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ 608 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */ 609 } else 610 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ 611 adbWriteDelay = 1; /* if no, then we'll "queue" 612 * it up */ 613 else { 614 splx(s); 615 return 1; /* really busy! */ 616 } 617 618 #ifdef ADB_DEBUG 619 if (adb_debug) 620 printf_intr("QUEUE\n"); 621 #endif 622 if ((long)in == (long)0) { /* need to convert? */ 623 /* 624 * Don't need to use adb_cmd_extra here because this section 625 * will be called ONLY when it is an ADB command (no RTC or 626 * PRAM) 627 */ 628 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 629 * doing a listen! */ 630 len = buffer[0]; /* length of additional data */ 631 else 632 len = 0;/* no additional data */ 633 634 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. 635 * data */ 636 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ 637 adbOutputBuffer[2] = (u_char)command; /* load command */ 638 639 /* copy additional output data, if any */ 640 memcpy(adbOutputBuffer + 3, buffer + 1, len); 641 } else 642 /* if data ready, just copy over */ 643 memcpy(adbOutputBuffer, in, in[0] + 2); 644 645 adbSentChars = 0; /* nothing sent yet */ 646 adbBuffer = buffer; /* save buffer to know where to save result */ 647 adbCompRout = compRout; /* save completion routine pointer */ 648 adbCompData = data; /* save completion routine data pointer */ 649 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ 650 651 if (adbWriteDelay != 1) { /* start command now? */ 652 #ifdef ADB_DEBUG 653 if (adb_debug) 654 printf_intr("out start NOW"); 655 #endif 656 delay(ADB_DELAY); 657 adbActionState = ADB_ACTION_OUT; /* set next state */ 658 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 659 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */ 660 ADB_SET_STATE_ACKOFF_CUDA(); 661 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */ 662 } 663 adbWriteDelay = 1; /* something in the write "queue" */ 664 665 splx(s); 666 667 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */ 668 /* poll until byte done */ 669 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 670 || (adbWaiting == 1)) 671 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 672 adb_intr_cuda(); /* process it */ 673 adb_soft_intr(); 674 } 675 676 return 0; 677 } /* send_adb_cuda */ 678 679 680 void 681 adb_intr_II(void) 682 { 683 panic("adb_intr_II"); 684 } 685 686 687 /* 688 * send_adb version for II series machines 689 */ 690 int 691 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command) 692 { 693 panic("send_adb_II"); 694 } 695 696 697 /* 698 * This routine is called from the II series interrupt routine 699 * to determine what the "next" device is that should be polled. 700 */ 701 int 702 adb_guess_next_device(void) 703 { 704 int last, i, dummy; 705 706 if (adbStarting) { 707 /* 708 * Start polling EVERY device, since we can't be sure there is 709 * anything in the device table yet 710 */ 711 if (adbLastDevice < 1 || adbLastDevice > 15) 712 adbLastDevice = 1; 713 if (++adbLastDevice > 15) /* point to next one */ 714 adbLastDevice = 1; 715 } else { 716 /* find the next device using the device table */ 717 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */ 718 adbLastDevice = 2; 719 last = 1; /* default index location */ 720 721 for (i = 1; i < 16; i++) /* find index entry */ 722 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */ 723 last = i; /* found it */ 724 break; 725 } 726 dummy = last; /* index to start at */ 727 for (;;) { /* find next device in index */ 728 if (++dummy > 15) /* wrap around if needed */ 729 dummy = 1; 730 if (dummy == last) { /* didn't find any other 731 * device! This can happen if 732 * there are no devices on the 733 * bus */ 734 dummy = 1; 735 break; 736 } 737 /* found the next device */ 738 if (ADBDevTable[dummy].devType != 0) 739 break; 740 } 741 adbLastDevice = ADBDevTable[dummy].currentAddr; 742 } 743 return adbLastDevice; 744 } 745 746 747 /* 748 * Called when when an adb interrupt happens. 749 * This routine simply transfers control over to the appropriate 750 * code for the machine we are running on. 751 */ 752 void 753 adb_intr(void) 754 { 755 switch (adbHardware) { 756 case ADB_HW_II: 757 adb_intr_II(); 758 break; 759 760 case ADB_HW_IISI: 761 adb_intr_IIsi(); 762 break; 763 764 case ADB_HW_PB: 765 pm_intr(); 766 break; 767 768 case ADB_HW_CUDA: 769 adb_intr_cuda(); 770 break; 771 772 case ADB_HW_UNKNOWN: 773 break; 774 } 775 } 776 777 778 /* 779 * called when when an adb interrupt happens 780 * 781 * IIsi version of adb_intr 782 * 783 */ 784 void 785 adb_intr_IIsi(void) 786 { 787 panic("adb_intr_IIsi"); 788 } 789 790 791 /***************************************************************************** 792 * if the device is currently busy, and there is no data waiting to go out, then 793 * the data is "queued" in the outgoing buffer. If we are already waiting, then 794 * we return. 