xref: /netbsd-src/sys/arch/mac68k/mac68k/pmap_bootstrap.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.77 2009/01/17 07:17:36 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.77 2009/01/17 07:17:36 tsutsui Exp $");
40 
41 #include "opt_ddb.h"
42 #include "opt_kgdb.h"
43 #include "zsc.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/reboot.h>
48 
49 #include <uvm/uvm_extern.h>
50 
51 #include <machine/pte.h>
52 #include <machine/vmparam.h>
53 #include <machine/cpu.h>
54 #include <machine/pmap.h>
55 #include <machine/autoconf.h>
56 #include <machine/video.h>
57 
58 #include <mac68k/mac68k/macrom.h>
59 
60 #define PA2VA(v, t)	(t)((u_int)(v) - firstpa)
61 
62 extern char *etext;
63 extern char *extiobase, *proc0paddr;
64 
65 extern int physmem;
66 extern paddr_t avail_start;
67 extern paddr_t avail_end;
68 
69 #if NZSC > 0
70 extern	int	zsinited;
71 #endif
72 
73 /*
74  * These are used to map the RAM:
75  */
76 int	numranges;	/* = 0 == don't use the ranges */
77 u_long	low[8];
78 u_long	high[8];
79 u_long	maxaddr;	/* PA of the last physical page */
80 int	vidlen;
81 #define VIDMAPSIZE	btoc(vidlen)
82 static vaddr_t	newvideoaddr;
83 
84 extern void *	ROMBase;
85 
86 /*
87  * Special purpose kernel virtual addresses, used for mapping
88  * physical pages for a variety of temporary or permanent purposes:
89  *
90  *	CADDR1, CADDR2:	pmap zero/copy operations
91  *	vmmap:		/dev/mem, crash dumps, parity error checking
92  *	msgbufaddr:	kernel message buffer
93  */
94 void *CADDR1, *CADDR2;
95 char *vmmap;
96 void *msgbufaddr;
97 
98 void	pmap_bootstrap(paddr_t, paddr_t);
99 void	bootstrap_mac68k(int);
100 
101 /*
102  * Bootstrap the VM system.
103  *
104  * This is called with the MMU either on or off.  If it's on, we assume
105  * that it's mapped with the same PA <=> LA mapping that we eventually
106  * want.  The page sizes and the protections will be wrong, anyway.
107  *
108  * nextpa is the first address following the loaded kernel.  On a IIsi
109  * on 12 May 1996, that was 0xf9000 beyond firstpa.
110  */
111 void
112 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
113 {
114 	paddr_t kstpa, kptpa, kptmpa, p0upa;
115 	u_int nptpages, kstsize;
116 	paddr_t avail_next;
117 	int avail_remaining;
118 	int avail_range;
119 	int i;
120 	st_entry_t protoste, *ste;
121 	pt_entry_t protopte, *pte, *epte;
122 	extern char start[];
123 
124 	vidlen = m68k_round_page(mac68k_video.mv_height *
125 	    mac68k_video.mv_stride + m68k_page_offset(mac68k_video.mv_phys));
126 
127 	/*
128 	 * Calculate important physical addresses:
129 	 *
130 	 *	kstpa		kernel segment table	1 page (!040)
131 	 *						N pages (040)
132 	 *
133 	 *	kptpa		statically allocated
134 	 *			kernel PT pages		Sysptsize+ pages
135 	 *
136 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
137 	 *   NBMAPSIZE are the number of PTEs, hence we need to round
138 	 *   the total to a page boundary with IO maps at the end. ]
139 	 *
140 	 *	kptmpa		kernel PT map		1 page
141 	 *
142 	 *	p0upa		proc 0 u-area		UPAGES pages
143 	 *
144 	 */
145 	if (mmutype == MMU_68040)
146 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
147 	else
148 		kstsize = 1;
149 	kstpa = nextpa;
150 	nextpa += kstsize * PAGE_SIZE;
151 	kptmpa = nextpa;
152 	nextpa += PAGE_SIZE;
153 	p0upa = nextpa;
154 	nextpa += USPACE;
155 	kptpa = nextpa;
156 	nptpages = Sysptsize +
157 		(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG;
158 	nextpa += nptpages * PAGE_SIZE;
159 
160 	for (i = 0; i < numranges; i++)
161 		if (low[i] <= firstpa && firstpa < high[i])
162 			break;
163 	if (i >= numranges || nextpa > high[i]) {
164 		if (mac68k_machine.do_graybars) {
165 			printf("Failure in NetBSD boot; ");
166 			if (i < numranges)
167 				printf("nextpa=0x%lx, high[%d]=0x%lx.\n",
168 				    nextpa, i, high[i]);
169 			else
170 				printf("can't find kernel RAM segment.\n");
171 			printf("You're hosed!  Try booting with 32-bit ");
172 			printf("addressing enabled in the memory control ");
173 			printf("panel.\n");
174 			printf("Older machines may need Mode32 to get that ");
175 			printf("option.\n");
176 		}
177 		panic("Cannot work with the current memory mappings.");
178 	}
179 
180 	/*
181 	 * Initialize segment table and kernel page table map.
