1 /* $NetBSD: pmap_bootstrap.c,v 1.47 1998/08/12 02:36:38 scottr Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 40 */ 41 42 #include "opt_ddb.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/reboot.h> 47 48 #include <vm/vm.h> 49 50 #include <machine/pte.h> 51 #include <mac68k/mac68k/clockreg.h> 52 #include <machine/vmparam.h> 53 #include <machine/cpu.h> 54 #include <machine/pmap.h> 55 #include <machine/autoconf.h> 56 57 #include <ufs/mfs/mfs_extern.h> 58 59 #include <mac68k/mac68k/macrom.h> 60 61 #define PA2VA(v, t) (t)((u_int)(v) - firstpa) 62 63 extern char *etext; 64 extern int Sysptsize; 65 extern char *extiobase, *proc0paddr; 66 extern st_entry_t *Sysseg; 67 extern pt_entry_t *Sysptmap, *Sysmap; 68 69 extern int physmem; 70 extern int avail_remaining, avail_range, avail_end; 71 extern vm_offset_t avail_start, avail_next; 72 extern vm_offset_t virtual_avail, virtual_end; 73 extern vm_size_t mem_size; 74 extern int protection_codes[]; 75 76 extern int zsinited; 77 78 /* 79 * These are used to map the RAM: 80 */ 81 int numranges; /* = 0 == don't use the ranges */ 82 u_long low[8]; 83 u_long high[8]; 84 u_long maxaddr; /* PA of the last physical page */ 85 int vidlen; 86 #define VIDMAPSIZE btoc(vidlen) 87 extern u_int32_t mac68k_vidphys; 88 extern u_int32_t videoaddr; 89 extern u_int32_t videorowbytes; 90 extern u_int32_t videosize; 91 static u_int32_t newvideoaddr; 92 93 extern caddr_t ROMBase; 94 95 /* 96 * Special purpose kernel virtual addresses, used for mapping 97 * physical pages for a variety of temporary or permanent purposes: 98 * 99 * CADDR1, CADDR2: pmap zero/copy operations 100 * vmmap: /dev/mem, crash dumps, parity error checking 101 * msgbufaddr: kernel message buffer 102 */ 103 caddr_t CADDR1, CADDR2, vmmap; 104 extern caddr_t msgbufaddr; 105 106 /* 107 * Bootstrap the VM system. 108 * 109 * This is called with the MMU either on or off. If it's on, we assume 110 * that it's mapped with the same PA <=> LA mapping that we eventually 111 * want. The page sizes and the protections will be wrong, anyway. 112 * 113 * nextpa is the first address following the loaded kernel. On a IIsi 114 * on 12 May 1996, that was 0xf9000 beyond firstpa. 115 */ 116 void 117 pmap_bootstrap(nextpa, firstpa) 118 vm_offset_t nextpa; 119 vm_offset_t firstpa; 120 { 121 vm_offset_t kstpa, kptpa, vidpa, iiopa, rompa; 122 vm_offset_t kptmpa, lkptpa, p0upa; 123 u_int nptpages, kstsize; 124 int i; 125 st_entry_t protoste, *ste; 126 pt_entry_t protopte, *pte, *epte; 127 128 vidlen = m68k_round_page(((videosize >> 16) & 0xffff) * videorowbytes + 129 (mac68k_vidphys & PGOFSET)); 130 131 /* 132 * Calculate important physical addresses: 133 * 134 * kstpa kernel segment table 1 page (!040) 135 * N pages (040) 136 * 137 * kptpa statically allocated 138 * kernel PT pages Sysptsize+ pages 139 * 140 * vidpa internal video space for some machines 141 * PT pages VIDMAPSIZE pages 142 * 143 * rompa ROM space 144 * PT pages ROMMAPSIZE pages 145 * 146 * iiopa internal IO space 147 * PT pages IIOMAPSIZE pages 148 * 149 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and 150 * NBMAPSIZE are the number of PTEs, hence we need to round 151 * the total to a page boundary with IO maps at the end. ] 152 * 153 * kptmpa kernel PT map 1 page 154 * 155 * lkptpa last kernel PT page 1 page 156 * 157 * p0upa proc 0 u-area UPAGES pages 158 * 159 */ 160 if (mmutype == MMU_68040) 161 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 162 else 163 kstsize = 1; 164 kstpa = nextpa; 