795 * in: if (in == 0) then the command string is built from command and buffer 796 * if (in != 0) then in is used as the command string 797 * buffer: additional data to be sent (used only if in == 0) 798 * this is also where return data is stored 799 * compRout: the completion routine that is called when then return value 800 * is received (if a return value is expected) 801 * data: a data pointer that can be used by the completion routine 802 * command: an ADB command to be sent (used only if in == 0) 803 * 804 */ 805 int 806 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int 807 command) 808 { 809 panic("send_adb_IIsi"); 810 } 811 812 813 /* 814 * adb_pass_up is called by the interrupt-time routines. 815 * It takes the raw packet data that was received from the 816 * device and puts it into the queue that the upper half 817 * processes. It then signals for a soft ADB interrupt which 818 * will eventually call the upper half routine (adb_soft_intr). 819 * 820 * If in->unsol is 0, then this is either the notification 821 * that the packet was sent (on a LISTEN, for example), or the 822 * response from the device (on a TALK). The completion routine 823 * is called only if the user specified one. 824 * 825 * If in->unsol is 1, then this packet was unsolicited and 826 * so we look up the device in the ADB device table to determine 827 * what it's default service routine is. 828 * 829 * If in->ack_only is 1, then we really only need to call 830 * the completion routine, so don't do any other stuff. 831 * 832 * Note that in->data contains the packet header AND data, 833 * while adbInbound[]->data contains ONLY data. 834 * 835 * Note: Called only at interrupt time. Assumes this. 836 */ 837 void 838 adb_pass_up(struct adbCommand *in) 839 { 840 int start = 0, len = 0, cmd = 0; 841 ADBDataBlock block; 842 843 /* temp for testing */ 844 /*u_char *buffer = 0;*/ 845 /*u_char *compdata = 0;*/ 846 /*u_char *comprout = 0;*/ 847 848 if (adbInCount >= ADB_QUEUE) { 849 #ifdef ADB_DEBUG 850 if (adb_debug) 851 printf_intr("adb: ring buffer overflow\n"); 852 #endif 853 return; 854 } 855 856 if (in->ack_only) { 857 len = in->data[0]; 858 cmd = in->cmd; 859 start = 0; 860 } else { 861 switch (adbHardware) { 862 case ADB_HW_II: 863 cmd = in->data[1]; 864 if (in->data[0] < 2) 865 len = 0; 866 else 867 len = in->data[0]-1; 868 start = 1; 869 break; 870 871 case ADB_HW_IISI: 872 case ADB_HW_CUDA: 873 /* If it's unsolicited, accept only ADB data for now */ 874 if (in->unsol) 875 if (0 != in->data[2]) 876 return; 877 cmd = in->data[4]; 878 if (in->data[0] < 5) 879 len = 0; 880 else 881 len = in->data[0]-4; 882 start = 4; 883 break; 884 885 case ADB_HW_PB: 886 cmd = in->data[1]; 887 if (in->data[0] < 2) 888 len = 0; 889 else 890 len = in->data[0]-1; 891 start = 1; 892 break; 893 894 case ADB_HW_UNKNOWN: 895 return; 896 } 897 898 /* Make sure there is a valid device entry for this device */ 899 if (in->unsol) { 900 /* ignore unsolicited data during adbreinit */ 901 if (adbStarting) 902 return; 903 /* get device's comp. routine and data area */ 904 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd))) 905 return; 906 } 907 } 908 909 /* 910 * If this is an unsolicited packet, we need to fill in 911 * some info so adb_soft_intr can process this packet 912 * properly. If it's not unsolicited, then use what 913 * the caller sent us. 914 */ 915 if (in->unsol) { 916 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr; 917 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr; 918 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data; 919 } else { 920 adbInbound[adbInTail].compRout = (void *)in->compRout; 921 adbInbound[adbInTail].compData = (void *)in->compData; 922 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf; 923 } 924 925 #ifdef ADB_DEBUG 926 if (adb_debug && in->data[1] == 2) 927 printf_intr("adb: caught error\n"); 928 #endif 929 930 /* copy the packet data over */ 931 /* 932 * TO DO: If the *_intr routines fed their incoming data 933 * directly into an adbCommand struct, which is passed to 934 * this routine, then we could eliminate this copy. 935 */ 936 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len); 937 adbInbound[adbInTail].data[0] = len; 938 adbInbound[adbInTail].cmd = cmd; 939 940 adbInCount++; 941 if (++adbInTail >= ADB_QUEUE) 942 adbInTail = 0; 943 944 /* 945 * If the debugger is running, call upper half manually. 946 * Otherwise, trigger a soft interrupt to handle the rest later. 947 */ 948 if (adb_polling) 949 adb_soft_intr(); 950 else 951 setsoftadb(); 952 953 return; 954 } 955 956 957 /* 958 * Called to process the packets after they have been 959 * placed in the incoming queue. 960 * 961 */ 962 void 963 adb_soft_intr(void) 964 { 965 int s; 966 int cmd = 0; 967 u_char *buffer = 0; 968 u_char *comprout = 0; 969 u_char *compdata = 0; 970 971 #if 0 972 s = splhigh(); 973 printf_intr("sr: %x\n", (s & 0x0700)); 974 splx(s); 975 #endif 976 977 /*delay(2*ADB_DELAY);*/ 978 979 while (adbInCount) { 980 #ifdef ADB_DEBUG 981 if (adb_debug & 0x80) 982 printf_intr("%x %x %x ", 983 adbInCount, adbInHead, adbInTail); 984 #endif 985 /* get the data we need from the queue */ 986 buffer = adbInbound[adbInHead].saveBuf; 987 comprout = adbInbound[adbInHead].compRout; 988 compdata = adbInbound[adbInHead].compData; 989 cmd = adbInbound[adbInHead].cmd; 990 991 /* copy over data to data area if it's valid */ 992 /* 993 * Note that for unsol packets we don't want to copy the 994 * data anywhere, so buffer was already set to 0. 