1 /* $NetBSD: pmap_bootstrap.c,v 1.65 2006/11/20 19:58:38 hauke Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.65 2006/11/20 19:58:38 hauke Exp $"); 40 41 #include "opt_ddb.h" 42 #include "opt_kgdb.h" 43 #include "zsc.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/reboot.h> 48 49 #include <uvm/uvm_extern.h> 50 51 #include <machine/pte.h> 52 #include <machine/vmparam.h> 53 #include <machine/cpu.h> 54 #include <machine/pmap.h> 55 #include <machine/autoconf.h> 56 57 #include <ufs/mfs/mfs_extern.h> 58 59 #include <mac68k/mac68k/macrom.h> 60 61 #define PA2VA(v, t) (t)((u_int)(v) - firstpa) 62 63 extern char *etext; 64 extern int Sysptsize; 65 extern char *extiobase, *proc0paddr; 66 extern st_entry_t *Sysseg; 67 extern pt_entry_t *Sysptmap, *Sysmap; 68 69 extern int physmem; 70 extern paddr_t avail_start; 71 extern paddr_t avail_end; 72 extern vaddr_t virtual_avail, virtual_end; 73 extern vsize_t mem_size; 74 extern int protection_codes[]; 75 76 #if NZSC > 0 77 extern int zsinited; 78 #endif 79 80 /* 81 * These are used to map the RAM: 82 */ 83 int numranges; /* = 0 == don't use the ranges */ 84 u_long low[8]; 85 u_long high[8]; 86 u_long maxaddr; /* PA of the last physical page */ 87 int vidlen; 88 #define VIDMAPSIZE btoc(vidlen) 89 extern u_int32_t mac68k_vidphys; 90 extern u_int32_t videoaddr; 91 extern u_int32_t videorowbytes; 92 extern u_int32_t videosize; 93 static u_int32_t newvideoaddr; 94 95 extern caddr_t ROMBase; 96 97 /* 98 * Special purpose kernel virtual addresses, used for mapping 99 * physical pages for a variety of temporary or permanent purposes: 100 * 101 * CADDR1, CADDR2: pmap zero/copy operations 102 * vmmap: /dev/mem, crash dumps, parity error checking 103 * msgbufaddr: kernel message buffer 104 */ 105 caddr_t CADDR1, CADDR2, vmmap; 106 extern caddr_t msgbufaddr; 107 108 void pmap_bootstrap(paddr_t, paddr_t); 109 void bootstrap_mac68k(int); 110 111 /* 112 * Bootstrap the VM system. 113 * 114 * This is called with the MMU either on or off. If it's on, we assume 115 * that it's mapped with the same PA <=> LA mapping that we eventually 116 * want. The page sizes and the protections will be wrong, anyway. 117 * 118 * nextpa is the first address following the loaded kernel. On a IIsi 119 * on 12 May 1996, that was 0xf9000 beyond firstpa. 120 */ 121 void 122 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa) 123 { 124 paddr_t kstpa, kptpa, kptmpa, lkptpa, p0upa; 125 u_int nptpages, kstsize; 126 paddr_t avail_next; 127 int avail_remaining; 128 int avail_range; 129 int i; 130 st_entry_t protoste, *ste; 131 pt_entry_t protopte, *pte, *epte; 132 extern char start[]; 133 134 vidlen = m68k_round_page(((videosize >> 16) & 0xffff) * videorowbytes + 135 m68k_page_offset(mac68k_vidphys)); 136 137 /* 138 * Calculate important physical addresses: 139 * 140 * kstpa kernel segment table 1 page (!040) 141 * N pages (040) 142 * 143 * kptpa statically allocated 144 * kernel PT pages Sysptsize+ pages 145 * 146 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and 147 * NBMAPSIZE are the number of PTEs, hence we need to round 148 * the total to a page boundary with IO maps at the end. ] 149 * 150 * kptmpa kernel PT map 1 page 151 * 152 * lkptpa last kernel PT page 1 page 153 * 154 * p0upa proc 0 u-area UPAGES pages 155 * 156 */ 157 if (mmutype == MMU_68040) 158 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 159 else 160 kstsize = 1; 161 kstpa = nextpa; 162 nextpa += kstsize * PAGE_SIZE; 163 kptmpa = nextpa; 164 nextpa += PAGE_SIZE; 165 lkptpa = nextpa; 166 nextpa += PAGE_SIZE; 167 p0upa = nextpa; 168 nextpa += USPACE; 169 kptpa = nextpa; 170 nptpages = Sysptsize + 171 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG; 172 nextpa += nptpages * PAGE_SIZE; 173 174 for (i = 0; i < numranges; i++) 175 if (low[i] <= firstpa && firstpa < high[i]) 176 break; 177 if (i >= numranges || nextpa > high[i]) { 178 if (mac68k_machine.do_graybars) { 179 printf("Failure in NetBSD boot; "); 180 if (i < numranges) 181 printf("nextpa=0x%lx, high[%d]=0x%lx.