165 nextpa += kstsize * NBPG; 166 kptpa = nextpa; 167 nptpages = Sysptsize + 168 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG; 169 nextpa += nptpages * NBPG; 170 vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t); 171 rompa = vidpa - ROMMAPSIZE * sizeof(pt_entry_t); 172 iiopa = rompa - IIOMAPSIZE * sizeof(pt_entry_t); 173 kptmpa = nextpa; 174 nextpa += NBPG; 175 lkptpa = nextpa; 176 nextpa += NBPG; 177 p0upa = nextpa; 178 nextpa += USPACE; 179 180 #if 0 181 if (nextpa > high[0]) { 182 printf("Failure in NetBSD boot; nextpa=0x%lx, high[0]=0x%lx.\n", 183 nextpa, high[0]); 184 printf("You're hosed! Try booting with 32-bit addressing "); 185 printf("enabled in the memory control panel.\n"); 186 printf("Older machines may need Mode32 to get that option.\n"); 187 panic("Cannot work with the current memory mappings.\n"); 188 } 189 #endif 190 191 /* 192 * Initialize segment table and kernel page table map. 193 * 194 * On 68030s and earlier MMUs the two are identical except for 195 * the valid bits so both are initialized with essentially the 196 * same values. On the 68040, which has a mandatory 3-level 197 * structure, the segment table holds the level 1 table and part 198 * (or all) of the level 2 table and hence is considerably 199 * different. Here the first level consists of 128 descriptors 200 * (512 bytes) each mapping 32mb of address space. Each of these 201 * points to blocks of 128 second level descriptors (512 bytes) 202 * each mapping 256kb. Note that there may be additional "segment 203 * table" pages depending on how large MAXKL2SIZE is. 204 * 205 * XXX cramming two levels of mapping into the single "segment" 206 * table on the 68040 is intended as a temporary hack to get things 207 * working. The 224mb of address space that this allows will most 208 * likely be insufficient in the future (at least for the kernel). 209 */ 210 if (mmutype == MMU_68040) { 211 int num; 212 213 /* 214 * First invalidate the entire "segment table" pages 215 * (levels 1 and 2 have the same "invalid" value). 216 */ 217 pte = PA2VA(kstpa, u_int *); 218 epte = &pte[kstsize * NPTEPG]; 219 while (pte < epte) 220 *pte++ = SG_NV; 221 /* 222 * Initialize level 2 descriptors (which immediately 223 * follow the level 1 table). We need: 224 * NPTEPG / SG4_LEV3SIZE 225 * level 2 descriptors to map each of the nptpages+1 226 * pages of PTEs. Note that we set the "used" bit 227 * now to save the HW the expense of doing it. 228 */ 229 num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE); 230 pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; 231 epte = &pte[num]; 232 protoste = kptpa | SG_U | SG_RW | SG_V; 233 while (pte < epte) { 234 *pte++ = protoste; 235 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 236 } 237 /* 238 * Initialize level 1 descriptors. We need: 239 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 240 * level 1 descriptors to map the `num' level 2's. 241 */ 242 pte = PA2VA(kstpa, u_int *); 243 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 244 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 245 while (pte < epte) { 246 *pte++ = protoste; 247 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 248 } 249 /* 250 * Initialize the final level 1 descriptor to map the last 251 * block of level 2 descriptors. 252 */ 253 ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1]; 254 pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE]; 255 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 256 /* 257 * Now initialize the final portion of that block of 258 * descriptors to map the "last PT page". 