995 * For ack_only buffer was set to 0, so don't copy. 996 */ 997 if (buffer) 998 memcpy(buffer, adbInbound[adbInHead].data, 999 adbInbound[adbInHead].data[0] + 1); 1000 1001 #ifdef ADB_DEBUG 1002 if (adb_debug & 0x80) { 1003 printf_intr("%p %p %p %x ", 1004 buffer, comprout, compdata, (short)cmd); 1005 printf_intr("buf: "); 1006 print_single(adbInbound[adbInHead].data); 1007 } 1008 #endif 1009 1010 /* call default completion routine if it's valid */ 1011 if (comprout) { 1012 void (*f)(caddr_t, caddr_t, int) = 1013 (void (*)(caddr_t, caddr_t, int))comprout; 1014 1015 (*f)(buffer, compdata, cmd); 1016 } 1017 1018 s = splhigh(); 1019 adbInCount--; 1020 if (++adbInHead >= ADB_QUEUE) 1021 adbInHead = 0; 1022 splx(s); 1023 1024 } 1025 return; 1026 } 1027 1028 1029 /* 1030 * This is my version of the ADBOp routine. It mainly just calls the 1031 * hardware-specific routine. 1032 * 1033 * data : pointer to data area to be used by compRout 1034 * compRout : completion routine 1035 * buffer : for LISTEN: points to data to send - MAX 8 data bytes, 1036 * byte 0 = # of bytes 1037 * : for TALK: points to place to save return data 1038 * command : the adb command to send 1039 * result : 0 = success 1040 * : -1 = could not complete 1041 */ 1042 int 1043 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command) 1044 { 1045 int result; 1046 1047 switch (adbHardware) { 1048 case ADB_HW_II: 1049 result = send_adb_II((u_char *)0, (u_char *)buffer, 1050 (void *)compRout, (void *)data, (int)command); 1051 if (result == 0) 1052 return 0; 1053 else 1054 return -1; 1055 break; 1056 1057 case ADB_HW_IISI: 1058 result = send_adb_IIsi((u_char *)0, (u_char *)buffer, 1059 (void *)compRout, (void *)data, (int)command); 1060 /* 1061 * I wish I knew why this delay is needed. It usually needs to 1062 * be here when several commands are sent in close succession, 1063 * especially early in device probes when doing collision 1064 * detection. It must be some race condition. Sigh. - jpw 1065 */ 1066 delay(100); 1067 if (result == 0) 1068 return 0; 1069 else 1070 return -1; 1071 break; 1072 1073 case ADB_HW_PB: 1074 result = pm_adb_op((u_char *)buffer, (void *)compRout, 1075 (void *)data, (int)command); 1076 1077 if (result == 0) 1078 return 0; 1079 else 1080 return -1; 1081 break; 1082 1083 case ADB_HW_CUDA: 1084 result = send_adb_cuda((u_char *)0, (u_char *)buffer, 1085 (void *)compRout, (void *)data, (int)command); 1086 if (result == 0) 1087 return 0; 1088 else 1089 return -1; 1090 break; 1091 1092 case ADB_HW_UNKNOWN: 1093 default: 1094 return -1; 1095 } 1096 } 1097 1098 1099 /* 1100 * adb_hw_setup 1101 * This routine sets up the possible machine specific hardware 1102 * config (mainly VIA settings) for the various models. 1103 */ 1104 void 1105 adb_hw_setup(void) 1106 { 1107 volatile int i; 1108 u_char send_string[ADB_MAX_MSG_LENGTH]; 1109 1110 switch (adbHardware) { 1111 case ADB_HW_II: 1112 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5: 1113 * outputs */ 1114 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */ 1115 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set 1116 * to IN (II, IIsi) */ 1117 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1118 * hardware (II, IIsi) */ 1119 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1120 * code only */ 1121 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts 1122 * are on (II, IIsi) */ 1123 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */ 1124 1125 ADB_VIA_CLR_INTR(); /* clear interrupt */ 1126 break; 1127 1128 case ADB_HW_IISI: 1129 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5: 1130 * outputs */ 1131 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */ 1132 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set 1133 * to IN (II, IIsi) */ 1134 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1135 * hardware (II, IIsi) */ 1136 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1137 * code only */ 1138 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts 1139 * are on (II, IIsi) */ 1140 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */ 1141 1142 /* get those pesky clock ticks we missed while booting */ 1143 for (i = 0; i < 30; i++) { 1144 delay(ADB_DELAY); 1145 adb_hw_setup_IIsi(send_string); 1146 #ifdef ADB_DEBUG 1147 if (adb_debug) { 1148 printf_intr("adb: cleanup: "); 1149 print_single(send_string); 1150 } 1151 #endif 1152 delay(ADB_DELAY); 1153 if (ADB_INTR_IS_OFF) 1154 break; 1155 } 1156 break; 1157 1158 case ADB_HW_PB: 1159 /* 1160 * XXX - really PM_VIA_CLR_INTR - should we put it in 1161 * pm_direct.h? 1162 */ 1163 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */ 1164 break; 1165 1166 case ADB_HW_CUDA: 1167 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5: 1168 * outputs */ 1169 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */ 1170 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set 1171 * to IN */ 1172 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10); 1173 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1174 * hardware */ 1175 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1176 * code only */ 1177 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts 1178 * are on */ 1179 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */ 1180 1181 /* sort of a