xref: /netbsd-src/sys/arch/mac68k/mac68k/pmap_bootstrap.c (revision 84d0ab551791493d2630bbef27063a9d514b9108)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.37 1997/09/19 13:54:41 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/reboot.h>
45 
46 #include <vm/vm.h>
47 
48 #include <machine/pte.h>
49 #include <mac68k/mac68k/clockreg.h>
50 #include <machine/vmparam.h>
51 #include <machine/cpu.h>
52 #include <machine/pmap.h>
53 #include <machine/autoconf.h>
54 
55 #include <ufs/mfs/mfs_extern.h>
56 
57 #include <mac68k/mac68k/macrom.h>
58 
59 #define PA2VA(v, t)	(t)((u_int)(v) - firstpa)
60 
61 extern char *etext;
62 extern int Sysptsize;
63 extern char *extiobase, *proc0paddr;
64 extern st_entry_t *Sysseg;
65 extern pt_entry_t *Sysptmap, *Sysmap;
66 
67 extern int maxmem, physmem;
68 extern int avail_remaining, avail_range, avail_end;
69 extern vm_offset_t avail_start, avail_next;
70 extern vm_offset_t virtual_avail, virtual_end;
71 extern vm_size_t mem_size;
72 extern int protection_codes[];
73 
74 extern vm_offset_t reserve_dumppages __P((vm_offset_t));
75 
76 /*
77  * These are used to map the RAM:
78  */
79 int		numranges; /* = 0 == don't use the ranges */
80 u_long	low[8];
81 u_long	high[8];
82 extern int		nbnumranges;
83 extern u_long	nbphys[];
84 extern u_long	nblog[];
85 extern   signed long	nblen[];
86 #define VIDMAPSIZE	btoc(m68k_round_page(vidlen))
87 extern u_int32_t	mac68k_vidlog;
88 extern u_int32_t	mac68k_vidphys;
89 extern u_int32_t	videoaddr;
90 extern u_int32_t	videorowbytes;
91 extern u_int32_t	videosize;
92 static int		vidlen;
93 static u_int32_t	newvideoaddr;
94 
95 extern caddr_t	ROMBase;
96 
97 /*
98  * Special purpose kernel virtual addresses, used for mapping
99  * physical pages for a variety of temporary or permanent purposes:
100  *
101  *	CADDR1, CADDR2:	pmap zero/copy operations
102  *	vmmap:		/dev/mem, crash dumps, parity error checking
103  *	msgbufaddr:	kernel message buffer
104  */
105 caddr_t		CADDR1, CADDR2, vmmap;
106 extern caddr_t	msgbufaddr;
107 
108 /*
109  * Bootstrap the VM system.
110  *
111  * This is called with the MMU either on or off.  If it's on, we assume
112  * that it's mapped with the same PA <=> LA mapping that we eventually
113  * want.  The page sizes and the protections will be wrong, anyway.
114  *
115  * nextpa is the first address following the loaded kernel.  On a IIsi
116  * on 12 May 1996, that was 0xf9000 beyond firstpa.
117  */
118 void
119 pmap_bootstrap(nextpa, firstpa)
120 	vm_offset_t nextpa;
121 	register vm_offset_t firstpa;
122 {
123 	vm_offset_t kstpa, kptpa, vidpa, iiopa, rompa;
124 	vm_offset_t kptmpa, lkptpa, p0upa;
125 	u_int nptpages, kstsize;
126 	int i;
127 	register st_entry_t protoste, *ste;
128 	register pt_entry_t protopte, *pte, *epte;
129 
130 	vidlen = ((videosize >> 16) & 0xffff) * videorowbytes + PGOFSET;
131 
132 	/*
133 	 * Calculate important physical addresses:
134 	 *
135 	 *	kstpa		kernel segment table	1 page (!040)
136 	 *						N pages (040)
137 	 *
138 	 *	kptpa		statically allocated
139 	 *			kernel PT pages		Sysptsize+ pages
140 	 *
141 	 *	vidpa		internal video space for some machines
142 	 *			PT pages		VIDMAPSIZE pages
143 	 *
144 	 *	rompa 		ROM space
145 	 *			PT pages		ROMMAPSIZE pages
146 	 *
147 	 *	iiopa		internal IO space
148 	 *			PT pages		IIOMAPSIZE pages
149 	 *
150 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
151 	 *   NBMAPSIZE are the number of PTEs, hence we need to round
152 	 *   the total to a page boundary with IO maps at the end. ]
153 	 *
154 	 *	kptmpa		kernel PT map		1 page
155 	 *
156 	 *	lkptpa		last kernel PT page	1 page
157 	 *
158 	 *	p0upa		proc 0 u-area		UPAGES pages
159 	 *
160 	 */
161 	if (mmutype == MMU_68040)
162 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
163 	else
164 		kstsize = 1;
165 	kstpa = nextpa;
166 	nextpa += kstsize * NBPG;
167 	kptpa = nextpa;
168 	nptpages = Sysptsize +
169 		(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG;
170 	nextpa += nptpages * NBPG;
171 	vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t);
172 	rompa = vidpa  - ROMMAPSIZE * sizeof(pt_entry_t);