259 */ 260 pte = &(PA2VA(kstpa, u_int*)) 261 [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; 262 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 263 protoste = lkptpa | SG_U | SG_RW | SG_V; 264 while (pte < epte) { 265 *pte++ = protoste; 266 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 267 } 268 /* 269 * Initialize Sysptmap 270 */ 271 pte = PA2VA(kptmpa, u_int *); 272 epte = &pte[nptpages+1]; 273 protopte = kptpa | PG_RW | PG_CI | PG_V; 274 while (pte < epte) { 275 *pte++ = protopte; 276 protopte += NBPG; 277 } 278 /* 279 * Invalidate all but the last remaining entries in both. 280 */ 281 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 282 while (pte < epte) { 283 *pte++ = PG_NV; 284 } 285 /* 286 * Initialize the last to point to the page 287 * table page allocated earlier. 288 */ 289 *pte = lkptpa | PG_RW | PG_CI | PG_V; 290 } else { 291 /* 292 * Map the page table pages in both the HW segment table 293 * and the software Sysptmap. Note that Sysptmap is also 294 * considered a PT page hence the +1. 295 */ 296 ste = PA2VA(kstpa, u_int*); 297 pte = PA2VA(kptmpa, u_int*); 298 epte = &pte[nptpages+1]; 299 protoste = kptpa | SG_RW | SG_V; 300 protopte = kptpa | PG_RW | PG_CI | PG_V; 301 while (pte < epte) { 302 *ste++ = protoste; 303 *pte++ = protopte; 304 protoste += NBPG; 305 protopte += NBPG; 306 } 307 /* 308 * Invalidate all but the last remaining entries in both. 309 */ 310 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 311 while (pte < epte) { 312 *ste++ = SG_NV; 313 *pte++ = PG_NV; 314 } 315 /* 316 * Initialize the last to point to point to the page 317 * table page allocated earlier. 318 */ 319 *ste = lkptpa | SG_RW | SG_V; 320 *pte = lkptpa | PG_RW | PG_CI | PG_V; 321 } 322 /* 323 * Invalidate all entries in the last kernel PT page 324 * (u-area PTEs will be validated later). 325 */ 326 pte = PA2VA(lkptpa, u_int *); 327 epte = &pte[NPTEPG]; 328 while (pte < epte) 329 *pte++ = PG_NV; 330 331 /* 332 * Initialize kernel page table. 333 * Start by invalidating the `nptpages' that we have allocated. 334 */ 335 pte = PA2VA(kptpa, u_int *); 336 epte = &pte[nptpages * NPTEPG]; 337 while (pte < epte) 338 *pte++ = PG_NV; 339 340 /* 341 * Validate PTEs for kernel text (RO) 342 */ 343 pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)]; 344 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 345 #if defined(KGDB) || defined(DDB) 346 protopte = firstpa | PG_RW | PG_V; /* XXX RW for now */ 347 #else 348 protopte = firstpa | PG_RO | PG_V; 349 #endif 350 while (pte < epte) { 351 *pte++ = protopte; 352 protopte += NBPG; 353 } 354 /* 355 * Validate PTEs for kernel data/bss, dynamic data allocated 356 * by us so far (nextpa - firstpa bytes), and pages for proc0 357 * u-area and page table allocated below (RW). 358 */ 359 epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)]; 360 protopte = (protopte & ~PG_PROT) | PG_RW; 361 /* 362 * Enable copy-back caching of data pages 363 */ 364 if (mmutype == MMU_68040) 365 protopte |= PG_CCB; 366 while (pte < epte) { 367 *pte++ = protopte; 368 protopte += NBPG; 369 } 370 /* 371 * Finally, validate the internal IO space, ROM space, and 372 * framebuffer PTEs (RW+CI). 