device reset */ 1182 i = ADB_SR(); /* clear interrupt */ 1183 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */ 1184 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */ 1185 delay(ADB_DELAY); 1186 ADB_SET_STATE_TIP(); /* signal start of frame */ 1187 delay(ADB_DELAY); 1188 ADB_TOGGLE_STATE_ACK_CUDA(); 1189 delay(ADB_DELAY); 1190 ADB_CLR_STATE_TIP(); 1191 delay(ADB_DELAY); 1192 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */ 1193 i = ADB_SR(); /* clear interrupt */ 1194 ADB_VIA_INTR_ENABLE(); /* ints ok now */ 1195 break; 1196 1197 case ADB_HW_UNKNOWN: 1198 default: 1199 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO 1200 * DO: turn PB ints off? */ 1201 return; 1202 break; 1203 } 1204 } 1205 1206 1207 /* 1208 * adb_hw_setup_IIsi 1209 * This is sort of a "read" routine that forces the adb hardware through a read cycle 1210 * if there is something waiting. This helps "clean up" any commands that may have gotten 1211 * stuck or stopped during the boot process. 1212 * 1213 */ 1214 void 1215 adb_hw_setup_IIsi(u_char * buffer) 1216 { 1217 panic("adb_hw_setup_IIsi"); 1218 } 1219 1220 1221 /* 1222 * adb_reinit sets up the adb stuff 1223 * 1224 */ 1225 void 1226 adb_reinit(void) 1227 { 1228 u_char send_string[ADB_MAX_MSG_LENGTH]; 1229 ADBDataBlock data; /* temp. holder for getting device info */ 1230 volatile int i, x; 1231 int s; 1232 int command; 1233 int result; 1234 int saveptr; /* point to next free relocation address */ 1235 int device; 1236 int nonewtimes; /* times thru loop w/o any new devices */ 1237 1238 /* Make sure we are not interrupted while building the table. */ 1239 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */ 1240 s = splhigh(); 1241 1242 ADBNumDevices = 0; /* no devices yet */ 1243 1244 /* Let intr routines know we are running reinit */ 1245 adbStarting = 1; 1246 1247 /* 1248 * Initialize the ADB table. For now, we'll always use the same table 1249 * that is defined at the beginning of this file - no mallocs. 1250 */ 1251 for (i = 0; i < 16; i++) 1252 ADBDevTable[i].devType = 0; 1253 1254 adb_setup_hw_type(); /* setup hardware type */ 1255 1256 adb_hw_setup(); /* init the VIA bits and hard reset ADB */ 1257 1258 delay(1000); 1259 1260 /* send an ADB reset first */ 1261 result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00); 1262 delay(200000); 1263 1264 #ifdef ADB_DEBUG 1265 if (result && adb_debug) { 1266 printf_intr("adb_reinit: failed to reset, result = %d\n",result); 1267 } 1268 #endif 1269 1270 /* 1271 * Probe for ADB devices. Probe devices 1-15 quickly to determine 1272 * which device addresses are in use and which are free. For each 1273 * address that is in use, move the device at that address to a higher 1274 * free address. Continue doing this at that address until no device 1275 * responds at that address. Then move the last device that was moved 1276 * back to the original address. Do this for the remaining addresses 1277 * that we determined were in use. 1278 * 1279 * When finished, do this entire process over again with the updated 1280 * list of in use addresses. Do this until no new devices have been 1281 * found in 20 passes though the in use address list. (This probably 1282 * seems long and complicated, but it's the best way to detect multiple 1283 * devices at the same address - sometimes it takes a couple of tries 1284 * before the collision is detected.) 1285 */ 1286 1287 /* initial scan through the devices */ 1288 for (i = 1; i < 16; i++) { 1289 send_string[0] = 0; 1290 command = ADBTALK(i, 3); 1291 result = adb_op_sync((Ptr)send_string, (Ptr)0, 1292 (Ptr)0, (short)command); 1293 1294 #ifdef ADB_DEBUG 1295 if (result && adb_debug) { 1296 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n", 1297 i,result,send_string[0]); 1298 } 1299 #endif 1300 1301 if (send_string[0] != 0) { 1302 /* check for valid device handler */ 1303 switch (send_string[2]) { 1304 case 0: 1305 case 0xfd: 1306 case 0xfe: 1307 case 0xff: 1308 continue; /* invalid, skip */ 1309 } 1310 1311 /* found a device */ 1312 ++ADBNumDevices; 1313 KASSERT(ADBNumDevices < 16); 1314 ADBDevTable[ADBNumDevices].devType = 1315 (int)send_string[2]; 1316 ADBDevTable[ADBNumDevices].origAddr = i; 1317 ADBDevTable[ADBNumDevices].currentAddr = i; 1318 ADBDevTable[ADBNumDevices].DataAreaAddr = 1319 (long)0; 1320 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0; 1321 pm_check_adb_devices(i); /* tell pm driver device 1322 * is here */ 1323 } 1324 } 1325 1326 /* find highest unused address */ 1327 for (saveptr = 15; saveptr > 0; saveptr--) 1328 if (-1 == get_adb_info(&data, saveptr)) 1329 break; 1330 1331 #ifdef ADB_DEBUG 1332 if (adb_debug & 0x80) { 1333 printf_intr("first free is: 0x%02x\n", saveptr); 1334 printf_intr("devices: %i\n", ADBNumDevices); 1335 } 1336 #endif 1337 1338 nonewtimes = 0; /* no loops w/o new devices */ 1339 while (saveptr > 0 && nonewtimes++ < 11) { 1340 for (i = 1; i <= ADBNumDevices; i++) { 1341 device = ADBDevTable[i].currentAddr; 1342 #ifdef ADB_DEBUG 1343 if (adb_debug & 0x80) 1344 printf_intr("moving device 0x%02x to 0x%02x " 1345 "(index 0x%02x) ", device, saveptr, i); 1346 #endif 1347 1348 /* send TALK R3 to address */ 1349 command = ADBTALK(device, 3); 1350 adb_op_sync((Ptr)send_string, (Ptr)0, 