173 	iiopa = rompa  - IIOMAPSIZE * sizeof(pt_entry_t);
174 	kptmpa = nextpa;
175 	nextpa += NBPG;
176 	lkptpa = nextpa;
177 	nextpa += NBPG;
178 	p0upa = nextpa;
179 	nextpa += USPACE;
180 
181 	if (nextpa > high[0]) {
182 		printf("Failure in NetBSD boot; nextpa=0x%lx, high[0]=0x%lx.\n",
183 			nextpa, high[0]);
184 		printf("You're hosed!  Try booting with 32-bit addressing ");
185 		printf("enabled in the memory control panel.\n");
186 		printf("Older machines may need Mode32 to get that option.\n");
187 		panic("Cannot work with the current memory mappings.\n");
188 	}
189 
190 	/*
191 	 * Initialize segment table and kernel page table map.
192 	 *
193 	 * On 68030s and earlier MMUs the two are identical except for
194 	 * the valid bits so both are initialized with essentially the
195 	 * same values.  On the 68040, which has a mandatory 3-level
196 	 * structure, the segment table holds the level 1 table and part
197 	 * (or all) of the level 2 table and hence is considerably
198 	 * different.  Here the first level consists of 128 descriptors
199 	 * (512 bytes) each mapping 32mb of address space.  Each of these
200 	 * points to blocks of 128 second level descriptors (512 bytes)
201 	 * each mapping 256kb.  Note that there may be additional "segment
202 	 * table" pages depending on how large MAXKL2SIZE is.
203 	 *
204 	 * XXX cramming two levels of mapping into the single "segment"
205 	 * table on the 68040 is intended as a temporary hack to get things
206 	 * working.  The 224mb of address space that this allows will most
207 	 * likely be insufficient in the future (at least for the kernel).
208 	 */
209 	if (mmutype == MMU_68040) {
210 		register int num;
211 
212 		/*
213 		 * First invalidate the entire "segment table" pages
214 		 * (levels 1 and 2 have the same "invalid" value).
215 		 */
216 		pte = PA2VA(kstpa, u_int *);
217 		epte = &pte[kstsize * NPTEPG];
218 		while (pte < epte)
219 			*pte++ = SG_NV;
220 		/*
221 		 * Initialize level 2 descriptors (which immediately
222 		 * follow the level 1 table).  We need:
223 		 *	NPTEPG / SG4_LEV3SIZE
224 		 * level 2 descriptors to map each of the nptpages+1
225 		 * pages of PTEs.  Note that we set the "used" bit
226 		 * now to save the HW the expense of doing it.
227 		 */
228 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
229 		pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE];
230 		epte = &pte[num];
231 		protoste = kptpa | SG_U | SG_RW | SG_V;
232 		while (pte < epte) {
233 			*pte++ = protoste;
234 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
235 		}
236 		/*
237 		 * Initialize level 1 descriptors.  We need:
238 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
239 		 * level 1 descriptors to map the `num' level 2's.
240 		 */
241 		pte = PA2VA(kstpa, u_int *);
242 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
243 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
244 		while (pte < epte) {
245 			*pte++ = protoste;
246 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
247 		}
248 		/*
249 		 * Initialize the final level 1 descriptor to map the last
250 		 * block of level 2 descriptors.
251 		 */
252 		ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1];
253 		pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE];
254 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
255 		/*
256 		 * Now initialize the final portion of that block of
257 		 * descriptors to map the "last PT page".
258 		 */
259 		pte = &(PA2VA(kstpa, u_int*))
260 				[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
261 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
262 		protoste = lkptpa | SG_U | SG_RW | SG_V;
263 		while (pte < epte) {
264 			*pte++ = protoste;
265 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
266 		}
267 		/*
268 		 * Initialize Sysptmap
269 		 */
270 		pte = PA2VA(kptmpa, u_int *);
271 		epte = &pte[nptpages+1];
272 		protopte = kptpa | PG_RW | PG_CI | PG_V;
273 		while (pte < epte) {
274 			*pte++ = protopte;
275 			protopte += NBPG;
276 		}
277 		/*
278 		 * Invalidate all but the last remaining entries in both.