182 	 *
183 	 * On 68030s and earlier MMUs the two are identical except for
184 	 * the valid bits so both are initialized with essentially the
185 	 * same values.  On the 68040, which has a mandatory 3-level
186 	 * structure, the segment table holds the level 1 table and part
187 	 * (or all) of the level 2 table and hence is considerably
188 	 * different.  Here the first level consists of 128 descriptors
189 	 * (512 bytes) each mapping 32mb of address space.  Each of these
190 	 * points to blocks of 128 second level descriptors (512 bytes)
191 	 * each mapping 256kb.  Note that there may be additional "segment
192 	 * table" pages depending on how large MAXKL2SIZE is.
193 	 *
194 	 * XXX cramming two levels of mapping into the single "segment"
195 	 * table on the 68040 is intended as a temporary hack to get things
196 	 * working.  The 224mb of address space that this allows will most
197 	 * likely be insufficient in the future (at least for the kernel).
198 	 */
199 	if (mmutype == MMU_68040) {
200 		int num;
201 
202 		/*
203 		 * First invalidate the entire "segment table" pages
204 		 * (levels 1 and 2 have the same "invalid" value).
205 		 */
206 		pte = PA2VA(kstpa, u_int *);
207 		epte = &pte[kstsize * NPTEPG];
208 		while (pte < epte)
209 			*pte++ = SG_NV;
210 		/*
211 		 * Initialize level 2 descriptors (which immediately
212 		 * follow the level 1 table).  We need:
213 		 *	NPTEPG / SG4_LEV3SIZE
214 		 * level 2 descriptors to map each of the nptpages
215 		 * pages of PTEs.  Note that we set the "used" bit
216 		 * now to save the HW the expense of doing it.
217 		 */
218 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
219 		pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE];
220 		epte = &pte[num];
221 		protoste = kptpa | SG_U | SG_RW | SG_V;
222 		while (pte < epte) {
223 			*pte++ = protoste;
224 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
225 		}
226 		/*
227 		 * Initialize level 1 descriptors.  We need:
228 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
229 		 * level 1 descriptors to map the `num' level 2's.
230 		 */
231 		pte = PA2VA(kstpa, u_int *);
232 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
233 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
234 		while (pte < epte) {
235 			*pte++ = protoste;
236 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
237 		}
238 		/*
239 		 * Initialize the final level 1 descriptor to map the last
240 		 * block of level 2 descriptors.
241 		 */
242 		ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1];
243 		pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE];
244 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
245 		/*
246 		 * Now initialize the final portion of that block of
247 		 * descriptors to map Sysmap.