1351 (Ptr)0, (short)command); 1352 1353 /* move device to higher address */ 1354 command = ADBLISTEN(device, 3); 1355 send_string[0] = 2; 1356 send_string[1] = (u_char)(saveptr | 0x60); 1357 send_string[2] = 0xfe; 1358 adb_op_sync((Ptr)send_string, (Ptr)0, 1359 (Ptr)0, (short)command); 1360 delay(500); 1361 1362 /* send TALK R3 - anything at new address? */ 1363 command = ADBTALK(saveptr, 3); 1364 adb_op_sync((Ptr)send_string, (Ptr)0, 1365 (Ptr)0, (short)command); 1366 delay(500); 1367 1368 if (send_string[0] == 0) { 1369 #ifdef ADB_DEBUG 1370 if (adb_debug & 0x80) 1371 printf_intr("failed, continuing\n"); 1372 #endif 1373 continue; 1374 } 1375 1376 /* send TALK R3 - anything at old address? */ 1377 command = ADBTALK(device, 3); 1378 result = adb_op_sync((Ptr)send_string, (Ptr)0, 1379 (Ptr)0, (short)command); 1380 if (send_string[0] != 0) { 1381 /* check for valid device handler */ 1382 switch (send_string[2]) { 1383 case 0: 1384 case 0xfd: 1385 case 0xfe: 1386 case 0xff: 1387 continue; /* invalid, skip */ 1388 } 1389 1390 /* new device found */ 1391 /* update data for previously moved device */ 1392 ADBDevTable[i].currentAddr = saveptr; 1393 #ifdef ADB_DEBUG 1394 if (adb_debug & 0x80) 1395 printf_intr("old device at index %i\n",i); 1396 #endif 1397 /* add new device in table */ 1398 #ifdef ADB_DEBUG 1399 if (adb_debug & 0x80) 1400 printf_intr("new device found\n"); 1401 #endif 1402 if (saveptr > ADBNumDevices) { 1403 ++ADBNumDevices; 1404 KASSERT(ADBNumDevices < 16); 1405 } 1406 ADBDevTable[ADBNumDevices].devType = 1407 (int)send_string[2]; 1408 ADBDevTable[ADBNumDevices].origAddr = device; 1409 ADBDevTable[ADBNumDevices].currentAddr = device; 1410 /* These will be set correctly in adbsys.c */ 1411 /* Until then, unsol. data will be ignored. */ 1412 ADBDevTable[ADBNumDevices].DataAreaAddr = 1413 (long)0; 1414 ADBDevTable[ADBNumDevices].ServiceRtPtr = 1415 (void *)0; 1416 /* find next unused address */ 1417 for (x = saveptr; x > 0; x--) { 1418 if (-1 == get_adb_info(&data, x)) { 1419 saveptr = x; 1420 break; 1421 } 1422 } 1423 if (x == 0) 1424 saveptr = 0; 1425 #ifdef ADB_DEBUG 1426 if (adb_debug & 0x80) 1427 printf_intr("new free is 0x%02x\n", 1428 saveptr); 1429 #endif 1430 nonewtimes = 0; 1431 /* tell pm driver device is here */ 1432 pm_check_adb_devices(device); 1433 } else { 1434 #ifdef ADB_DEBUG 1435 if (adb_debug & 0x80) 1436 printf_intr("moving back...\n"); 1437 #endif 1438 /* move old device back */ 1439 command = ADBLISTEN(saveptr, 3); 1440 send_string[0] = 2; 1441 send_string[1] = (u_char)(device | 0x60); 1442 send_string[2] = 0xfe; 1443 adb_op_sync((Ptr)send_string, (Ptr)0, 1444 (Ptr)0, (short)command); 1445 delay(1000); 1446 } 1447 } 1448 } 1449 1450 #ifdef ADB_DEBUG 1451 if (adb_debug) { 1452 for (i = 1; i <= ADBNumDevices; i++) { 1453 x = get_ind_adb_info(&data, i); 1454 if (x != -1) 1455 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n", 1456 i, x, data.devType); 1457 } 1458 } 1459 #endif 1460 1461 #ifndef MRG_ADB 1462 /* enable the programmer's switch, if we have one */ 1463 adb_prog_switch_enable(); 1464 #endif 1465 1466 #ifdef ADB_DEBUG 1467 if (adb_debug) { 1468 if (0 == ADBNumDevices) /* tell user if no devices found */ 1469 printf_intr("adb: no devices found\n"); 1470 } 1471 #endif 1472 1473 adbStarting = 0; /* not starting anymore */ 1474 #ifdef ADB_DEBUG 1475 if (adb_debug) 1476 printf_intr("adb: ADBReInit complete\n"); 1477 #endif 1478 1479 if (adbHardware == ADB_HW_CUDA) 1480 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 1481 (void *)adb_cuda_tickle, NULL); 1482 1483 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */ 1484 splx(s); 1485 } 1486 1487 /* 1488 * adb_cmd_result 1489 * 1490 * This routine lets the caller know whether the specified adb command string 1491 * should expect a returned result, such as a TALK command. 1492 * 1493 * returns: 0 if a result should be expected 1494 * 1 if a result should NOT be expected 1495 */ 1496 int 1497 adb_cmd_result(u_char *in) 1498 { 1499 switch (adbHardware) { 1500 case ADB_HW_II: 1501 /* was it an ADB talk command? */ 1502 if ((in[1] & 0x0c) == 0x0c) 1503 return 0; 1504 return 1; 1505 1506 case ADB_HW_IISI: 1507 case ADB_HW_CUDA: 1508 /* was it an ADB talk command? */ 1509 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c)) 1510 return 0; 1511 /* was it an RTC/PRAM read date/time? */ 1512 if ((in[1] == 0x01) && (in[2] == 0x03)) 1513 return 0; 1514 return 1; 1515 1516 case ADB_HW_PB: 1517 return 1; 1518 1519 case ADB_HW_UNKNOWN: 1520 default: 1521 return 1; 1522 } 1523 } 1524 1525 1526 /* 1527 * adb_cmd_extra 1528 * 1529 * This routine lets the caller know whether the specified adb command string 1530 * may have extra data appended to the end of it, such as a LISTEN command. 1531 * 1532 * returns: 0 if extra data is allowed 1533 * 1 if extra data is NOT allowed 1534 */ 1535 int 1536 adb_cmd_extra(u_char *in) 1537 { 1538 switch (adbHardware) { 1539 case ADB_HW_II: 1540 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */ 1541 return 0; 1542 return 1; 1543 1544 case ADB_HW_IISI: 1545 case ADB_HW_CUDA: 1546 /* 1547 * TO DO: support needs to be added to recognize RTC and PRAM 1548 * commands 1549 */ 1550 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */ 1551 return 0; 1552 /* add others later */ 1553 return 1; 1554 1555 case ADB_HW_PB: 1556 return 1; 1557 1558 case ADB_HW_UNKNOWN: 1559 default: 1560 return 1; 1561 } 1562 } 1563 1564 /* 1565 * adb_op_sync 1566 * 1567 * This routine does exactly what the adb_op routine does, except that after 1568 * the adb_op is called, it waits until the return value is present before 1569 * returning. 