279 		 */
280 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
281 		while (pte < epte) {
282 			*pte++ = PG_NV;
283 		}
284 		pte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
285 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
286 	} else {
287 		/*
288 		 * Map the page table pages in both the HW segment table
289 		 * and the software Sysptmap.  Note that Sysptmap is also
290 		 * considered a PT page hence the +1.
291 		 */
292 		ste = PA2VA(kstpa, u_int*);
293 		pte = PA2VA(kptmpa, u_int*);
294 		epte = &pte[nptpages+1];
295 		protoste = kptpa | SG_RW | SG_V;
296 		protopte = kptpa | PG_RW | PG_CI | PG_V;
297 		while (pte < epte) {
298 			*ste++ = protoste;
299 			*pte++ = protopte;
300 			protoste += NBPG;
301 			protopte += NBPG;
302 		}
303 		/*
304 		 * Invalidate all but the last remaining entries in both.
305 		 */
306 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
307 		while (pte < epte) {
308 			*ste++ = SG_NV;
309 			*pte++ = PG_NV;
310 		}
311 		/*
312 		 * Initialize the last to point to point to the page
313 		 * table page allocated earlier.
314 		 */
315 		*ste = lkptpa | SG_RW | SG_V;
316 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
317 	}
318 	/*
319 	 * Invalidate all but the final entry in the last kernel PT page
320 	 * (u-area PTEs will be validated later).  The final entry maps
321 	 * the last page of physical memory.
322 	 */
323 	pte = PA2VA(lkptpa, u_int *);
324 	epte = &pte[NPTEPG-1];
325 	while (pte < epte)
326 		*pte++ = PG_NV;
327 	*pte = (0xFFFFF000) | PG_RW | PG_CI | PG_V; /* XXX */
328 
329 	/*
330 	 * Initialize kernel page table.
331 	 * Start by invalidating the `nptpages' that we have allocated.
332 	 */
333 	pte = PA2VA(kptpa, u_int *);
334 	epte = &pte[nptpages * NPTEPG];
335 	while (pte < epte)
336 		*pte++ = PG_NV;
337 
338 	/*
339 	 * Validate PTEs for kernel text (RO)
340 	 */
341 	pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)];
342 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
343 #if defined(KGDB) || defined(DDB)
344 	protopte = firstpa | PG_RW | PG_V;	/* XXX RW for now */
345 #else
346 	protopte = firstpa | PG_RO | PG_V;
347 #endif
348 	while (pte < epte) {
349 		*pte++ = protopte;
350 		protopte += NBPG;
351 	}
352 	/*
353 	 * Validate PTEs for kernel data/bss, dynamic data allocated
354 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
355 	 * u-area and page table allocated below (RW).
356 	 */
357 	epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)];
358 	protopte = (protopte & ~PG_PROT) | PG_RW;
359 	/*
360 	 * Enable copy-back caching of data pages
361 	 */
362 	if (mmutype == MMU_68040)
363 		protopte |= PG_CCB;
364 	while (pte < epte) {
365 		*pte++ = protopte;
366 		protopte += NBPG;
367 	}
368 	/*
369 	 * Finally, validate the internal IO space PTEs (RW+CI).
370 	 * We do this here since the 320/350 MMU registers (also
371 	 * used, but to a lesser extent, on other models) are mapped
372 	 * in this range and it would be nice to be able to access
373 	 * them after the MMU is turned on.
374 	 */
375 	pte = PA2VA(iiopa, u_int *);
376 	epte = PA2VA(rompa, u_int *);
377 	protopte = IOBase | PG_RW | PG_CI | PG_V;
378 	while (pte < epte) {
379 		*pte++ = protopte;
380 		protopte += NBPG;
381 	}
382 
383 	pte = PA2VA(rompa, u_int *);
384 	epte = PA2VA(vidpa, u_int *);
385 	protopte = ((u_int) ROMBase) | PG_RO | PG_V;
386 	while (pte < epte) {
387 		*pte++ = protopte;
388 		protopte += NBPG;
389 	}
390 
391 	if (vidlen) {
392 		pte = PA2VA(vidpa, u_int *);
393 		epte = pte + VIDMAPSIZE;
394 		protopte = (mac68k_vidphys & ~PGOFSET) | PG_RW | PG_V | PG_CI;
395 		while (pte < epte) {
396 			*pte++ = protopte;
397 			protopte += NBPG;
398 		}
399 	}
400 
401 	/*
402 	 * Calculate important exported kernel virtual addresses
403 	 */
404 	/*
405 	 * Sysseg: base of kernel segment table
406 	 */
407 	Sysseg = PA2VA(kstpa, st_entry_t *);
408 	/*
409 	 * Sysptmap: base of kernel page table map
410 	 */
411 	Sysptmap = PA2VA(kptmpa, pt_entry_t *);
412 	/*
413 	 * Sysmap: kernel page table (as mapped through Sysptmap)
414 	 * Immediately follows `nptpages' of static kernel page table.