\n", 182 nextpa, i, high[i]); 183 else 184 printf("can't find kernel RAM segment.\n"); 185 printf("You're hosed! Try booting with 32-bit "); 186 printf("addressing enabled in the memory control "); 187 printf("panel.\n"); 188 printf("Older machines may need Mode32 to get that "); 189 printf("option.\n"); 190 } 191 panic("Cannot work with the current memory mappings."); 192 } 193 194 /* 195 * Initialize segment table and kernel page table map. 196 * 197 * On 68030s and earlier MMUs the two are identical except for 198 * the valid bits so both are initialized with essentially the 199 * same values. On the 68040, which has a mandatory 3-level 200 * structure, the segment table holds the level 1 table and part 201 * (or all) of the level 2 table and hence is considerably 202 * different. Here the first level consists of 128 descriptors 203 * (512 bytes) each mapping 32mb of address space. Each of these 204 * points to blocks of 128 second level descriptors (512 bytes) 205 * each mapping 256kb. Note that there may be additional "segment 206 * table" pages depending on how large MAXKL2SIZE is. 207 * 208 * XXX cramming two levels of mapping into the single "segment" 209 * table on the 68040 is intended as a temporary hack to get things 210 * working. The 224mb of address space that this allows will most 211 * likely be insufficient in the future (at least for the kernel). 212 */ 213 if (mmutype == MMU_68040) { 214 int num; 215 216 /* 217 * First invalidate the entire "segment table" pages 218 * (levels 1 and 2 have the same "invalid" value). 219 */ 220 pte = PA2VA(kstpa, u_int *); 221 epte = &pte[kstsize * NPTEPG]; 222 while (pte < epte) 223 *pte++ = SG_NV; 224 /* 225 * Initialize level 2 descriptors (which immediately 226 * follow the level 1 table). We need: 227 * NPTEPG / SG4_LEV3SIZE 228 * level 2 descriptors to map each of the nptpages 229 * pages of PTEs. Note that we set the "used" bit 230 * now to save the HW the expense of doing it. 231 */ 232 num = nptpages * (NPTEPG / SG4_LEV3SIZE); 233 pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; 234 epte = &pte[num]; 235 protoste = kptpa | SG_U | SG_RW | SG_V; 236 while (pte < epte) { 237 *pte++ = protoste; 238 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 239 } 240 /* 241 * Initialize level 1 descriptors. We need: 242 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 243 * level 1 descriptors to map the `num' level 2's. 244 */ 245 pte = PA2VA(kstpa, u_int *); 246 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 247 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 248 while (pte < epte) { 249 *pte++ = protoste; 250 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 251 } 252 /* 253 * Initialize the final level 1 descriptor to map the last 254 * block of level 2 descriptors. 255 */ 256 ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1]; 257 pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE]; 258 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 259 /* 260 * Now initialize the final portion of that block of 261 * descriptors to map kptmpa and the "last PT page". 