1570 * 1571 * NOTE: The user specified compRout is ignored, since this routine specifies 1572 * it's own to adb_op, which is why you really called this in the first place 1573 * anyway. 1574 */ 1575 int 1576 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command) 1577 { 1578 int tmout; 1579 int result; 1580 volatile int flag = 0; 1581 1582 result = adb_op(buffer, (void *)adb_op_comprout, 1583 (void *)&flag, command); /* send command */ 1584 if (result == 0) { /* send ok? */ 1585 /* 1586 * Total time to wait is calculated as follows: 1587 * - Tlt (stop to start time): 260 usec 1588 * - start bit: 100 usec 1589 * - up to 8 data bytes: 64 * 100 usec = 6400 usec 1590 * - stop bit (with SRQ): 140 usec 1591 * Total: 6900 usec 1592 * 1593 * This is the total time allowed by the specification. Any 1594 * device that doesn't conform to this will fail to operate 1595 * properly on some Apple systems. In spite of this we 1596 * double the time to wait; some Cuda-based apparently 1597 * queues some commands and allows the main CPU to continue 1598 * processing (radical concept, eh?). To be safe, allow 1599 * time for two complete ADB transactions to occur. 1600 */ 1601 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10) 1602 delay(10); 1603 if (!flag && tmout > 0) 1604 delay(tmout); 1605 1606 if (!flag) 1607 result = -2; 1608 } 1609 1610 return result; 1611 } 1612 1613 /* 1614 * adb_op_comprout 1615 * 1616 * This function is used by the adb_op_sync routine so it knows when the 1617 * function is done. 1618 */ 1619 void 1620 adb_op_comprout(buffer, compdata, cmd) 1621 caddr_t buffer, compdata; 1622 int cmd; 1623 { 1624 short *p = (short *)compdata; 1625 1626 *p = 1; 1627 } 1628 1629 void 1630 adb_setup_hw_type(void) 1631 { 1632 switch (adbHardware) { 1633 case ADB_HW_CUDA: 1634 adbSoftPower = 1; 1635 return; 1636 1637 case ADB_HW_PB: 1638 adbSoftPower = 1; 1639 pm_setup_adb(); 1640 return; 1641 1642 default: 1643 panic("unknown adb hardware"); 1644 } 1645 #if 0 1646 response = 0; /*mac68k_machine.machineid;*/ 1647 1648 /* 1649 * Determine what type of ADB hardware we are running on. 1650 */ 1651 switch (response) { 1652 case MACH_MACC610: /* Centris 610 */ 1653 case MACH_MACC650: /* Centris 650 */ 1654 case MACH_MACII: /* II */ 1655 case MACH_MACIICI: /* IIci */ 1656 case MACH_MACIICX: /* IIcx */ 1657 case MACH_MACIIX: /* IIx */ 1658 case MACH_MACQ610: /* Quadra 610 */ 1659 case MACH_MACQ650: /* Quadra 650 */ 1660 case MACH_MACQ700: /* Quadra 700 */ 1661 case MACH_MACQ800: /* Quadra 800 */ 1662 case MACH_MACSE30: /* SE/30 */ 1663 adbHardware = ADB_HW_II; 1664 #ifdef ADB_DEBUG 1665 if (adb_debug) 1666 printf_intr("adb: using II series hardware support\n"); 1667 #endif 1668 break; 1669 1670 case MACH_MACCLASSICII: /* Classic II */ 1671 case MACH_MACLCII: /* LC II, Performa 400/405/430 */ 1672 case MACH_MACLCIII: /* LC III, Performa 450 */ 1673 case MACH_MACIISI: /* IIsi */ 1674 case MACH_MACIIVI: /* IIvi */ 1675 case MACH_MACIIVX: /* IIvx */ 1676 case MACH_MACP460: /* Performa 460/465/467 */ 1677 case MACH_MACP600: /* Performa 600 */ 1678 adbHardware = ADB_HW_IISI; 1679 #ifdef ADB_DEBUG 1680 if (adb_debug) 1681 printf_intr("adb: using IIsi series hardware support\n"); 1682 #endif 1683 break; 1684 1685 case MACH_MACPB140: /* PowerBook 140 */ 1686 case MACH_MACPB145: /* PowerBook 145 */ 1687 case MACH_MACPB150: /* PowerBook 150 */ 1688 case MACH_MACPB160: /* PowerBook 160 */ 1689 case MACH_MACPB165: /* PowerBook 165 */ 1690 case MACH_MACPB165C: /* PowerBook 165c */ 1691 case MACH_MACPB170: /* PowerBook 170 */ 1692 case MACH_MACPB180: /* PowerBook 180 */ 1693 case MACH_MACPB180C: /* PowerBook 180c */ 1694 adbHardware = ADB_HW_PB; 1695 pm_setup_adb(); 1696 #ifdef ADB_DEBUG 1697 if (adb_debug) 1698 printf_intr("adb: using PowerBook 100-series hardware support\n"); 1699 #endif 1700 break; 1701 1702 case MACH_MACPB210: /* PowerBook Duo 210 */ 1703 case MACH_MACPB230: /* PowerBook Duo 230 */ 1704 case MACH_MACPB250: /* PowerBook Duo 250 */ 1705 case MACH_MACPB270: /* PowerBook Duo 270 */ 1706 case MACH_MACPB280: /* PowerBook Duo 280 */ 1707 case MACH_MACPB280C: /* PowerBook Duo 280c */ 1708 case MACH_MACPB500: /* PowerBook 500 series */ 1709 adbHardware = ADB_HW_PB; 1710 pm_setup_adb(); 1711 #ifdef ADB_DEBUG 1712 if (adb_debug) 1713 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n"); 1714 #endif 1715 break; 1716 1717 case MACH_MACC660AV: /* Centris 660AV */ 1718 case MACH_MACCCLASSIC: /* Color Classic */ 1719 case MACH_MACCCLASSICII: /* Color Classic II */ 1720 case MACH_MACLC475: /* LC 475, Performa 475/476 */ 1721 case MACH_MACLC475_33: /* Clock-chipped 47x */ 1722 case MACH_MACLC520: /* LC 520 */ 1723 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 1724 case MACH_MACP550: /* LC 550, Performa 550 */ 1725 case MACH_MACP580: /* Performa 580/588 */ 1726 case MACH_MACQ605: /* Quadra 605 */ 1727 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */ 1728 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 1729 case MACH_MACQ840AV: /* Quadra 840AV */ 1730 adbHardware = ADB_HW_CUDA; 1731 #ifdef ADB_DEBUG 1732 if (adb_debug) 1733 printf_intr("adb: using Cuda series hardware support\n"); 1734 #endif 1735 break; 1736 default: 1737 adbHardware = ADB_HW_UNKNOWN; 1738 #ifdef ADB_DEBUG 1739 if (adb_debug) { 1740 printf_intr("adb: hardware type unknown for this machine\n"); 1741 printf_intr("adb: ADB support is disabled\n"); 1742 } 1743 #endif 1744 break; 1745 } 1746 1747 /* 1748 * Determine whether this machine has ADB based soft power. 