248 		 */
249 		pte = &(PA2VA(kstpa, u_int*))
250 				[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
251 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
252 		protoste = kptmpa | SG_U | SG_RW | SG_V;
253 		while (pte < epte) {
254 			*pte++ = protoste;
255 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
256 		}
257 		/*
258 		 * Initialize Sysptmap
259 		 */
260 		pte = PA2VA(kptmpa, u_int *);
261 		epte = &pte[nptpages];
262 		protopte = kptpa | PG_RW | PG_CI | PG_V;
263 		while (pte < epte) {
264 			*pte++ = protopte;
265 			protopte += PAGE_SIZE;
266 		}
267 		/*
268 		 * Invalidate all but the last remaining entry.
269 		 */
270 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG - 1];
271 		while (pte < epte) {
272 			*pte++ = PG_NV;
273 		}
274 		/*
275 		 * Initialize the last one to point to Sysptmap.
276 		 */
277 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
278 	} else {
279 		/*
280 		 * Map the page table pages in both the HW segment table
281 		 * and the software Sysptmap.
282 		 */
283 		ste = PA2VA(kstpa, u_int*);
284 		pte = PA2VA(kptmpa, u_int*);
285 		epte = &pte[nptpages];
286 		protoste = kptpa | SG_RW | SG_V;
287 		protopte = kptpa | PG_RW | PG_CI | PG_V;
288 		while (pte < epte) {
289 			*ste++ = protoste;
290 			*pte++ = protopte;
291 			protoste += PAGE_SIZE;
292 			protopte += PAGE_SIZE;
293 		}
294 		/*
295 		 * Invalidate all but the last remaining entries in both.
296 		 */
297 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG - 1];
298 		while (pte < epte) {
299 			*ste++ = SG_NV;
300 			*pte++ = PG_NV;
301 		}
302 		/*
303 		 * Initialize the last one to point to Sysptmap.
304 		 */
305 		*ste = kptmpa | SG_RW | SG_V;
306 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
307 	}
308 
309 	/*
310 	 * Initialize kernel page table.
311 	 * Start by invalidating the `nptpages' that we have allocated.
312 	 */
313 	pte = PA2VA(kptpa, u_int *);
314 	epte = &pte[nptpages * NPTEPG];
315 	while (pte < epte)
316 		*pte++ = PG_NV;
317 
318 	/*
319 	 * Validate PTEs for kernel text (RO).
320 	 * Pages up to "start" must be writable for the ROM.
321 	 */
322 	pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)];
323 	/* XXX why KERNBASE relative? */
324 	epte = &pte[m68k_btop(m68k_round_page(start))];
325 	protopte = firstpa | PG_RW | PG_V;
326 	while (pte < epte) {
327 		*pte++ = protopte;
328 		protopte += PAGE_SIZE;
329 	}
330 	/* XXX why KERNBASE relative? */
331 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
332 	protopte = (protopte & ~PG_PROT) | PG_RO;
333 	while (pte < epte) {
334 		*pte++ = protopte;
335 		protopte += PAGE_SIZE;
336 	}
337 	/*
338 	 * Validate PTEs for kernel data/bss, dynamic data allocated
339 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
340 	 * u-area and page table allocated below (RW).
341 	 */
342 	epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)];
343 	protopte = (protopte & ~PG_PROT) | PG_RW;
344 	/*
345 	 * Enable copy-back caching of data pages
346 	 */
347 	if (mmutype == MMU_68040)
348 		protopte |= PG_CCB;
349 	while (pte < epte) {
350 		*pte++ = protopte;
351 		protopte += PAGE_SIZE;
352 	}
353 
354 #define	PTE2VA(pte)	m68k_ptob(pte - PA2VA(kptpa, pt_entry_t *))
355 
356 	protopte = IOBase | PG_RW | PG_CI | PG_V;
357 	IOBase = PTE2VA(pte);
358 	epte = &pte[IIOMAPSIZE];
359 	while (pte < epte) {
360 		*pte++ = protopte;
361 		protopte += PAGE_SIZE;
362 	}
363 
364 	protopte = (pt_entry_t)ROMBase | PG_RO | PG_V;
365 	ROMBase = (void *)PTE2VA(pte);
366 	epte = &pte[ROMMAPSIZE];
367 	while (pte < epte) {
368 		*pte++ = protopte;
369 		protopte += PAGE_SIZE;
370 	}
371 
372 	if (vidlen) {
373 		protopte = m68k_trunc_page(mac68k_video.mv_phys) |
374 		    PG_RW | PG_V | PG_CI;
375 		newvideoaddr = PTE2VA(pte)
376 		    + m68k_page_offset(mac68k_video.mv_phys);
377 		epte = &pte[VIDMAPSIZE];
378 		while (pte < epte) {
379 			*pte++ = protopte;
380 			protopte += PAGE_SIZE;
381 		}
382 	}
383 	virtual_avail = PTE2VA(pte);
384 
385 	/*
386 	 * Calculate important exported kernel virtual addresses
387 	 */
388 	/*
389 	 * Sysseg: base of kernel segment table
390 	 */
391 	Sysseg = PA2VA(kstpa, st_entry_t *);
392 	/*
393 	 * Sysptmap: base of kernel page table map
394 	 */
395 	Sysptmap = PA2VA(kptmpa, pt_entry_t *);
396 	/*
397 	 * Sysmap: kernel page table (as mapped through Sysptmap)
398 	 * Allocated at the end of KVA space.