262 */ 263 pte = &(PA2VA(kstpa, u_int*)) 264 [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2]; 265 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 266 protoste = kptmpa | SG_U | SG_RW | SG_V; 267 while (pte < epte) { 268 *pte++ = protoste; 269 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 270 } 271 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 272 protoste = lkptpa | SG_U | SG_RW | SG_V; 273 while (pte < epte) { 274 *pte++ = protoste; 275 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 276 } 277 /* 278 * Initialize Sysptmap 279 */ 280 pte = PA2VA(kptmpa, u_int *); 281 epte = &pte[nptpages]; 282 protopte = kptpa | PG_RW | PG_CI | PG_V; 283 while (pte < epte) { 284 *pte++ = protopte; 285 protopte += PAGE_SIZE; 286 } 287 /* 288 * Invalidate all but the last two remaining entries. 289 */ 290 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-2]; 291 while (pte < epte) { 292 *pte++ = PG_NV; 293 } 294 /* 295 * Initialize the last ones to point to Sysptmap and the page 296 * table page allocated earlier. 297 */ 298 *pte = kptmpa | PG_RW | PG_CI | PG_V; 299 pte++; 300 *pte = lkptpa | PG_RW | PG_CI | PG_V; 301 } else { 302 /* 303 * Map the page table pages in both the HW segment table 304 * and the software Sysptmap. 305 */ 306 ste = PA2VA(kstpa, u_int*); 307 pte = PA2VA(kptmpa, u_int*); 308 epte = &pte[nptpages]; 309 protoste = kptpa | SG_RW | SG_V; 310 protopte = kptpa | PG_RW | PG_CI | PG_V; 311 while (pte < epte) { 312 *ste++ = protoste; 313 *pte++ = protopte; 314 protoste += PAGE_SIZE; 315 protopte += PAGE_SIZE; 316 } 317 /* 318 * Invalidate all but the last two remaining entries in both. 319 */ 320 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-2]; 321 while (pte < epte) { 322 *ste++ = SG_NV; 323 *pte++ = PG_NV; 324 } 325 /* 326 * Initialize the last ones to point to Sysptmap and the page 327 * table page allocated earlier. 328 */ 329 *ste = kptmpa | SG_RW | SG_V; 330 *pte = kptmpa | PG_RW | PG_CI | PG_V; 331 ste++; 332 pte++; 333 *ste = lkptpa | SG_RW | SG_V; 334 *pte = lkptpa | PG_RW | PG_CI | PG_V; 335 } 336 /* 337 * Invalidate all entries in the last kernel PT page 338 * (u-area PTEs will be validated later). 339 */ 340 pte = PA2VA(lkptpa, u_int *); 341 epte = &pte[NPTEPG]; 342 while (pte < epte) 343 *pte++ = PG_NV; 344 345 /* 346 * Initialize kernel page table. 347 * Start by invalidating the `nptpages' that we have allocated. 348 */ 349 pte = PA2VA(kptpa, u_int *); 350 epte = &pte[nptpages * NPTEPG]; 351 while (pte < epte) 352 *pte++ = PG_NV; 353 354 /* 355 * Validate PTEs for kernel text (RO). 356 * Pages up to "start" must be writable for the ROM. 357 */ 358 pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)]; 359 /* XXX why KERNBASE relative? */ 360 epte = &pte[m68k_btop(m68k_round_page(start))]; 361 protopte = firstpa | PG_RW | PG_V; 362 while (pte < epte) { 363 *pte++ = protopte; 364 protopte += PAGE_SIZE; 365 } 366 /* XXX why KERNBASE relative? */ 367 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 368 protopte = (protopte & ~PG_PROT) | PG_RO; 369 while (pte < epte) { 370 *pte++ = protopte; 371 protopte += PAGE_SIZE; 372 } 373 /* 374 * Validate PTEs for kernel data/bss, dynamic data allocated 375 * by us so far (nextpa - firstpa bytes), and pages for proc0 376 * u-area and page table allocated below (RW). 