415 	 */
416 	Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
417 
418 	IOBase = (u_long)m68k_ptob(nptpages*NPTEPG -
419 			(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE));
420 
421 	ROMBase = (char *)m68k_ptob(nptpages*NPTEPG -
422 					(ROMMAPSIZE + VIDMAPSIZE));
423 
424 	if (vidlen) {
425 		newvideoaddr = (u_int32_t)
426 				m68k_ptob(nptpages*NPTEPG - VIDMAPSIZE)
427 				+ (mac68k_vidphys & PGOFSET);
428 		if (mac68k_vidlog)
429 			mac68k_vidlog = newvideoaddr;
430 	}
431 
432 	/*
433 	 * Setup u-area for process 0.
434 	 */
435 	/*
436 	 * Zero the u-area.
437 	 * NOTE: `pte' and `epte' aren't PTEs here.
438 	 */
439 	pte = PA2VA(p0upa, u_int *);
440 	epte = (u_int *) (PA2VA(p0upa, u_int) + USPACE);
441 	while (pte < epte)
442 		*pte++ = 0;
443 	/*
444 	 * Remember the u-area address so it can be loaded in the
445 	 * proc struct p_addr field later.
446 	 */
447 	proc0paddr = PA2VA(p0upa, char *);
448 
449 	/*
450 	 * VM data structures are now initialized, set up data for
451 	 * the pmap module.
452 	 */
453 	avail_next = avail_start = m68k_round_page(nextpa);
454 	avail_remaining = 0;
455 	avail_range = -1;
456 	for (i = 0; i < numranges; i++) {
457 		if (avail_next >= low[i] && avail_next < high[i]) {
458 			avail_range = i;
459 			avail_remaining = high[i] - avail_next;
460 		} else if (avail_range != -1) {
461 			avail_remaining += (high[i] - low[i]);
462 		}
463 	}
464 	physmem = m68k_btop(avail_remaining + nextpa - firstpa);
465 	avail_remaining -= m68k_round_page(MSGBUFSIZE);
466 	high[numranges - 1] -= m68k_round_page(MSGBUFSIZE);
467 
468 	/* XXX -- this doesn't look correct to me. */
469 	while (high[numranges - 1] < low[numranges - 1]) {
470 		numranges--;
471 		high[numranges - 1] -= low[numranges] - high[numranges];
472 	}
473 
474 	avail_remaining = m68k_trunc_page(avail_remaining);
475 	avail_end = avail_start + avail_remaining;
476 	avail_remaining = m68k_btop(avail_remaining);
477 
478 	mem_size = m68k_ptob(physmem);
479 	virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
480 	virtual_end = VM_MAX_KERNEL_ADDRESS;
481 
482 	/*
483 	 * Initialize protection array.
484 	 * XXX don't use a switch statement, it might produce an
485 	 * absolute "jmp" table.
486 	 */
487 	{
488 		register int *kp;
489 
490 		kp = (int *) &protection_codes;
491 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
492 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
493 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
494 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
495 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
496 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
497 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
498 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
499 	}
500 
501 	/*
502 	 * Kernel page/segment table allocated in locore,
503 	 * just initialize pointers.