399 	 */
400 	Sysmap = (pt_entry_t *)m68k_ptob((NPTEPG - 1) * NPTEPG);
401 
402 	/*
403 	 * Setup u-area for process 0.
404 	 */
405 	/*
406 	 * Zero the u-area.
407 	 * NOTE: `pte' and `epte' aren't PTEs here.
408 	 */
409 	pte = PA2VA(p0upa, u_int *);
410 	epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE);
411 	while (pte < epte)
412 		*pte++ = 0;
413 	/*
414 	 * Remember the u-area address so it can be loaded in the
415 	 * proc struct p_addr field later.
416 	 */
417 	proc0paddr = PA2VA(p0upa, char *);
418 
419 	/*
420 	 * VM data structures are now initialized, set up data for
421 	 * the pmap module.
422 	 *
423 	 * Note about avail_end: msgbuf is initialized just after
424 	 * avail_end in machdep.c.  Since the last page is used
425 	 * for rebooting the system (code is copied there and
426 	 * excution continues from copied code before the MMU
427 	 * is disabled), the msgbuf will get trounced between
428 	 * reboots if it's placed in the last physical page.
429 	 * To work around this, we move avail_end back one more
430 	 * page so the msgbuf can be preserved.
431 	 */
432 	avail_next = avail_start = m68k_round_page(nextpa);
433 	avail_remaining = 0;
434 	avail_range = -1;
435 	for (i = 0; i < numranges; i++) {
436 		if (low[i] <= avail_next && avail_next < high[i]) {
437 			avail_range = i;
438 			avail_remaining = high[i] - avail_next;
439 		} else if (avail_range != -1) {
440 			avail_remaining += (high[i] - low[i]);
441 		}
442 	}
443 	physmem = m68k_btop(avail_remaining + nextpa - firstpa);
444 
445 	maxaddr = high[numranges - 1] - m68k_ptob(1);
446 	high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
447 	avail_end = high[numranges - 1];
448 	mem_size = m68k_ptob(physmem);
449 	virtual_end = VM_MAX_KERNEL_ADDRESS;
450 
451 	/*
452 	 * Initialize protection array.
453 	 * XXX don't use a switch statement, it might produce an
454 	 * absolute "jmp" table.
455 	 */
456 	{
457 		u_int *kp;
458 
459 		kp = (u_int *)&protection_codes;
460 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
461 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
462 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
463 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
464 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
465 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
466 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
467 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
468 	}
469 
470 	/*
471 	 * Kernel page/segment table allocated above,
472 	 * just initialize pointers.