373 */ 374 pte = PA2VA(iiopa, u_int *); 375 epte = PA2VA(rompa, u_int *); 376 protopte = IOBase | PG_RW | PG_CI | PG_V; 377 while (pte < epte) { 378 *pte++ = protopte; 379 protopte += NBPG; 380 } 381 382 pte = PA2VA(rompa, u_int *); 383 epte = PA2VA(vidpa, u_int *); 384 protopte = ((u_int) ROMBase) | PG_RO | PG_V; 385 while (pte < epte) { 386 *pte++ = protopte; 387 protopte += NBPG; 388 } 389 390 if (vidlen) { 391 pte = PA2VA(vidpa, u_int *); 392 epte = pte + VIDMAPSIZE; 393 protopte = (mac68k_vidphys & ~PGOFSET) | PG_RW | PG_V | PG_CI; 394 while (pte < epte) { 395 *pte++ = protopte; 396 protopte += NBPG; 397 } 398 } 399 400 /* 401 * Calculate important exported kernel virtual addresses 402 */ 403 /* 404 * Sysseg: base of kernel segment table 405 */ 406 Sysseg = PA2VA(kstpa, st_entry_t *); 407 /* 408 * Sysptmap: base of kernel page table map 409 */ 410 Sysptmap = PA2VA(kptmpa, pt_entry_t *); 411 /* 412 * Sysmap: kernel page table (as mapped through Sysptmap) 413 * Immediately follows `nptpages' of static kernel page table. 414 */ 415 Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG); 416 417 IOBase = (u_long)m68k_ptob(nptpages * NPTEPG - 418 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE)); 419 420 ROMBase = (char *)m68k_ptob(nptpages * NPTEPG - 421 (ROMMAPSIZE + VIDMAPSIZE)); 422 423 if (vidlen) { 424 newvideoaddr = (u_int32_t)m68k_ptob(nptpages * NPTEPG - 425 VIDMAPSIZE) + (mac68k_vidphys & PGOFSET); 426 } 427 428 /* 429 * Setup u-area for process 0. 430 */ 431 /* 432 * Zero the u-area. 433 * NOTE: `pte' and `epte' aren't PTEs here. 434 */ 435 pte = PA2VA(p0upa, u_int *); 436 epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE); 437 while (pte < epte) 438 *pte++ = 0; 439 /* 440 * Remember the u-area address so it can be loaded in the 441 * proc struct p_addr field later. 442 */ 443 proc0paddr = PA2VA(p0upa, char *); 444 445 /* 446 * VM data structures are now initialized, set up data for 447 * the pmap module. 448 * 449 * Note about avail_end: msgbuf is initialized just after 450 * avail_end in machdep.c. Since the last page is used 451 * for rebooting the system (code is copied there and 452 * excution continues from copied code before the MMU 453 * is disabled), the msgbuf will get trounced between 454 * reboots if it's placed in the last physical page. 455 * To work around this, we move avail_end back one more 456 * page so the msgbuf can be preserved. 457 */ 458 avail_next = avail_start = m68k_round_page(nextpa); 459 avail_remaining = 0; 460 avail_range = -1; 461 for (i = 0; i < numranges; i++) { 462 if (low[i] <= avail_next && avail_next < high[i]) { 463 avail_range = i; 464 avail_remaining = high[i] - avail_next; 465 } else if (avail_range != -1) { 466 avail_remaining += (high[i] - low[i]); 467 } 468 } 469 physmem = m68k_btop(avail_remaining + nextpa - firstpa); 470 471 maxaddr = high[numranges - 1] - m68k_ptob(1); 472 high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1)); 473 avail_remaining -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1)); 474 avail_end = high[numranges - 1]; 475 avail_remaining = m68k_btop(m68k_trunc_page(avail_remaining)); 476 477 mem_size = m68k_ptob(physmem); 478 virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa); 479 virtual_end = VM_MAX_KERNEL_ADDRESS; 480 481 /* 482 * Initialize protection array. 483 * XXX don't use a switch statement, it might produce an 484 * absolute "jmp" table. 