1749 */ 1750 switch (response) { 1751 case MACH_MACCCLASSIC: /* Color Classic */ 1752 case MACH_MACCCLASSICII: /* Color Classic II */ 1753 case MACH_MACIISI: /* IIsi */ 1754 case MACH_MACIIVI: /* IIvi */ 1755 case MACH_MACIIVX: /* IIvx */ 1756 case MACH_MACLC520: /* LC 520 */ 1757 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 1758 case MACH_MACP550: /* LC 550, Performa 550 */ 1759 case MACH_MACP600: /* Performa 600 */ 1760 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 1761 case MACH_MACQ840AV: /* Quadra 840AV */ 1762 adbSoftPower = 1; 1763 break; 1764 } 1765 #endif 1766 } 1767 1768 int 1769 count_adbs(void) 1770 { 1771 int i; 1772 int found; 1773 1774 found = 0; 1775 1776 for (i = 1; i < 16; i++) 1777 if (0 != ADBDevTable[i].devType) 1778 found++; 1779 1780 return found; 1781 } 1782 1783 int 1784 get_ind_adb_info(ADBDataBlock * info, int index) 1785 { 1786 if ((index < 1) || (index > 15)) /* check range 1-15 */ 1787 return (-1); 1788 1789 #ifdef ADB_DEBUG 1790 if (adb_debug & 0x80) 1791 printf_intr("index 0x%x devType is: 0x%x\n", index, 1792 ADBDevTable[index].devType); 1793 #endif 1794 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */ 1795 return (-1); 1796 1797 info->devType = ADBDevTable[index].devType; 1798 info->origADBAddr = ADBDevTable[index].origAddr; 1799 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr; 1800 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr; 1801 1802 return (ADBDevTable[index].currentAddr); 1803 } 1804 1805 int 1806 get_adb_info(ADBDataBlock * info, int adbAddr) 1807 { 1808 int i; 1809 1810 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 1811 return (-1); 1812 1813 for (i = 1; i < 15; i++) 1814 if (ADBDevTable[i].currentAddr == adbAddr) { 1815 info->devType = ADBDevTable[i].devType; 1816 info->origADBAddr = ADBDevTable[i].origAddr; 1817 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr; 1818 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr; 1819 return 0; /* found */ 1820 } 1821 1822 return (-1); /* not found */ 1823 } 1824 1825 int 1826 set_adb_info(ADBSetInfoBlock * info, int adbAddr) 1827 { 1828 int i; 1829 1830 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 1831 return (-1); 1832 1833 for (i = 1; i < 15; i++) 1834 if (ADBDevTable[i].currentAddr == adbAddr) { 1835 ADBDevTable[i].ServiceRtPtr = 1836 (void *)(info->siServiceRtPtr); 1837 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr; 1838 return 0; /* found */ 1839 } 1840 1841 return (-1); /* not found */ 1842 1843 } 1844 1845 #ifndef MRG_ADB 1846 1847 /* caller should really use machine-independant version: getPramTime */ 1848 /* this version does pseudo-adb access only */ 1849 int 1850 adb_read_date_time(unsigned long *time) 1851 { 1852 u_char output[ADB_MAX_MSG_LENGTH]; 1853 int result; 1854 volatile int flag = 0; 1855 1856 switch (adbHardware) { 1857 case ADB_HW_II: 1858 return -1; 1859 1860 case ADB_HW_IISI: 1861 output[0] = 0x02; /* 2 byte message */ 1862 output[1] = 0x01; /* to pram/rtc device */ 1863 output[2] = 0x03; /* read date/time */ 1864 result = send_adb_IIsi((u_char *)output, (u_char *)output, 1865 (void *)adb_op_comprout, (int *)&flag, (int)0); 1866 if (result != 0) /* exit if not sent */ 1867 return -1; 1868 1869 while (0 == flag) /* wait for result */ 1870 ; 1871 1872 *time = (long)(*(long *)(output + 1)); 1873 return 0; 1874 1875 case ADB_HW_PB: 1876 pm_read_date_time(time); 1877 return 0; 1878 1879 case ADB_HW_CUDA: 1880 output[0] = 0x02; /* 2 byte message */ 1881 output[1] = 0x01; /* to pram/rtc device */ 1882 output[2] = 0x03; /* read date/time */ 1883 result = send_adb_cuda((u_char *)output, (u_char *)output, 1884 (void *)adb_op_comprout, (void *)&flag, (int)0); 1885 if (result != 0) /* exit if not sent */ 1886 return -1; 1887 1888 while (0 == flag) /* wait for result */ 1889 ; 1890 1891 memcpy(time, output + 1, 4); 1892 return 0; 1893 1894 case ADB_HW_UNKNOWN: 1895 default: 1896 return -1; 1897 } 1898 } 1899 1900 /* caller should really use machine-independant version: setPramTime */ 1901 /* this version does pseudo-adb access only */ 1902 int 1903 adb_set_date_time(unsigned long time) 1904 { 1905 u_char output[ADB_MAX_MSG_LENGTH]; 1906 int result; 1907 volatile int flag = 0; 1908 1909 switch (adbHardware) { 1910 1911 case ADB_HW_CUDA: 1912 output[0] = 0x06; /* 6 byte message */ 1913 output[1] = 0x01; /* to pram/rtc device */ 1914 output[2] = 0x09; /* set date/time */ 1915 output[3] = (u_char)(time >> 24); 1916 output[4] = (u_char)(time >> 16); 1917 output[5] = (u_char)(time >> 8); 1918 output[6] = (u_char)(time); 1919 result = send_adb_cuda((u_char *)output, (u_char *)0, 1920 (void *)adb_op_comprout, (void *)&flag, (int)0); 1921 if (result != 0) /* exit if not sent */ 1922 return -1; 1923 1924 while (0 == flag) /* wait for send to finish */ 1925 ; 1926 1927 return 0; 1928 1929 case ADB_HW_PB: 1930 pm_set_date_time(time); 1931 return 0; 1932 1933 case ADB_HW_II: 1934 case ADB_HW_IISI: 1935 case ADB_HW_UNKNOWN: 1936 default: 1937 return -1; 1938 } 1939 } 1940 1941 1942 int 1943 adb_poweroff(void) 1944 { 1945 u_char output[ADB_MAX_MSG_LENGTH]; 1946 int result; 1947 1948 if (!adbSoftPower) 1949 return -1; 1950 1951 adb_polling = 1; 1952 1953 switch (adbHardware) { 1954 case ADB_HW_IISI: 1955 output[0] = 0x02; /* 2 byte message */ 1956 output[1] = 0x01; /* to pram/rtc/soft-power device */ 1957 output[2] = 0x0a; /* set date/time */ 1958 result = send_adb_IIsi((u_char *)output, (u_char *)0, 1959 (void *)0, (void *)0, (int)0); 1960 if (result != 0) /* exit if not sent */ 1961 return -1; 1962 1963 for (;;); /* wait for power off */ 1964 1965 return 0; 1966 1967 case ADB_HW_PB: 1968 pm_adb_poweroff(); 1969 1970 for (;;); /* wait for power off */ 1971 1972 return 0; 1973 1974 case ADB_HW_CUDA: 1975 output[0] = 0x02; /* 2 byte message */ 1976 output[1] = 0x01; /* to pram/rtc/soft-power device */ 1977 output[2] = 0x0a; /* set date/time */ 1978 result = send_adb_cuda((u_char *)output, (u_char *)0, 1979 (void *)0, (void *)0, (int)0); 1980 if (result != 0) /* exit if not sent */ 1981 return -1; 1982 1983 for (;;); /* wait for power off */ 1984 1985 return 0; 1986 1987 case ADB_HW_II: /* II models don't do ADB soft power */ 1988 case ADB_HW_UNKNOWN: 1989 default: 1990 return -1; 1991 } 1992 } 1993 1994 int 1995 adb_prog_switch_enable(void) 1996 { 1997 u_char output[ADB_MAX_MSG_LENGTH]; 1998 int result; 1999 volatile int flag = 0; 2000 2001 switch (adbHardware) { 2002 case ADB_HW_IISI: 2003 output[0] = 0x03; /* 3 byte message */ 2004 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2005 output[2] = 0x1c; /* prog. switch control */ 2006 output[3] = 0x01; /* enable */ 2007 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2008 (void *)adb_op_comprout, (void *)&flag, (int)0); 2009 if (result != 0) /* exit if not sent */ 2010 return -1; 2011 2012 while (0 == flag) /* wait for send to finish */ 2013 ; 2014 2015 return 0; 2016 2017 case ADB_HW_PB: 2018 return -1; 2019 2020 case ADB_HW_II: /* II models don't do prog. switch */ 2021 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */ 2022 case ADB_HW_UNKNOWN: 2023 default: 2024 return -1; 2025 } 2026 } 2027 2028 int 2029 adb_prog_switch_disable(void) 2030 { 2031 u_char output[ADB_MAX_MSG_LENGTH]; 2032 int result; 2033 volatile int flag = 0; 2034 2035 switch (adbHardware) { 2036 case ADB_HW_IISI: 2037 output[0] = 0x03; /* 3 byte message */ 2038 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2039 output[2] = 0x1c; /* prog. switch control */ 2040 output[3] = 0x01; /* disable */ 2041 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2042 (void *)adb_op_comprout, (void *)&flag, (int)0); 2043 if (result != 0) /* exit if not sent */ 2044 return -1; 2045 2046 while (0 == flag) /* wait for send to finish */ 2047 ; 2048 2049 return 0; 2050 2051 case ADB_HW_PB: 2052 return -1; 2053 2054 case ADB_HW_II: /* II models don't do prog. switch */ 2055 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */ 2056 case ADB_HW_UNKNOWN: 2057 default: 2058 return -1; 2059 } 2060 } 2061 2062 int 2063 CountADBs(void) 2064 { 2065 return (count_adbs()); 2066 } 2067 2068 void 2069 ADBReInit(void) 2070 { 2071 adb_reinit(); 2072 } 2073 2074 int 2075 GetIndADB(ADBDataBlock * info, int index) 2076 { 2077 return (get_ind_adb_info(info, index)); 2078 } 2079 2080 int 2081 GetADBInfo(ADBDataBlock * info, int adbAddr) 2082 { 2083 return (get_adb_info(info, adbAddr)); 2084 } 2085 2086 int 2087 SetADBInfo(ADBSetInfoBlock * info, int adbAddr) 2088 { 2089 return (set_adb_info(info, adbAddr)); 2090 } 2091 2092 int 2093 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum) 2094 { 2095 return (adb_op(buffer, compRout, data, commandNum)); 2096 } 2097 2098 #endif 2099 2100 int 2101 setsoftadb() 2102 { 2103 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL); 2104 return 0; 2105 } 2106 2107 void 2108 adb_cuda_autopoll() 2109 { 2110 volatile int flag = 0; 2111 int result; 2112 u_char output[16]; 2113 2114 output[0] = 0x03; /* 3-byte message */ 2115 output[1] = 0x01; /* to pram/rtc device */ 2116 output[2] = 0x01; /* cuda autopoll */ 2117 output[3] = 0x01; 2118 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag, 2119 0); 2120 if (result != 0) /* exit if not sent */ 2121 return; 2122 2123 while (flag == 0); /* wait for result */ 2124 } 2125 2126 void 2127 adb_restart(void) 2128 { 2129 int result; 2130 u_char output[16]; 2131 2132 adb_polling = 1; 2133 2134 switch (adbHardware) { 2135 case ADB_HW_CUDA: 2136 output[0] = 0x02; /* 2 byte message */ 2137 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2138 output[2] = 0x11; /* restart */ 2139 result = send_adb_cuda(output, NULL, NULL, NULL, 0); 2140 if (result != 0) /* exit if not sent */ 2141 return; 2142 while (1); /* not return */ 2143 2144 case ADB_HW_PB: 2145 pm_adb_restart(); 2146 while (1); /* not return */ 2147 } 2148 } 2149