504 	 */
505 	{
506 		struct pmap *kpm = (struct pmap *)&kernel_pmap_store;
507 
508 		kpm->pm_stab = Sysseg;
509 		kpm->pm_ptab = Sysmap;
510 		simple_lock_init(&kpm->pm_lock);
511 		kpm->pm_count = 1;
512 		kpm->pm_stpa = (st_entry_t *)kstpa;
513 		/*
514 		 * For the 040 we also initialize the free level 2
515 		 * descriptor mask noting that we have used:
516 		 *	0:		level 1 table
517 		 *	1 to `num':	map page tables
518 		 *	MAXKL2SIZE-1:	maps last-page page table
519 		 */
520 		if (mmutype == MMU_68040) {
521 			register int num;
522 
523 			kpm->pm_stfree = ~l2tobm(0);
524 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
525 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
526 			while (num)
527 				kpm->pm_stfree &= ~l2tobm(num--);
528 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
529 			for (num = MAXKL2SIZE;
530 			     num < sizeof(kpm->pm_stfree)*NBBY;
531 			     num++)
532 				kpm->pm_stfree &= ~l2tobm(num);
533 		}
534 	}
535 
536 	/*
537 	 * Allocate some fixed, special purpose kernel virtual addresses
538 	 */
539 	{
540 		vm_offset_t	va = virtual_avail;
541 
542 		CADDR1 = (caddr_t)va;
543 		va += NBPG;
544 		CADDR2 = (caddr_t)va;
545 		va += NBPG;
546 		vmmap = (caddr_t)va;
547 		va += NBPG;
548 		msgbufaddr = (caddr_t)va;
549 		va += m68k_round_page(MSGBUFSIZE);
550 		virtual_avail = reserve_dumppages(va);
551 	}
552 }
553 
554 void
555 bootstrap_mac68k(tc)
556 	int	tc;
557 {
558 	extern void	zs_init __P((void));
559 	extern caddr_t	esym;
560 	vm_offset_t	nextpa;
561 	caddr_t		oldROMBase;
562 
563 	if (mac68k_machine.do_graybars)
564 		printf("Bootstrapping NetBSD/mac68k.\n");
565 
566 	oldROMBase = ROMBase;
567 	mac68k_vidphys = videoaddr;
568 
569 	if (((tc & 0x80000000) && (mmutype == MMU_68030)) ||
570 	    ((tc & 0x8000) && (mmutype == MMU_68040))) {
571 		if (mac68k_machine.do_graybars)
572 			printf("Getting mapping from MMU.\n");
573 		(void) get_mapping();
574 		if (mac68k_machine.do_graybars)
575 			printf("Done.\n");
576 	} else {
577 		/* MMU not enabled.  Fake up ranges. */
578 		nbnumranges = 0;
579 		numranges = 1;
580 		low[0] = 0;
581 		high[0] = mac68k_machine.mach_memsize * (1024 * 1024);
582 		if (mac68k_machine.do_graybars)
583 			printf("Faked range to byte 0x%lx.\n", high[0]);
584 	}
585 	nextpa = load_addr + (((int)esym + NBPG - 1) & PG_FRAME);
586 
587 #if MFS
588 	if (boothowto & RB_MINIROOT) {
589 		int	v;
590 		boothowto |= RB_DFLTROOT;
591 		nextpa = m68k_round_page(nextpa);
592 		if ((v = mfs_initminiroot((caddr_t) nextpa-load_addr)) == 0) {
593 			printf("Error loading miniroot.\n");
594 		}
595 		printf("Loaded %d byte miniroot.\n", v);
596 		nextpa += v;
597 	}
598 #endif
599 
600 	if (mac68k_machine.do_graybars)
601 		printf("Bootstrapping the pmap system.\n");
602 
603 	pmap_bootstrap(nextpa, load_addr);
604 
605 	if (mac68k_machine.do_graybars)
606 		printf("Pmap bootstrapped.\n");
607 
608 	if (!vidlen)
609 		panic("Don't know how to relocate video!\n");
610 
611 	if (mac68k_machine.do_graybars)
612 		printf("Moving ROMBase from %p to %p.\n",
613 			oldROMBase, ROMBase);
614 
615 	mrg_fixupROMBase(oldROMBase, ROMBase);
616 
617 	if (mac68k_machine.do_graybars)
618 		printf("Video address 0x%lx -> 0x%lx.\n",
619 			(unsigned long) videoaddr,
620 			(unsigned long) newvideoaddr);
621 
622 	mac68k_set_io_offsets(IOBase);
623 
624 	/*
625 	 * If the serial ports are going (for console or 'echo'), then
626 	 * we need to make sure the IO change gets propagated properly.
627 	 * This resets the base addresses for the 8530 (serial) driver.
628 	 *
629 	 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end
630 	 * of this function (where we start using the MMU, so the new
631 	 * address is correct.
632 	 */
633 	if (   (mac68k_machine.serial_boot_echo)
634 	    || (mac68k_machine.serial_console))
635 		zs_init();
636 
637 	videoaddr = newvideoaddr;
638 }
639