377 */ 378 epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)]; 379 protopte = (protopte & ~PG_PROT) | PG_RW; 380 /* 381 * Enable copy-back caching of data pages 382 */ 383 if (mmutype == MMU_68040) 384 protopte |= PG_CCB; 385 while (pte < epte) { 386 *pte++ = protopte; 387 protopte += PAGE_SIZE; 388 } 389 390 #define PTE2VA(pte) m68k_ptob(pte - PA2VA(kptpa, pt_entry_t *)) 391 392 protopte = IOBase | PG_RW | PG_CI | PG_V; 393 IOBase = PTE2VA(pte); 394 epte = &pte[IIOMAPSIZE]; 395 while (pte < epte) { 396 *pte++ = protopte; 397 protopte += PAGE_SIZE; 398 } 399 400 protopte = (pt_entry_t)ROMBase | PG_RO | PG_V; 401 ROMBase = (caddr_t)PTE2VA(pte); 402 epte = &pte[ROMMAPSIZE]; 403 while (pte < epte) { 404 *pte++ = protopte; 405 protopte += PAGE_SIZE; 406 } 407 408 if (vidlen) { 409 protopte = m68k_trunc_page(mac68k_vidphys) | 410 PG_RW | PG_V | PG_CI; 411 newvideoaddr = PTE2VA(pte) 412 + m68k_page_offset(mac68k_vidphys); 413 epte = &pte[VIDMAPSIZE]; 414 while (pte < epte) { 415 *pte++ = protopte; 416 protopte += PAGE_SIZE; 417 } 418 } 419 virtual_avail = PTE2VA(pte); 420 421 /* 422 * Calculate important exported kernel virtual addresses 423 */ 424 /* 425 * Sysseg: base of kernel segment table 426 */ 427 Sysseg = PA2VA(kstpa, st_entry_t *); 428 /* 429 * Sysptmap: base of kernel page table map 430 */ 431 Sysptmap = PA2VA(kptmpa, pt_entry_t *); 432 /* 433 * Sysmap: kernel page table (as mapped through Sysptmap) 434 * Immediately follows `nptpages' of static kernel page table. 435 */ 436 Sysmap = (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG); 437 438 /* 439 * Setup u-area for process 0. 440 */ 441 /* 442 * Zero the u-area. 443 * NOTE: `pte' and `epte' aren't PTEs here. 444 */ 445 pte = PA2VA(p0upa, u_int *); 446 epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE); 447 while (pte < epte) 448 *pte++ = 0; 449 /* 450 * Remember the u-area address so it can be loaded in the 451 * proc struct p_addr field later. 452 */ 453 proc0paddr = PA2VA(p0upa, char *); 454 455 /* 456 * VM data structures are now initialized, set up data for 457 * the pmap module. 458 * 459 * Note about avail_end: msgbuf is initialized just after 460 * avail_end in machdep.c. Since the last page is used 461 * for rebooting the system (code is copied there and 462 * excution continues from copied code before the MMU 463 * is disabled), the msgbuf will get trounced between 464 * reboots if it's placed in the last physical page. 465 * To work around this, we move avail_end back one more 466 * page so the msgbuf can be preserved. 467 */ 468 avail_next = avail_start = m68k_round_page(nextpa); 469 avail_remaining = 0; 470 avail_range = -1; 471 for (i = 0; i < numranges; i++) { 472 if (low[i] <= avail_next && avail_next < high[i]) { 473 avail_range = i; 474 avail_remaining = high[i] - avail_next; 475 } else if (avail_range != -1) { 476 avail_remaining += (high[i] - low[i]); 477 } 478 } 479 physmem = m68k_btop(avail_remaining + nextpa - firstpa); 480 481 maxaddr = high[numranges - 1] - m68k_ptob(1); 482 high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1)); 483 avail_end = high[numranges - 1]; 484 mem_size = m68k_ptob(physmem); 485 virtual_end = VM_MAX_KERNEL_ADDRESS; 486 487 /* 488 * Initialize protection array. 489 * XXX don't use a switch statement, it might produce an 490 * absolute "jmp" table. 491 */ 492 { 493 int *kp; 494 495 kp = (int *)&protection_codes; 496 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 497 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 498 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 499 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 500 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 501 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 502 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 503 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 504 } 505 506 /* 507 * Kernel page/segment table allocated above, 508 * just initialize pointers. 