485 */ 486 { 487 int *kp; 488 489 kp = (int *) &protection_codes; 490 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 491 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 492 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 493 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 494 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 495 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 496 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 497 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 498 } 499 500 /* 501 * Kernel page/segment table allocated in locore, 502 * just initialize pointers. 503 */ 504 { 505 struct pmap *kpm = (struct pmap *)&kernel_pmap_store; 506 507 kpm->pm_stab = Sysseg; 508 kpm->pm_ptab = Sysmap; 509 simple_lock_init(&kpm->pm_lock); 510 kpm->pm_count = 1; 511 kpm->pm_stpa = (st_entry_t *)kstpa; 512 /* 513 * For the 040 we also initialize the free level 2 514 * descriptor mask noting that we have used: 515 * 0: level 1 table 516 * 1 to `num': map page tables 517 * MAXKL2SIZE-1: maps last-page page table 518 */ 519 if (mmutype == MMU_68040) { 520 int num; 521 522 kpm->pm_stfree = ~l2tobm(0); 523 num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE), 524 SG4_LEV2SIZE) / SG4_LEV2SIZE; 525 while (num) 526 kpm->pm_stfree &= ~l2tobm(num--); 527 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 528 for (num = MAXKL2SIZE; 529 num < sizeof(kpm->pm_stfree)*NBBY; 530 num++) 531 kpm->pm_stfree &= ~l2tobm(num); 532 } 533 } 534 535 /* 536 * Allocate some fixed, special purpose kernel virtual addresses 537 */ 538 { 539 vm_offset_t va = virtual_avail; 540 541 CADDR1 = (caddr_t)va; 542 va += NBPG; 543 CADDR2 = (caddr_t)va; 544 va += NBPG; 545 vmmap = (caddr_t)va; 546 va += NBPG; 547 msgbufaddr = (caddr_t)va; 548 va += m68k_round_page(MSGBUFSIZE); 549 virtual_avail = va; 550 } 551 } 552 553 void 554 bootstrap_mac68k(tc) 555 int tc; 556 { 557 extern void zs_init __P((void)); 558 extern int *esym; 559 vm_offset_t nextpa; 560 caddr_t oldROMBase; 561 562 if (mac68k_machine.do_graybars) 563 printf("Bootstrapping NetBSD/mac68k.\n"); 564 565 oldROMBase = ROMBase; 566 mac68k_vidphys = videoaddr; 567 568 if (((tc & 0x80000000) && (mmutype == MMU_68030)) || 569 ((tc & 0x8000) && (mmutype == MMU_68040))) { 570 if (mac68k_machine.do_graybars) 571 printf("Getting mapping from MMU.\n"); 572 (void) get_mapping(); 573 if (mac68k_machine.do_graybars) 574 printf("Done.\n"); 575 } else { 576 /* MMU not enabled. Fake up ranges. */ 577 numranges = 1; 578 low[0] = 0; 579 high[0] = mac68k_machine.mach_memsize * (1024 * 1024); 580 if (mac68k_machine.do_graybars) 581 printf("Faked range to byte 0x%lx.\n", high[0]); 582 } 583 nextpa = load_addr + m68k_round_page(esym); 584 585 if (mac68k_machine.do_graybars) 586 printf("Bootstrapping the pmap system.\n"); 587 588 pmap_bootstrap(nextpa, load_addr); 589 590 if (mac68k_machine.do_graybars) 591 printf("Pmap bootstrapped.\n"); 592 593 if (!vidlen) 594 panic("Don't know how to relocate video!\n"); 595 596 if (mac68k_machine.do_graybars) 597 printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase); 598 599 mrg_fixupROMBase(oldROMBase, ROMBase); 600 601 if (mac68k_machine.do_graybars) 602 printf("Video address 0x%lx -> 0x%lx.\n", 603 (unsigned long)videoaddr, (unsigned long)newvideoaddr); 604 605 mac68k_set_io_offsets(IOBase); 606 607 /* 608 * If the serial ports are going (for console or 'echo'), then 609 * we need to make sure the IO change gets propagated properly. 610 * This resets the base addresses for the 8530 (serial) driver. 611 * 612 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end 613 * of this function (where we start using the MMU, so the new 614 * address is correct. 615 */ 616 if (zsinited != 0) 617 zs_init(); 618 619 videoaddr = newvideoaddr; 620 } 621