473 	 */
474 	{
475 		struct pmap *kpm = kernel_pmap_ptr;
476 
477 		kpm->pm_stab = Sysseg;
478 		kpm->pm_ptab = Sysmap;
479 		simple_lock_init(&kpm->pm_lock);
480 		kpm->pm_count = 1;
481 		kpm->pm_stpa = (st_entry_t *)kstpa;
482 		/*
483 		 * For the 040 we also initialize the free level 2
484 		 * descriptor mask noting that we have used:
485 		 *	0:		level 1 table
486 		 *	1 to `num':	map page tables
487 		 *	MAXKL2SIZE-1:	maps kptmpa
488 		 */
489 		if (mmutype == MMU_68040) {
490 			int num;
491 
492 			kpm->pm_stfree = ~l2tobm(0);
493 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
494 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
495 			while (num)
496 				kpm->pm_stfree &= ~l2tobm(num--);
497 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
498 			for (num = MAXKL2SIZE;
499 			     num < sizeof(kpm->pm_stfree)*NBBY;
500 			     num++)
501 				kpm->pm_stfree &= ~l2tobm(num);
502 		}
503 	}
504 
505 	/*
506 	 * Allocate some fixed, special purpose kernel virtual addresses
507 	 */
508 	{
509 		vaddr_t va = virtual_avail;
510 
511 		CADDR1 = (void *)va;
512 		va += PAGE_SIZE;
513 		CADDR2 = (void *)va;
514 		va += PAGE_SIZE;
515 		vmmap = (void *)va;
516 		va += PAGE_SIZE;
517 		msgbufaddr = (void *)va;
518 		va += m68k_round_page(MSGBUFSIZE);
519 		virtual_avail = va;
520 	}
521 }
522 
523 void
524 bootstrap_mac68k(int tc)
525 {
526 #if NZSC > 0
527 	extern void zs_init(void);
528 #endif
529 	extern int *esym;
530 	paddr_t nextpa;
531 	void *oldROMBase;
532 
533 	if (mac68k_machine.do_graybars)
534 		printf("Bootstrapping NetBSD/mac68k.\n");
535 
536 	oldROMBase = ROMBase;
537 	mac68k_video.mv_phys = mac68k_video.mv_kvaddr;
538 
539 	if (((tc & 0x80000000) && (mmutype == MMU_68030)) ||
540 	    ((tc & 0x8000) && (mmutype == MMU_68040))) {
541 		if (mac68k_machine.do_graybars)
542 			printf("Getting mapping from MMU.\n");
543 		(void) get_mapping();
544 		if (mac68k_machine.do_graybars)
545 			printf("Done.\n");
546 	} else {
547 		/* MMU not enabled.  Fake up ranges. */
548 		numranges = 1;
549 		low[0] = 0;
550 		high[0] = mac68k_machine.mach_memsize * (1024 * 1024);
551 		if (mac68k_machine.do_graybars)
552 			printf("Faked range to byte 0x%lx.\n", high[0]);
553 	}
554 	nextpa = load_addr + m68k_round_page(esym);
555 
556 	if (mac68k_machine.do_graybars)
557 		printf("Bootstrapping the pmap system.\n");
558 
559 	pmap_bootstrap(nextpa, load_addr);
560 
561 	if (mac68k_machine.do_graybars)
562 		printf("Pmap bootstrapped.\n");
563 
564 	if (!vidlen)
565 		panic("Don't know how to relocate video!");
566 
567 	if (mac68k_machine.do_graybars)
568 		printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase);
569 
570 	mrg_fixupROMBase(oldROMBase, ROMBase);
571 
572 	if (mac68k_machine.do_graybars)
573 		printf("Video address 0x%p -> 0x%p.\n",
574 		    (void *)mac68k_video.mv_kvaddr, (void *)newvideoaddr);
575 
576 	mac68k_set_io_offsets(IOBase);
577 
578 	/*
579 	 * If the serial ports are going (for console or 'echo'), then
580 	 * we need to make sure the IO change gets propagated properly.
581 	 * This resets the base addresses for the 8530 (serial) driver.
582 	 *
583 	 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end
584 	 * of this function (where we start using the MMU, so the new
585 	 * address is correct.
586 	 */
587 #if NZSC > 0
588 	if (zsinited != 0)
589 		zs_init();
590 #endif
591 
592 	mac68k_video.mv_kvaddr = newvideoaddr;
593 }
594