509 */ 510 { 511 struct pmap *kpm = (struct pmap *)&kernel_pmap_store; 512 513 kpm->pm_stab = Sysseg; 514 kpm->pm_ptab = Sysmap; 515 simple_lock_init(&kpm->pm_lock); 516 kpm->pm_count = 1; 517 kpm->pm_stpa = (st_entry_t *)kstpa; 518 /* 519 * For the 040 we also initialize the free level 2 520 * descriptor mask noting that we have used: 521 * 0: level 1 table 522 * 1 to `num': map page tables 523 * MAXKL2SIZE-1: maps kptmpa and last-page page table 524 */ 525 if (mmutype == MMU_68040) { 526 int num; 527 528 kpm->pm_stfree = ~l2tobm(0); 529 num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE), 530 SG4_LEV2SIZE) / SG4_LEV2SIZE; 531 while (num) 532 kpm->pm_stfree &= ~l2tobm(num--); 533 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 534 for (num = MAXKL2SIZE; 535 num < sizeof(kpm->pm_stfree)*NBBY; 536 num++) 537 kpm->pm_stfree &= ~l2tobm(num); 538 } 539 } 540 541 /* 542 * Allocate some fixed, special purpose kernel virtual addresses 543 */ 544 { 545 vaddr_t va = virtual_avail; 546 547 CADDR1 = (caddr_t)va; 548 va += PAGE_SIZE; 549 CADDR2 = (caddr_t)va; 550 va += PAGE_SIZE; 551 vmmap = (caddr_t)va; 552 va += PAGE_SIZE; 553 msgbufaddr = (caddr_t)va; 554 va += m68k_round_page(MSGBUFSIZE); 555 virtual_avail = va; 556 } 557 } 558 559 void 560 bootstrap_mac68k(int tc) 561 { 562 #if NZSC > 0 563 extern void zs_init(void); 564 #endif 565 extern int *esym; 566 paddr_t nextpa; 567 caddr_t oldROMBase; 568 569 if (mac68k_machine.do_graybars) 570 printf("Bootstrapping NetBSD/mac68k.\n"); 571 572 oldROMBase = ROMBase; 573 mac68k_vidphys = videoaddr; 574 575 if (((tc & 0x80000000) && (mmutype == MMU_68030)) || 576 ((tc & 0x8000) && (mmutype == MMU_68040))) { 577 if (mac68k_machine.do_graybars) 578 printf("Getting mapping from MMU.\n"); 579 (void) get_mapping(); 580 if (mac68k_machine.do_graybars) 581 printf("Done.\n"); 582 } else { 583 /* MMU not enabled. Fake up ranges. */ 584 numranges = 1; 585 low[0] = 0; 586 high[0] = mac68k_machine.mach_memsize * (1024 * 1024); 587 if (mac68k_machine.do_graybars) 588 printf("Faked range to byte 0x%lx.\n", high[0]); 589 } 590 nextpa = load_addr + m68k_round_page(esym); 591 592 if (mac68k_machine.do_graybars) 593 printf("Bootstrapping the pmap system.\n"); 594 595 pmap_bootstrap(nextpa, load_addr); 596 597 if (mac68k_machine.do_graybars) 598 printf("Pmap bootstrapped.\n"); 599 600 if (!vidlen) 601 panic("Don't know how to relocate video!"); 602 603 if (mac68k_machine.do_graybars) 604 printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase); 605 606 mrg_fixupROMBase(oldROMBase, ROMBase); 607 608 if (mac68k_machine.do_graybars) 609 printf("Video address 0x%lx -> 0x%lx.\n", 610 (unsigned long)videoaddr, (unsigned long)newvideoaddr); 611 612 mac68k_set_io_offsets(IOBase); 613 614 /* 615 * If the serial ports are going (for console or 'echo'), then 616 * we need to make sure the IO change gets propagated properly. 617 * This resets the base addresses for the 8530 (serial) driver. 618 * 619 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end 620 * of this function (where we start using the MMU, so the new 621 * address is correct. 622 */ 623 #if NZSC > 0 624 if (zsinited != 0) 625 zs_init(); 626 #endif 627 628 videoaddr = newvideoaddr; 629 } 630